Improving Cache Performance
by Exploiting Read-Write Disparity

Samira Khan, Alaa R. Alameldeen, Chris Wilkerson,
Onur Mutlu, and Daniel A. Jiménez

Carnegie Mellon (intel)” K]

Summary

Read misses are more critical than write misses
 Read misses can stall processor, writes are not on the critical path

Problem: Cache management does not exploit read-write
disparity

Goal: Design a cache that favors reads over writes to
improve performance

* Lines that are only written to are less critical

* Prioritize lines that service read requests

Key observation: Applications differ in their read reuse
behavior in clean and dirty lines

Idea: Read-Write Partitioning
 Dynamically partition the cache between clean and dirty lines
* Protect the partition that has more read hits

Improves performance over three recent mechanisms

Outline

Motivation

Reuse Behavior of Dirty Lines
Read-Write Partitioning
Results

Conclusion

Motivation

 Read and write misses are not equally critical

* Read misses are more critical than write misses
 Read misses can stall the processor
* Writes are not on the critical path

Rd A WrB RdC

w STALL g w STALL
B:?eQwriteback B |

fime

Cache management does not exploit
the disparity between read-write requests .

Key Idea

* Favor reads over writes in cache
e Differentiate between read vs. only written to lines

* Cache should protect lines that serve read requests
* Lines that are only written to are less critical

* Improve performance by maximizing read hits
 An Example

Rd Ap—|Wr Bf—{Rd B}—|Wr C}—Rd D

E Read-Only B Read and Written Write-Only

An Example

Rd Aj—Wr B Rd D

RdAM WRBM RABHWrCMRIdD M

NN —>———— ST

D|C|B A|DEIRIAINE! aleiRiA| BEND|C[E;

LRU Replacement Policy

RIAH WrBHRIBHWRCM RdDM | saved |

E Write B ;Writec m
Replace |
[] - [

Read-Biased Replacement Policy

Eviititygllivessavteatrapd exh i fferievebiyto
depencimp oo peafbragprests

Outline

Motivation

Reuse Behavior of Dirty Lines
Read-Write Partitioning
Results

Conclusion

Reuse Behavior of Dirty Lines

* Not all dirty lines are the same
* Write-only Lines
* Do not receive read requests, can be evicted

 Read-Write Lines
* Receive read requests, should be kept in the cache

Evicting write-only lines provides more space
for read lines and can improve performance

_
)
=

p -
2
©
(gs)
v .
—
S
)
k=
)
O

O Dirty (write-only) |

Reuse Behavior of Dirty Lines

© O O O O O O O O o
A 0 ~N O N < n N -

100

J11 ul sauijayde) jo 93ejuadidd

W Pwwy9sy

-EHH”- 91dos 05y
L | |

[0 Juooueiexesy

exulyds zgy
M T8Y
Jeise'g/y
ddisuwo'T/vy
wq|'oLy
0lu01'q9Y%
$9479¢Y vV
wniuenbql|'z9y

A1Qa4swan'6Sy
3uals'gst

lHesp Ly
JWqos Sy
PESNSII'LEY
INQVsn1oedx'get
SOBWOJS GEY
dwsnazy¢y
J|IW'EEY
Pwecy
SaAnEMQ QT
228'€0Y

cdizg oY
yauaq4ad oot

9.4% lines arp Hotl hewd and written

Appl@atavesdgev8 26 landsrepsl weiteedadigavior

Outline

Motivation

Reuse Behavior of Dirty Lines
Read-Write Partitioning
Results

Conclusion

10

Read-Write Partitioning

* Goal: Exploit different read reuse behavior in dirty
lines to maximize number of read hits

* Observation:
— Some applications have more reads to clean lines
— Other applications have more reads to dirty lines
* Read-Write Partitioning:
— Dynamically partitions the cache in clean and dirty lines
— Evict lines from the partition that has less read reuse

Improves performance by protecting lines
with more read reuse

11

Number of Reads Normalized
to Reads in clean lines at 100m

o = N w H (9])] ~ (o] (Yo}
1]

Read-Write Partitioning

=
o

Soplex

| =#*=Clean Line
| | 4Dirty Line

0 100 200 _
Instructions (M)

300

400

500

Number of Reads Normalized
to Reads in clean lines at 100m

B

w
U

w

N
U

N

=
n

[EY

o
&)

o
]

Xalanc

<#Clean Line
<#-Dirty Line

0 100 200 300 400 500
Instructions (M)

Applications have significantly different
read reuse behavior in clean and dirty lines

Read-Write Partitioning

e Utilize disparity in read reuse in clean and dirty lines
e Partition the cache into clean and dirty lines

* Predict the partition size that maximizes read hits
 Maintain the partition through replacement

— DIP [aureshi et al. 2007] Selects victim within the partition

Predicted Best 0 Replace from
Partition Size 3 dirty partition
"

Dirty Lines

Clean Lines 13

Cache Sets

Predicting Partition Size
* Predicts partition size using sampled shadow tags
— Based on utility-based partitioning [Qureshi et al. 2006]
* Counts the number of read hits in clean and dirty lines
* Picks the partition (x, associativity — x) that maximizes

number of read hits , _

]
C OUNT E R S|IC OUN'T E RIS
L ./

sialmlelilelo]l B Askolalololwl M JsiHlAl ol ofw

EEEEEEEN ;- T, 23
DEEE e 2§ - 25 5E .. 25
BHEREEBEE 8GN EEEE BN EEEs

Dirty Clean

14

Outline

Motivation

Reuse Behavior of Dirty Lines
Read-Write Partitioning
Results

Conclusion

15

Methodology

CMPSim x86 cycle-accurate simulator [aleel et al. 2008]
4MB 16-way set-associative LLC

32KB I1+D L1, 256KB L2

200-cycle DRAM access time

550m representative instructions

Benchmarks:
— 10 memory-intensive SPEC benchmarks
— 35 multi-programmed applications

Comparison Points

* DIP, RRIP: Insertion Policy [aureshi et al. 2007, Jaleel et al. 2010]

— Avoid thrashing and cache pollution
 Dynamically insert lines at different stack positions

— Low overhead
— Do not differentiate between read-write accesses

* SUP+: Single-Use Reference Predictor [riguet et al. 20071

— Avoids cache pollution
* Bypasses lines that do not receive re-references
— High accuracy

— Does not differentiate between read-write accesses
* Does not bypass write-only lines

— High storage overhead, needs PC in LLC

17

Comparison Points:
Read Reference Predictor (RRP)

* A new predictor inspired by prior works [Tyson et al. 1995,
Piquet et al. 2007]

* |dentifies read and write-only lines by allocating PC
— Bypasses write-only lines

* Writebacks are not associated with any PC

Allocating
- PCfrom L1 /,
WWie A

PCP:Rd A :
Wb A Wb A
Wb A Wb A
Time

MeadochbssatRE bidiighiagait6ga tibhenhigidisses\RE nedd,ddLin

Speedup vs. Baseline LRU

Single Core Performance

1.20

1.15

1.00 -

DIP RRIP SUP+ RRP RWP
Diftbvengimtimgwe a¢l thsinvdcite:-of RRMes
imprBues grpurfornikB)cteoy stoempmbneebladisms

1.14
1.12
1.10
1.08

vs. Baseline LRU

1.06

dup
ol
o o
N H

Spee

4 Core Performance

B DIP BRRIP OSUP+ BRRP BRWP

No Memory 1 Memory 2 Memory 3 Memory 4 Memory
Intensive Intensive Intensive Intensive Intensive

Dviftnes h et whech v oneisprdidg tiones

improves perfsemas® oy érbercané mechanisms

20

Average Memory Traffic

120

B Writeback
B Miss

=
o
o

(0]
o

S
o

Percentage of Memory Traffic
N (@))]
o o

Base RWP

Increases writeback traffic by 2.5%,
but reduces overall memory traffic by 16%

21

Dirty Partition Sizes

O Natural Dirty Partition B Predicted Dirty Partition|

ywqgoueex €8y
exulyds zgy
HMT8Y
Jeise‘s/y
ddisuwo /vy
wq|'0Ly
01U01'G9t
$24¥9¢CY 9P
wnjuenbql|'zot

dlddswe5 6Sy
3uals'gqy
Jowwy9sy
XI|nNJ|es’y Sy
Aeinod-ggy
xa|dos 0sy

{[=C1 A a7
NWQo3 Sy
pweuyyy
PEISI| LEY
INQVsn1ded'9ey
SOewo43'GEY
dwsnaz'y€y
I EEY

PW e
ssawesd 9T
SOAEM(0T
208'€0Y

¢dizq 10V
yoauaq|4ad oot

ficantly

for some benchmarks

ize varies signi

Partition s

22

Dirty Partition Sizes

Juwqgoue|ex ¢gy
exulyds-zgy

| JIMT8Y

- JRISE'E/Y

- ddisuwo /v

- wqI'oLY

=i 0juU0}'59Y

 J2JY97Y 9

wniuenbq)|'zoy

dLg4sweH'6eSy

- Buals'gsy

 JdWwy 96y

- XI|NJed pSY
~ Aeanod ggy

~ xa|dos sy

| [l|esp’ Lyt

- pweu iy

| pEalIsa|'LEY

| NQVSN10Bd'9EY

I Natural Dirty Partition I Predicted Dirty Partition|

5 soewoud gey

- dwisnaz'ysy

O|lWEEY

PWecy

ssawesd 9T

- saAeMq'OTY

_H 203'¢ov

_zdizg 101

youaqpiad ooy

ficantly during the runtime

for some benchmarks

ize varies signi

Partition s

23

Outline

Motivation

Reuse Behavior of Dirty Lines
Read-Write Partitioning
Results

Conclusion

24

Conclusion

Problem: Cache management does not exploit
read-write disparity
Goal: Design a cache that favors read requests over

write requests to improve performance

— Lines that are only written to are less critical
— Protect lines that serve read requests

Key observation: Applications differ in their read
reuse behavior in clean and dirty lines

Idea: Read-Write Partitioning

— Dynamically partition the cache in clean and dirty lines
— Protect the partition that has more read hits

Results: Improves performance over three recent
mechanisms

25

Thank you

Improving Cache Performance
by Exploiting Read-Write Disparity

Samira Khan, Alaa R. Alameldeen, Chris Wilkerson,
Onur Mutlu, and Daniel A. Jiménez

Carnegie Mellon (intel)” K]

Extra Slides

Reuse Behavior of Dirty Lines in LLC

* Different read reuse behavior in dirty lines
* Read Intensive/Non-Write Intensive

— Most accesses are reads, only a few writes
— Example: 483.xalancbmk
* Write Intensive
— Generates huge amount of intermediate data
— Example: 456.hmmer
* Read-Write Intensive
— Iteratively reads and writes huge amount of data
— Example: 450.soplex

29

Read Intensive/Non-Write Intensive

 Most accesses are reads, only a few writes

* 483.xalancbmk: Extensible stylesheet language
transformations (XSLT) processor

XSLT Processor

—> XML " |
Hv

HTML/XML/TXT Output

<[>

XML Input

XSLT Code
e 929% accesses are reads

* 99% write accesses are stack operation

30

Non-Write Intensive

Read and Written
elementAt

push %ebp

Logical View of Stack

ayoe) aJo)

mov %esp, %
push %esi

pop %esi
pop %ebp

ret WRITEBACK

1.8% lines in LLC are write-only
These dirty lines should be evicted

31

ayoe) |9Aa] 1se7

Write Intensive

* Generates huge amount of intermediate data
 456.hmmer: Searches a protein sequence database

Hidden Markov Model
of Multiple Sequence
Alignments

Best Ranked
Matches

Database

e Viterbi algorithm, uses dynamic programming
* Only 0.4% writes are from stack operations

32

Write Ir]tenSI\/eRead and Written

2D Table

ayoe) a10)

WRITEBACK

Write-Only
92% lines in LLC are write-only
These lines can be evicted

ayoe) |aAa] 1se7

Read-Write Intensive

* |teratively reads and writes huge amount of data
* 450.soplex: Linear programming solver

&3’_ SOPLE X l———> Miminum/maximum

of objective function

Inequalities and
objective function

* Simplex algorithm, iterates over a matrix
* Different operations over the entire matrix at each iteration

34

Read-Write Intensive
Read and Written

Pivot Column

ayoe) a10)

Pivot Row

Werite-Only /

Read and Written
19% lines in LLC write-only, 10% lines are read-written
Read and written lines should be protected =

T |
O |
—
— S 1
- o o W |
— T e e
V) I _,
% e —— |
— e ———
T
R a—
.W, o ., E— _i
=2 O — O
O ¢ nw.. 0
I o N —
C |C o
C B § T —
U | — I
O m g —
(- W RWI |
O |z S mm |
2
Q | & =]
U | S 5 _i
S mo
T 1
% | |
T e
w B e
Q T e
R o o o o o o o
H m o0 (o] < oN

971 Ul sauljayde) Jo asejuadriad

e|ex egy
1yds zg8y
HMT8Y
Jelse‘c/y
Uwo'T/v
wqoLy
Ju0l'q9y
9ZY 9t
nbal|'z9v
Wa9'6SY
uals'ggy
Wy 9Gy
|dos' 0S¥
IEEIWA 47
qos Syt
IS9I'LEY
10e2'9¢y
043'GEY
SNOZ {¢Y
QW EEY
pweey
emq oty
203 €01
dizq'Tov
142d"00t

On average 37.4% blocks are dirty non-read and

42% blocks are clean non-read

Speedup vs. Baseline LRU

Single Core Performance
o 2.6KB_

DIP RRIP SUP+ RRP RWP
5% speedup over the whole SPECCPU2006

benchmarks

37

Speedup

1.30
S B DIP B RRIP ¥ SUP+ B RRP M RWP
«
@ 1.20
=
o
(7]
©
m 1.10
7
>
o
-g 1.00 - T ‘I
)
)
o
n

0.90

o &
Qe'(\ & N .Q?)b & X .«\\‘\?) & & Q‘Vb
2 N R P R RN & ¢ & &8
BNy K% 2 & ¢ %Q(? O@Q N q/c)Q & L L

On average 14.6% speedup over baseline
5% speedup over the whole SPECCPU2006 benchmarks

Writeback Traffic to Memory

=
D

ORRP

=
=N

© o o o
H ()] (0e]
| |

Writeback Traffic Normalized to LRU

Increases traffic by 17%
over the whole SPECCPU2006 benchmarks 3

4-Core Performance

N

3 LN 2 (Wp]
i . i .
i i i

1
1.1
0

dnpaads paiysiap pazijewion

Workloads

40

Change of IPC with Static Partitioning

IPC

0.9

0.8

0.7

0.6

0.5

0.4

Xalancbmk

0 2 4 6 8 10 12 14 16
Number of Ways Assigned to

Dirty Blocks

0.8

0.7

IPC

0.6

0.5

Soplex

2 4 8 10 12 14 16
Number of Ways Assigned to

Dirty Blocks

