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Summary

Read misses are more critical than write misses
 Read misses can stall processor, writes are not on the critical path

Problem: Cache management does not exploit read-write
disparity

Goal: Design a cache that favors reads over writes to
improve performance

* Lines that are only written to are less critical

* Prioritize lines that service read requests

Key observation: Applications differ in their read reuse
behavior in clean and dirty lines

Idea: Read-Write Partitioning
 Dynamically partition the cache between clean and dirty lines
* Protect the partition that has more read hits

Improves performance over three recent mechanisms
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Motivation

 Read and write misses are not equally critical

* Read misses are more critical than write misses
 Read misses can stall the processor
* Writes are not on the critical path
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Cache management does not exploit
the disparity between read-write requests .



Key Idea

* Favor reads over writes in cache
e Differentiate between read vs. only written to lines

* Cache should protect lines that serve read requests
* Lines that are only written to are less critical

* Improve performance by maximizing read hits
 An Example
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An Example
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Reuse Behavior of Dirty Lines

* Not all dirty lines are the same
* Write-only Lines
* Do not receive read requests, can be evicted

 Read-Write Lines
* Receive read requests, should be kept in the cache

Evicting write-only lines provides more space
for read lines and can improve performance
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Read-Write Partitioning

* Goal: Exploit different read reuse behavior in dirty
lines to maximize number of read hits

* Observation:
— Some applications have more reads to clean lines
— Other applications have more reads to dirty lines
* Read-Write Partitioning:
— Dynamically partitions the cache in clean and dirty lines
— Evict lines from the partition that has less read reuse

Improves performance by protecting lines
with more read reuse
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Applications have significantly different
read reuse behavior in clean and dirty lines



Read-Write Partitioning

e Utilize disparity in read reuse in clean and dirty lines
e Partition the cache into clean and dirty lines

* Predict the partition size that maximizes read hits
 Maintain the partition through replacement

— DIP [aureshi et al. 2007] Selects victim within the partition

Predicted Best 0 Replace from
Partition Size 3 dirty partition
"

Dirty Lines

Clean Lines 13

Cache Sets



Predicting Partition Size
* Predicts partition size using sampled shadow tags
— Based on utility-based partitioning [Qureshi et al. 2006]
* Counts the number of read hits in clean and dirty lines
* Picks the partition (x, associativity — x) that maximizes

number of read hits , _
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Methodology

CMPSim x86 cycle-accurate simulator [aleel et al. 2008]
4MB 16-way set-associative LLC

32KB I1+D L1, 256KB L2

200-cycle DRAM access time

550m representative instructions

Benchmarks:
— 10 memory-intensive SPEC benchmarks
— 35 multi-programmed applications



Comparison Points

* DIP, RRIP: Insertion Policy [aureshi et al. 2007, Jaleel et al. 2010]

— Avoid thrashing and cache pollution
 Dynamically insert lines at different stack positions

— Low overhead
— Do not differentiate between read-write accesses

* SUP+: Single-Use Reference Predictor [riguet et al. 20071

— Avoids cache pollution
* Bypasses lines that do not receive re-references
— High accuracy

— Does not differentiate between read-write accesses
* Does not bypass write-only lines

— High storage overhead, needs PC in LLC
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Comparison Points:
Read Reference Predictor (RRP)

* A new predictor inspired by prior works [Tyson et al. 1995,
Piquet et al. 2007]

* |dentifies read and write-only lines by allocating PC
— Bypasses write-only lines

* Writebacks are not associated with any PC
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Speedup vs. Baseline LRU

Single Core Performance
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Average Memory Traffic
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Increases writeback traffic by 2.5%,
but reduces overall memory traffic by 16%
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Dirty Partition Sizes
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Dirty Partition Sizes
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Conclusion

Problem: Cache management does not exploit
read-write disparity
Goal: Design a cache that favors read requests over

write requests to improve performance

— Lines that are only written to are less critical
— Protect lines that serve read requests

Key observation: Applications differ in their read
reuse behavior in clean and dirty lines

Idea: Read-Write Partitioning

— Dynamically partition the cache in clean and dirty lines
— Protect the partition that has more read hits

Results: Improves performance over three recent
mechanisms
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Thank you
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Reuse Behavior of Dirty Lines in LLC

* Different read reuse behavior in dirty lines
* Read Intensive/Non-Write Intensive

— Most accesses are reads, only a few writes
— Example: 483.xalancbmk
* Write Intensive
— Generates huge amount of intermediate data
— Example: 456.hmmer
* Read-Write Intensive
— Iteratively reads and writes huge amount of data
— Example: 450.soplex
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Read Intensive/Non-Write Intensive

 Most accesses are reads, only a few writes

* 483.xalancbmk: Extensible stylesheet language
transformations (XSLT) processor

XSLT Processor

—> XML " |
Hv

HTML/XML/TXT Output

<[>

XML Input

XSLT Code
e 929% accesses are reads

* 99% write accesses are stack operation
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Non-Write Intensive

Read and Written
elementAt

push %ebp

Logical View of Stack

ayoe) aJo)

mov %esp, %
push %esi

pop %esi
pop %ebp

ret WRITEBACK

1.8% lines in LLC are write-only
These dirty lines should be evicted

31
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Write Intensive

* Generates huge amount of intermediate data
 456.hmmer: Searches a protein sequence database

Hidden Markov Model
of Multiple Sequence
Alignments

Best Ranked
Matches

Database

e Viterbi algorithm, uses dynamic programming
* Only 0.4% writes are from stack operations
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Write Ir]tenSI\/eRead and Written

2D Table

ayoe) a10)

WRITEBACK

Write-Only
92% lines in LLC are write-only
These lines can be evicted
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Read-Write Intensive

* |teratively reads and writes huge amount of data
* 450.soplex: Linear programming solver

&3’_ SOPLE X l———> Miminum/maximum

of objective function

Inequalities and
objective function

* Simplex algorithm, iterates over a matrix
* Different operations over the entire matrix at each iteration
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Read-Write Intensive
Read and Written

Pivot Column

ayoe) a10)

Pivot Row

Werite-Only /

Read and Written
19% lines in LLC write-only, 10% lines are read-written
Read and written lines should be protected =
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Speedup vs. Baseline LRU

Single Core Performance
o 2.6KB_

DIP RRIP SUP+ RRP RWP
5% speedup over the whole SPECCPU2006

benchmarks
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Speedup
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Writeback Traffic to Memory
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Increases traffic by 17%
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4-Core Performance
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Change of IPC with Static Partitioning
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