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ABSTRACT
Modern DRAM-based systems suffer from significant energy and
latency penalties due to conservative DRAM refresh standards.
Volatile DRAM cells can retain information across a wide distri-
bution of times ranging from milliseconds to many minutes, but each
cell is currently refreshed every 64ms to account for the extreme
tail end of the retention time distribution, leading to a high refresh
overhead. Due to poor DRAM technology scaling, this problem
is expected to get worse in future device generations. Hence, the
current approach of refreshing all cells with the worst-case refresh
rate must be replaced with a more intelligent design.

Many prior works propose reducing the refresh overhead by ex-
tending the default refresh interval to a higher value, which we refer
to as the target refresh interval, across parts or all of a DRAM chip.
These proposals handle the small set of failing cells that cannot
retain data throughout the entire extended refresh interval via reten-
tion failure mitigation mechanisms (e.g., error correcting codes or
bit-repair mechanisms). This set of failing cells is discovered via
retention failure profiling, which is currently a brute-force process
that writes a set of known data to DRAM, disables refresh and waits
for the duration of the target refresh interval, and then checks for
retention failures across the DRAM chip. We show that this brute-
force approach is too slow and is detrimental to system execution,
especially with frequent online profiling.

This paper presents reach profiling, a new methodology for re-
tention failure profiling based on the key observation that an over-
whelming majority of failing DRAM cells at a target refresh interval
fail more reliably at both longer refresh intervals and higher tem-
peratures. Using 368 state-of-the-art LPDDR4 DRAM chips from
three major vendors, we conduct a thorough experimental charac-
terization of the complex set of tradeoffs inherent in the profiling
process. We identify three key metrics to guide design choices for
retention failure profiling and mitigation mechanisms: coverage,
false positive rate, and runtime. We propose reach profiling, a new
retention failure profiling mechanism whose key idea is to profile
failing cells at a longer refresh interval and/or higher temperature
relative to the target conditions in order to maximize failure cover-
age while minimizing the false positive rate and profiling runtime.
We thoroughly explore the tradeoffs associated with reach profiling
and show that there is significant room for improvement in DRAM
retention failure profiling beyond the brute-force approach. We show
with experimental data that on average, by profiling at 250ms above
the target refresh interval, our first implementation of reach profiling
(called REAPER) can attain greater than 99% coverage of failing
DRAM cells with less than a 50% false positive rate while running
2.5x faster than the brute-force approach. In addition, our end-to-end
evaluations show that REAPER enables significant system perfor-
mance improvement and DRAM power reduction, outperforming the
brute-force approach and enabling high-performance operation at
longer refresh intervals that were previously unreasonable to employ
due to the high associated profiling overhead.
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1 INTRODUCTION
DRAM stores data in volatile capacitors that constantly leak charge
and therefore requires periodic charge restoration to maintain data
correctness. As cell capacitor sizes decrease with process scaling
and the total number of cells per chip increases each device gener-
ation [36], the total amount of time and energy required to restore
all cells to their correct value, a process known as DRAM refresh,
scales unfavorably [23, 41, 63]. The periodic refresh of DRAM
cell capacitors consumes up to 50% of total DRAM power [63] and
incurs large performance penalties as DRAM cells are unavailable
during refresh [23, 63, 73, 75].

The DRAM refresh rate, dictated by the refresh interval or tREFI ,
is a standardized constant to ensure interoperability of devices from
different vendors and across product generations. DRAM chips
are designed to operate reliably at this refresh rate under worst-case
operating conditions. However, it is well known that DRAM cells ex-
hibit large variations in charge retention time [42, 47, 54, 62, 63, 81].
Therefore, a fixed refresh interval causes all DRAM cells to be
refreshed at the worst-case rate even though most DRAM cells
can hold data for much longer. Prior works explore increasing the
default refresh interval to what we call a target refresh interval
while maintaining correctness of DRAM operation. These works
assume that a small finite set of failing cells (due to the extended
refresh interval) are handled with various retention failure mitiga-
tion mechanisms (e.g., ECC, more frequent refreshes, bit repair
mechanisms) [6, 7, 26, 42, 61–63, 76, 81, 95–97].

Many of these works that extend the refresh interval assume
that the set of failing cells can be quickly and efficiently identified
using a brute-force retention failure profiling mechanism, which
involves writing known data to DRAM, waiting for the duration
of the required target refresh interval, and reading the data back
out to check for errors, for every row of cells in a DRAM chip.
However, these works do not rigorously explore the efficacy and
reliability of such a mechanism. Effects such as variable retention
time (VRT) [41, 42, 62, 72, 81, 82, 101] and data pattern dependence
(DPD) [42–44, 49, 59, 60, 62] invalidate the assumption that a small
finite set of failing cells exists and therefore complicate the brute-
force approach, likely requiring efficient online profiling mechanisms
to discover a continuously-changing set of failing cells. To this
end, our goal is to (1) thoroughly analyze the different tradeoffs
inherent to retention failure profiling via experimental analysis of a
large number of real state-of-the-art LPDDR4 DRAM chips and (2)
use our observations to develop a robust retention failure profiling
mechanism that identifies an overwhelming majority of all possible
failing cells at a given target refresh interval within a short time.

We identify three key properties that any effective retention failure
profiling mechanism should have. First, for a given target refresh
interval, profiling should achieve high coverage, i.e., the ratio of the
number of failing cells discovered by the profiling mechanism to
the number of all possible failing cells at the target refresh interval.
This is required to minimize the cost of the mitigation mechanism
for the failing cells at the target refresh interval. Second, profiling
should result in only a small number of false positives, i.e., cells
that are observed to fail during profiling but never during actual
operation at the target refresh interval. This is beneficial to minimize
the necessary work done by, and thus the overhead of, the retention
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failure mitigation mechanism. Third, the profiling runtime should be
as short as possible to minimize the performance impact of profiling
on the system.

To understand the complex tradeoffs inherent in DRAM retention
failure profiling with a focus on these three metrics, we conduct
a thorough experimental analysis of 368 state-of-the-art LPDDR4
DRAM chips across three major DRAM vendors. Our rigorous
experimental analysis yields three new major observations. First, the
brute-force approach to profiling is inefficient and does not attain
high coverage within a short time. Second, the cells that fail at a
given refresh interval fail more reliably at a higher refresh interval
and at a higher temperature. Third, retention failure profiling has
a complex tradeoff space between three key parameters (coverage,
false positive rate, and runtime).

Based on our observations from this rigorous experimental char-
acterization of the complex tradeoff space, we propose a novel
low-overhead and high-coverage DRAM retention failure profiling
methodology called reach profiling. The key idea of reach profiling
is to profile at reach conditions, which consist of either a larger
refresh interval and/or a higher temperature relative to the target
refresh interval/temperature to quickly discover an overwhelming
majority of all possible failing cells at the target conditions. Intu-
itively, given that failing cells are more likely to fail at a higher
refresh interval and at a higher temperature, we can quickly obtain
all failing cells for a target condition by profiling at reach conditions,
at the cost of also identifying some false positive cells as failing. The
profiling parameters can be adjusted to maximize coverage while
minimizing the false positive rate and runtime.

We find that on average, across 368 different DRAM chips from
three vendors, reach profiling attains a speedup of 2.5x over brute-
force profiling while providing over 99% coverage of failing cells
with less than a 50% false positive rate. Further speedups of up to
3.5x can be obtained at the expense of significantly greater false
positive rates. By manipulating the profiling conditions relative to
the target conditions, we can select an appropriate tradeoff between
coverage, false positive rate, and runtime that suits the desired system
configuration.

Reach profiling results in a set of failing cells that can be handled
by various retention failure mitigation mechanisms (e.g., error cor-
recting codes, higher refresh rates, and remapping mechanisms for
failing cells) to reliably operate a system at a target refresh rate. As
an example, consider a scheme where the DRAM memory controller
maps addresses with failing cells out of the system address space.
For any target refresh interval, reach profiling can be used to quickly
determine the set of failing cells with high coverage. The memory
controller can then map out the addresses containing the failed cells
from the system address space in order to maintain system reliability
at a higher refresh interval. Alternatively, the system can employ
any other error mitigation mechanism proposed by prior work to
handle the failing cells (e.g., [6, 7, 26, 42, 61–63, 76, 81, 95, 97]).
For example, when used with ArchShield [76], REAPER reliably
enables an average end-to-end system performance improvement of
12.5% (maximum 23.7%) on our workloads (Section 7.3.2).

This paper makes the following major contributions:
◦ It is the first work to 1) experimentally characterize data reten-

tion behavior and retention failures for state-of-the-art LPDDR4
DRAM chips (Section 5) and 2) demonstrate the complex tradeoff
space between the three key metrics associated with DRAM reten-
tion failure profiling: coverage, false positive rate, and profiling
runtime (Section 6).

◦ It proposes reach profiling, a novel DRAM cell retention failure
profiling technique that efficiently and reliably identifies cells
with a high likelihood to fail at a target refresh interval. The
key idea of reach profiling is to profile at a longer refresh in-
terval and/or a higher temperature relative to the target refresh
interval/temperature in order to quickly discover an overwhelming
majority of all possible failing cells at the target conditions. Reach

profiling enables a wide range of previously proposed refresh re-
duction techniques [61, 63, 76, 79, 95, 96] (Section 3).

◦ It experimentally shows, with analysis of 368 LPDDR4 DRAM
chips at many different operating conditions, that reach profiling
is effective. We experimentally demonstrate that by profiling
at 250ms above the target refresh interval, reach profiling can
provide greater than 99% coverage of failing cells with less than
a 50% false positive rate, while running 2.5x faster than the state-
of-the-art brute-force profiling mechanism.

◦ It shows that DRAM cells cannot easily be classified as “weak”
or “strong”, based on a rigorous analysis of cell retention time
distribution and individual cell retention failure data. We use this
analysis and data to provide a theoretical basis for the effectiveness
of reach profiling (Section 5.5).

◦ It presents a formal analysis of tolerable raw bit error rates
(RBERs) based on using ECC to better understand profiling re-
quirements. We use this analysis to present a new model for the
minimum length of time that a retention profile remains valid. For
example, given a system with a desired uncorrectable bit error
rate (UBER) of 10−15 and a target refresh interval of 1024ms
operating at 45◦C, reach profiling results in a profile with 99%
coverage that is valid for approximately 2.3 days (Section 6.2.2).

◦ It provides an implementation of reach profiling, called REAPER,
which enables significant end-to-end system performance im-
provement and DRAM power reduction. REAPER outperforms
the brute-force approach and enables high-performance operation
at longer refresh intervals that were previously unreasonable to
employ due to the high associated profiling overhead (Section 7).

2 BACKGROUND
We discuss the necessary background material required for under-
standing our experimental investigation and new profiling mecha-
nism. For further detail on fundamental DRAM operation, we refer
the reader to [21–25, 32, 48, 52, 54–58, 62, 63, 87–90].

2.1 DRAM Organization
DRAM can be thought of as a hierarchy of 2-dimensional cell arrays.
Figure 1 illustrates the basic DRAM array structure and function.
Figure 1(a) depicts a DRAM array along with peripheral circuitry
used for i) selecting a row to read (row decoder) and ii) reading out
the data in the selected row (sense amplifiers). Each row of cells
is connected with a wire called the wordline, and each column of
cells with a wire called the bitline. Each cell, shown in Figure 1(b),
encodes one bit of data in a capacitor using logic “high” (Vdd) to
represent one binary value and logic “low” (0V ) for its inverse.

During an access, the row decoder asserts a single wordline,
connecting an entire row of cells to their respective bitlines and sense
amplifiers. Each bitline is initially charged to Vdd

2 and connection
with the cell capacitor results in a shift in bitline voltage towards
either Vdd or 0V . Each sense amplifier resolves the directional shift
in voltage on its bitline to determine the original value stored in the
cell. After resolving the shift, the data has been read out of the row
of cells and can be accessed by the system and written back into the
cells via the sense amplifiers.

2.2 DRAM Refresh
Data stored in DRAM cell capacitors is volatile as a result of a
combination of various charge leakage mechanisms [62, 84]. Over
time, the data stored in a DRAM cell degrades and is eventually
lost. This is called a retention failure. In order to prevent a retention
failure, cell data must be periodically restored with a process called
DRAM refresh. The JEDEC specification [37] defines the time
interval between refresh commands, tREFI , to be 64ms for typical
operating conditions and 32ms at above 85◦C.

The refresh operation relies on using the sense amplifiers to read
out a row of data and write it back into the cells in order to restore the
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Figure 1: (a) A 2-D DRAM array composed of cells. (b) A DRAM cell consisting of a capacitor and transistor. (c) Effect of extending
the refresh interval on two cells with different leakage rates (high-leakage cell A and low-leakage cell B).

original fully charged/discharged states of cells. However, refreshing
a cell is conditional on a correct read, so if a cell’s logical state
has already changed by the time a refresh operation is performed,
refresh could simply restore the incorrectly-read data. Figure 1(c)
demonstrates the charge levels of two DRAM cells, A and B, with
different leakage rates, when they are both refreshed at two different
refresh intervals. While both cells retain data correctly with the
standard refresh interval, cell A is unable to retain data with a longer
refresh interval.

Prior works show that due to process variation and other effects
discussed in Section 2.3, cells can hold data for a wide distribution
of retention times ranging from milliseconds to minutes, and only a
small percentage of cells, called worst-case cells, actually require
the JEDEC-specified 64ms refresh interval [33, 42, 47, 54, 60, 62,
63, 81, 95]. However, determining the set of cells that require a
given refresh interval is a nontrivial process, so each cell is simply
refreshed at the rate required by the worst-case cells to guarantee
correct operation across all of DRAM [63]. As a result, the mem-
ory controller is responsible for ensuring that each DRAM row is
refreshed every tREFI , which in turn results in considerable overhead
in both energy consumption and performance due to extra DRAM
accesses and in-progress row refresh operations that spend energy
and delay program-issued DRAM requests [21, 23, 63, 74, 81, 95].

2.3 DRAM Retention Phenomena
In addition to the inherent process variation from manufacturing, two
major phenomena affect the data retention behavior of a DRAM cell:
1) variable retention time (VRT) [41, 42, 62, 72, 81, 82, 101], and
2) data pattern dependence (DPD) [42–44, 49, 59, 60, 62]. These
phenomena dynamically change the effective retention time of each
cell, which complicates the identification of the set of all cells that
fail under a longer refresh interval. We discuss these phenomena
in detail in this section in order to demonstrate the difficulty of the
retention failure identification problem.

2.3.1 Variable Retention Time (VRT). VRT is the phenome-
non where a DRAM cell’s retention characteristics alternate between
two or more different retention time values. This phenomenon has
been demonstrated to be ubiquitous and unpredictable [41, 42, 62,
72, 81, 82, 101]. A VRT cell stays in a given retention time state for
an unpredictable length of time, and this time period is based on a
memoryless random process that changes with supply voltage and
ambient temperature [101]. This results in a dynamically-changing
set of cells that experience retention failures at a given target condi-
tion (i.e., the more time passes after determining the profile of failing
cells at a target condition, the more the profile coverage degrades).

2.3.2 Data Pa�ern Dependence (DPD). The retention time
of a cell has been shown to depend on the data values stored both
in the cell itself and the data stored in its neighboring cells [42–
44, 49, 59, 60, 62]. DPD effects occur due to coupling between
adjacent circuit elements, exacerbating charge leakage in affected
cells and resulting in difficult-to-predict retention times [43, 59,
62]. This means that different data patterns (DPs) stored in DRAM
induce retention failures at different refresh intervals for each cell.

Operating conditions, architectural design, and process variation all
change the DPD effects, further complicating the problem.

3 REFRESH OVERHEAD MITIGATION
Given the ability to perfectly predict each DRAM cell’s charge
retention behavior, we would ideally refresh each cell only when it
is about to fail, wasting no cycles for issuing unnecessary refresh
operations. However, achieving this ideal is very difficult, and
many prior works propose mechanisms to approximate the ideal
case. We provide a brief overview of prior efforts to eliminate
unnecessary refresh operations and discuss their limitations with
respect to retention failure discovery, to motivate our experimental
characterization in Section 5 and new mechanism in Section 6.

3.1 Retention Failure Mitigation
Many prior works attempt to reduce unnecessary refresh operations
by extending the default refresh interval while mitigating the handful
of resulting retention failures. RAIDR [63] refreshes DRAM rows at
different intervals according to the retention time of the worst-case
cell in each row. Ohsawa et al. [79] propose storing the retention
time of each row’s weakest cell within DRAM structures and varying
the refresh interval based on this information. ProactiveDRAM [96]
extends the default refresh interval and issues additional refreshes
to rows that cannot sustain the longer refresh interval. RAPID [95]
prioritizes allocating data to rows with longer retention times and
chooses the refresh interval based on the retention time of the allo-
cated row with the highest leakage rate. SECRET [61] identifies the
set of failing cells at a longer refresh interval and remaps such cells
to known-good cells. ArchShield [76] maintains a data structure of
known-failing cells at an extended refresh interval and replicates
these cells using a portion of DRAM at an architectural level.

These works all demonstrate significant improvements in over-
all system performance and energy consumption due to reduction
in unnecessary refresh operations (e.g., 35% average performance
improvement [81]). Unfortunately, all of these works depend on
accurate identification of failing cells at a longer refresh interval.
As we discuss in Section 3.2, no such identification mechanism that
guarantees data correctness exists. Additionally, challenges that
arise from VRT effects (Sections 2.3.1 and 5.3) necessitate an online
profiling mechanism [42, 56, 62, 81].

3.2 Retention Failure Profiling
Prior works propose approaches to profiling retention failures. We
find that there is no solution that is both reliable and efficient. We
identify two major approaches to profiling: 1) ECC-scrubbing [81],
a method that relies on ECC to detect retention failures, and 2) brute-
force profiling [62], a trial-and-error method that detects failures
by testing cells many times and with different data patterns. Unfor-
tunately, each of these proposals has shortcomings that limit their
effectiveness in DRAM retention failure profiling.

ECC scrubbing approaches (e.g., AVATAR [81]) suffer from a
lack of reliability due to their passive approach to failure detection.
These techniques periodically check the ECC codes for every DRAM
word and record the set of rows/cells that fail at a given refresh
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interval. Unfortunately, these techniques do not account for data
pattern changes in a given DRAM row between the periodic scrubs.
As a result, they can extend the refresh interval for a row at the end
of a period, but that row may be written to with a new unfavorable
data pattern, which leads to uncorrectable errors in the next period.
Without deliberately (i.e., actively) testing with the worst-case data
patterns, ECC scrubbing cannot make an estimate as to what fraction
of all possible failures have been detected, which limits the reliability
of this approach.

In order to account for all possible failures with different data
patterns, a second class of profiling mechanisms takes an active
approach: they extensively test DRAM for many rounds of tests
and with different data patterns. We call this approach brute-force
profiling since it runs multiple iterations of a brute-force testing
loop that 1) writes data patterns to DRAM, 2) waits for the target
refresh interval, and 3) checks for retention failures, as shown in
Algorithm 1. Prior works identify effective data patterns useful
for retention failure discovery, including solid 1s and 0s, checker-
boards, row/column stripes, walking 1s/0s, random data, and their
inverses [42, 49, 62]. By testing sufficiently many data patterns,
this approach approximates testing with the worst-case data pattern
and therefore can find a significant fraction of all failing cells at the
target refresh interval. In addition, multiple iterations of testing are
required in order to account for the probabilistic nature of retention
failures (as we show in Section 5.5). However, as we experimentally
demonstrate in Sections 5.3-5.5, brute-force profiling requires a large
number of iterations in order to achieve a high coverage of failures
at the target refresh interval. This causes brute-force profiling to
have a high performance overhead, which is only exacerbated by
circumstances that require frequent profiling (Section 7.3).

Algorithm 1: Brute-Force Profiling Algorithm
1 PROFILE(target tREF , num iterations):

2 failed cells = []

3 for it←{1 to num iterations}:
4 for dp ∈ data patterns:
5 write DRAM(dp)

6 disable refresh()

7 wait(target tREF)

8 enable refresh()

9 this iteration failures ← get DRAM errors()

10 failed cells.add(this iteration failures)

11 return failed cells

Our goal in this paper is to develop an effective and efficient
profiling technique that can reliably identify the set of failing DRAM
cells at target conditions so that we can 1) extend the refresh interval
to the target interval and 2) employ an error mitigation mechanism
to handle the retention failures that result from the longer refresh
interval. We would like this profiling mechanism to provide high
failure coverage and a low number of false positives, while having a
short runtime.

To this end, we need to understand the tradeoffs involved in
profiling and its associated metrics. We first discuss our experimental
methodology to develop this understanding based on analysis of real
DRAM chips. We then experimentally characterize the retention
behavior of modern DRAM chips with respect to the three profiling
metrics: coverage, false positive rate, and runtime.

4 EXPERIMENTAL METHODOLOGY
In order to develop an effective and efficient retention failure pro-
filing mechanism for modern DRAM chips, we need to first better
understand their data retention characteristics. To this end, we de-
veloped a thermally-controlled DRAM testing infrastructure to char-
acterize state-of-the-art LPDDR4 DRAM chips. Our infrastructure
provides precise control over DRAM commands, which we verified
via a logic analyzer by probing the DRAM command bus.

All tests, unless specified otherwise, were performed using 368
2y-nm LPDDR4 DRAM chips [37] from three major vendors in a
thermally-controlled chamber at 45◦C ambient temperature. In our
infrastructure, ambient temperature is maintained using heaters and
fans controlled via a microcontroller-based PID loop to within an
accuracy of 0.25◦C, with a reliable range of 40◦C to 55◦C. DRAM
temperature is held at 15◦C above ambient using a separate local
heating source and temperature sensors to smooth out temperature
variations due to self-heating.

5 NEW LPDDR4 CHARACTERIZATION
We experimentally study the retention characteristics of 368 LPDDR4
chips and compare our findings with prior works, which examine
DDR3 DRAM [42, 49, 62, 81]. We present data showing failure
discovery rates, data pattern dependence (DPD) effects and variable
retention time (VRT) effects to demonstrate the difficulties involved
in retention failure profiling. We then extensively analyze single-cell
failure probabilities to motivate profiling at a longer refresh interval
and/or a higher temperature to quickly discover failing cells. We
present four key observations resulting from our experimentation
and describe the implications of each observation on retention failure
profiling.

5.1 Temperature Dependence
We observe an exponential dependence of failure rate on temper-
ature for refresh intervals below 4096ms, as consistent with prior
work [31, 34, 62]. We find and make use of the following tempera-
ture relationships throughout the rest of this paper:

RA ∝ e0.22∆T RB ∝ e0.20∆T RC ∝ e0.26∆T (1)
where RX represents the proportion of failures for Vendor X and ∆T
is the change in ambient temperature. These relationships approxi-
mately translate to scaling the retention failure rate by a factor of 10
for every 10◦C increase in temperature.

5.2 Aggregate Retention Time Distributions
Figure 2 shows the effect of increasing the refresh interval on the bit
error rates (BER) averaged across 368 total chips from three different
vendors. For each refresh interval, we compare the population of
failing cells to the population of failing cells at all lower refresh
intervals. Failures that are 1) not observed at lower refresh intervals
are shown in purple (called unique), 2) observed at lower refresh
intervals but not at the given interval are shown in orange (called non-
repeat), and 3) also observed at lower refresh intervals are shown in
green (called repeat). We make one key observation.

Observation 1: A large proportion of cells that are observed to
fail at a given refresh interval are likely to fail again at a higher
refresh interval.

Corollary 1: Determining the set of failing cells at a given refresh
interval provides a large proportion of the failures found at lower
refresh intervals.

5.3 Variable Retention Time Effects
We observe variable retention time (VRT) effects that prevent reli-
able detection of failing cells. Figure 3 shows the number of failing
cells discovered over six days of data collection using brute-force
profiling at a refresh interval of 2048ms at 45◦C ambient tempera-
ture. The data is shown for a single representative chip from Vendor
B, but we find a similar trend across all chips from all vendors.
Profiling follows the procedure described in Algorithm 1, using six
data patterns and their inverses (Section 3.2) per iteration over 800
iterations throughout the length of the test. The cumulative set of
discovered failures is shown in orange and the set of failures discov-
ered each iteration is broken up into unique (i.e., newly-discovered)
failures and repeat failures, shown in purple and green, respectively.
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Figure 2: Retention failure rates for different refresh intervals.
Cells are categorized as unique, repeat, or non-repeat based on
whether or not they are observed at the given interval and at
lower refresh intervals.

We find that after about 10 hours of testing, brute-force profiling
enters the steady-state accumulation phase, in which new failures
continue to accumulate with a rate of approximately one cell every
20 seconds. In other words, it takes about 10 hours to find the
base set of failures for a given refresh interval using the brute-force
approach. We attribute the continual discovery of new failures to the
VRT phenomenon, which can cause a cell to shift from a retention
time greater than 2048ms to one that is lower. However, we also
observe that the total set of failures (unique + repeat) found in
each iteration is nearly constant in size, implying that the rate of
failure accumulation is very close to the rate of failures leaving the
failing set. This finding is consistent with prior work on DDR3
chips [62, 81], showing that newer DRAM generations face similar
profiling difficulties to older generations.
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Figure 3: Number of failing cells discovered using brute-force
profiling at a refresh interval of 2048ms at 45◦C ambient tem-
perature using a single representative chip (from Vendor B).

We conduct this same analysis for different refresh intervals on
368 chips from across the three DRAM vendors at 45◦C. Figure 4
shows the steady-state new failure accumulation rates for different
refresh intervals aggregated across all chips of each vendor. The
y-axis represents the steady-state new failure accumulation rate, and
the x-axis shows the refresh interval. Each data point is drawn at
the average value across all chips from the vendor with error bars
representing the respective standard deviation. We find that the
steady-state failure accumulation rate grows at a polynomial rate
with respect to the refresh interval. Figure 4 overlays the data with
well-fitting polynomial regressions of the form y = a ∗ xb, and the
exact fit equations are provided in the figure itself.

Observation 2: No matter how comprehensive the set of failures
discovered is, the population of failing cells continues to change due
to VRT effects.

Corollary 2: The retention failure profile inevitably needs to
be re-generated after some period of time. In other words, online
profiling is required.
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Figure 4: Steady-state failure accumulation rates vs. refresh in-
terval for 368 chips across the three DRAM vendors at 45◦C.
The best-fit curve for each vendor is shown in black.

5.4 Data Pattern Dependence Effects
Figure 5 shows the cumulative number of retention failures discov-
ered over 800 iterations spanning 6 days of continuous brute-force
profiling with different data patterns across the three vendors at
45◦C. Profiling uses Algorithm 1, in which each iteration consists of
writing a data pattern to DRAM, pausing refresh for 2048ms, and
then checking for retention failures. New failures found by each data
pattern each iteration are added to a running set representing the total
number of failures discovered so far. The ratio of failures discovered
by each data pattern to the total number of failures discovered by all
data patterns together is plotted against time. We see that failures
continue to accumulate over time, as expected from Section 5.3, and
different data patterns uncover different fractions of failures. Of
the six data patterns tested, the random pattern (solid dark purple)
discovers the most failing cells across all three vendors.

Observation 3: Unlike DDR3 DRAM [62], the random data
pattern most closely approaches full coverage after 800 iterations
spanning 6 days, but it still cannot detect every failure on its own.

Corollary 3: A robust profiling mechanism should use multiple
data patterns to attain a high coverage of the set of failing cells.

5.5 Individual Cell Failure Probability
We experimentally study the retention characteristics of individual
DRAM cells. We find that each cell’s probability of retention failure
follows a normal distribution with respect to the refresh interval.
Figure 6(a) shows the effect of changing the refresh interval (shown
normalized from between 64ms and 4096ms to x = 0.00s) on the
probability of retention failure for almost all of the failing cells from
a representative DRAM chip of Vendor B.1 Each curve represents
the failure cumulative distribution function (CDF) of a single cell,
with failure probabilities of 0.0 and 1.0 representing 0% and 100%
incorrect reads out of 16 total test iterations, respectively. All distri-
butions’ means are normalized to x = 0.00s in order to highlight the
similarity in failure pattern between different cells. We see that due
to the normally-distributed failure probability of each cell, every cell
becomes more likely to fail at longer refresh intervals.

Figure 6(b) shows a histogram of the standard deviations of each
cell’s unique failure distribution. We find that the standard deviations

1Cells exhibiting VRT behavior (∼2% of all cells for these conditions) are excluded
from this plot, for ease of explanation.
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Figure 5: Coverage of unique retention failures discovered by
different data patterns using brute-force profiling across 800
iterations spanning 6 days.
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Figure 6: (a) Individual cells fail with a normally-distributed
cumulative distribution function with respect to refresh interval
(CDF means are normalized to x = 0.00s) and (b) their standard
deviations follow a lognormal distribution (right). This data is
taken from a single representative chip of Vendor B at 40◦C and
base refresh intervals ranging from 64ms to 4096ms.

follow a tight lognormal distribution, with the majority of cells
having a standard deviation of less than 200ms at these conditions.2
This means that slightly extending the refresh interval results in
significantly increasing the failure probability of almost all cells,
which makes cells with low failure probabilities easier to detect.

We can explain the shape of these distributions using circuit-level
DRAM characteristics. As described in Section 2.2, the DRAM
cell read process requires sense amplifiers to resolve the direction
of a shift in bitline voltage. This shift is known as the sense am-
plifier voltage offset, and due to various manufacturing variations,
the magnitude of this shift across different cells is found to be nor-
mally distributed [60, 100]. While using an extended refresh interval,
DRAM cell leakage causes some cells’ voltage offsets to be too small
to resolve correctly, causing the sense amplifier to probabilistically
read an incorrect value. Therefore, our observation of normally-
distributed failure probabilities for all cells (Figure 7(a)) is a direct
consequence of the normal distribution of the sense amplifier voltage
offsets. Furthermore, Li et al. [60] find that leakage components

2Note that this is not the same result as the well-known lognormal distribution of the
number of retention failures with respect to refresh interval [31, 60]. Our observation is
that the spread of each individual cell failure distribution is lognormally-distributed as
opposed to the overall number of failing cells at different refresh intervals.

in DRAM cells follow lognormal distributions, which we hypoth-
esize is responsible for our observation of lognormally-distributed
standard deviations (Figure 7(b)). Given that different cells leak at
lognormally-distributed rates, we would expect the length of time
that a cell’s charge is within the noise margin of the sense amplifier
to also be lognormally distributed.

We extend this analysis to different temperatures, and we aggre-
gate the normal distribution fit parameters (µ , σ ) for each failing
cell into the distributions shown in Figure 7 (a) and (b), respectively.
We see that at higher temperatures, the distributions for both the
means and standard deviations shift left. This means that on average,
cell retention times shift to lower values and their failure distribution
becomes narrower around that retention time. We can take advantage
of this observation by profiling not only at a longer refresh interval,
but also at a higher temperature, thus ensuring that a large majority
of the cells observed to inconsistently fail at the target refresh inter-
val and temperature are very likely to fail at the (longer) profiling
refresh interval and the (higher) profiling temperature.
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Figure 7: Distributions of individual cells’ normal distribution
parameters (µ , σ ) over different temperatures taken from a rep-
resentative chip from Vendor B. We see that both distributions
shift left with increasing temperature, which means that an in-
crease in temperature causes individual cells to both fail at a
lower refresh interval and also exhibit a narrower failure prob-
ability distribution.

Observation 4: Cells that inconsistently fail at the target condi-
tions may be missed with brute-force profiling, but are more likely to
be found when profiling at a longer refresh interval and/or a higher
temperature.

Corollary 4: In order to find failures quickly and consistently, we
should profile at a longer refresh interval or a higher temperature.

By combining the normal distributions of individual cell fail-
ures from a representative chip of Vendor B, we obtain the data
in Figure 8, which shows the failure probability for the combined
distribution over different temperatures and refresh intervals. The
dashed regions represent the combined standard deviation for each
tested temperature, and the solid black curve in-between represents
the combined mean. From this data, we draw two major conclusions:
1) at a higher temperature or a longer refresh interval, the typical cell
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is more likely to fail, and 2) raising the temperature and extending
the refresh interval have similar effects on cell failure probability
(e.g., at 45◦C, a 1s change in refresh interval has a similar effect to a
10◦C change in temperature).
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Figure 8: Effect of manipulating temperature/refresh interval
on the combined normal distribution of failing cells from a rep-
resentative chip from Vendor B. Dashed regions represent the
combined standard deviation and the central line represents the
combined mean for each tested temperature.

6 REACH PROFILING
Reach profiling accelerates the process of finding the set of DRAM
cells that experience retention failures by profiling DRAM under
conditions that increase the likelihood of failure, called reach condi-
tions. This enables the profiler to discover the failures much more
quickly, leading to a significant reduction in overall profiling run-
time. Given a set of desired target conditions consisting of a target
refresh interval and a target operating temperature, the key idea of
reach profiling is to profile at reach conditions, a combination of a
longer refresh interval and a higher temperature relative to the target
conditions. As experimentally demonstrated in Section 5.5, each
DRAM cell is more likely to fail at such reach conditions than at the
target conditions. While this enables reach profiling to attain high
failure coverage (i.e., the ratio of correctly identified failing cells
over the total number of failing cells at the target conditions), it also
causes reach profiling to have false positives (i.e., failing cells at the
reach conditions that do not fail at the target conditions), leading to
more work for a retention failure mitigation mechanism that is used
to correct the retention failures (including false positives). More
work done by the mitigation mechanism leads to higher overhead
in terms of performance, energy, or area. This results in a com-
plex tradeoff space between the choice of reach conditions and the
resulting profiling coverage, false positive rate, and runtime.

Given this complex tradeoff space, we need to address three key
questions to develop an effective implementation of reach profiling:

(1) What are the desirable reach conditions?
(2) Given the continuous accumulation of new failures (e.g.,

due to VRT), how long does a retention failure profile
remain useful (i.e., how often must we reprofile)?

(3) What information does the profiler need in order to deter-
mine desirable reach conditions for a given system?

We explore the answers to these questions in the rest of this section.
Then, in Section 7, we use our exploration to develop REAPER, a
robust implementation of reach profiling.

6.1 Desirable Reach Conditions
The three key metrics of profiling, coverage, false positive rate,
and runtime (Section 1), lead to contradictory optimization goals.
While an ideal configuration would achieve high coverage, low false
positive rate, and low runtime, we find that there is a large tradeoff
space involving these three goals. Using experimental data, we
demonstrate the large scale of the tradeoff space inherent in reach

profiling and show the effects of changing the refresh interval and
the temperature on the three key profiling metrics. We present data
for interesting choices of reach conditions and analyze the results to
show how the profiling system can make a reasonable choice.

6.1.1 Manipulating Refresh Interval and Temperature.
Figure 9 demonstrates the effect of choosing different reach pro-
filing conditions on failure coverage and false positive rate for a
representative chip. In order to perform this analysis, brute-force
profiling is conducted at regularly spaced points throughout the
graphs in Figure 9 using 16 iterations of 6 different data patterns and
their inverses as per Algorithm 1. Each point in the graph space is
then treated as a target condition with all other points as its reach
conditions. This results in a distribution of coverage/false positive
rates for every delta temperature/refresh interval combination.

We find that these distributions are highly similar for each delta
temperature/refresh interval combination, with standard deviations
of less than 10% of the data range for both coverage and false
positive rate. This allows us to use the means of these distributions
to reasonably demonstrate the overall effect of manipulating the
temperature and/or refresh interval independently of a particular
target refresh interval. We show these means in Figure 9, with
(x,y) = (0.00,0) effectively representing any target refresh interval
and all other points in the figure representing its reach conditions.
The contours represent the coverage (top graph) and false positive
rate (bottom graph).3 As these two graphs show, by increasing the
refresh interval and/or temperature, we can obtain a higher failure
coverage (Figure 9, top), as expected given the individual cell failure
probability analysis in Section 5.5. However, this also results in an
increase in the false positive rate (Figure 9, bottom). Thus, there is a
direct tradeoff between coverage and false positive rate.

Profiling runtime is more difficult to evaluate since it depends
on 1) the profiling refresh interval, 2) number of profiling iterations
(see Algorithm 1), and 3) overheads of reading and writing the data
patterns to all of DRAM. We experimentally find that the amount
of time taken to read/write data to all DRAM channels and check
for errors is slightly less than 250ms for our evaluated chips. So, we
assume a fixed overhead of 250ms per profiling iteration per data
pattern tested. Figure 10 shows the results of such an analysis for a
representative chip where (x,y) = (0.00,0) represents profiling at the
target conditions (i.e., brute-force profiling) and all other points show
the results of reach profiling with the same analysis as in Figure 9.
Here, each contour curve shows the profiling runtime at different
reach conditions, all normalized to the runtime at the target refresh
interval (i.e., brute-force profiling runtime). Profiling runtime is
determined by the number of profiling iterations required to achieve
over 90% coverage.

We see that we can obtain drastic profiling runtime speedups by
aggressively increasing the reach conditions (e.g., +0.5s, +5◦C), but
from Figure 9, we know that this will result in a very high number
of false positives (e.g., over 90% false positive rate). Although
the runtime numbers in Figure 10 assume a fixed coverage, we
observe the same trends across different coverage requirements.
Therefore, we conclude that high coverage and low runtime are
generally competing goals to low false positive rates, and choosing a
good set of reach conditions at which to profile depends on the user’s
and the system’s requirements and failure mitigation capabilities.

We repeat this analysis for all 368 of our DRAM chips and find
that each chip demonstrates the same trends, showing that the same
tradeoff analysis we have done for Figures 9 and 10 also applies to
every other chip we tested. In the following section, we analyze the
data presented here and determine how to select a desirable set of
reach conditions.

3The contours are not perfectly smooth due to variations in the data resulting from
small shifts (<0.25◦C) in temperature throughout testing and the probabilistic nature of
retention failures, including VRT effects.
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Figure 9: Failure coverage (top) and false positive rates (bot-
tom) as a result of different choices of reach profiling conditions
for a representative chip from Vendor B. Contours represent
coverage (top) and false positive rate (bottom) obtained relative
to brute-force profiling at (x,y) = (0.00,0).
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Figure 10: Profiling runtime as a result of different choices of
reach conditions for a representative chip from Vendor B. Con-
tours represent profiling runtime relative to brute-force profil-
ing at (x,y) = (0.00,0).

6.1.2 Choice of Desirable Parameters. The exact choice of
reach conditions depends on the overall system design and its partic-
ular optimization goals. For example, in a highly latency-sensitive
system, the primary goal may be to minimize profiling runtime, in
which case giving up a low false positive rate to obtain a low profil-
ing runtime may be necessary. On the other hand, if the retention
failure mitigation mechanism in use is intolerant to high false posi-
tive rates (e.g., discarding all DRAM rows containing failing cells),
a low false positive rate may be the primary design goal. In general,

the system designer should take these factors into account and make
the best tradeoff for the target system.

However, although the exact choice of reach conditions depends
on the system goals, we observe from Figures 9 and 10 that higher
coverage and higher runtime are directly and positively correlated,
and both come at the expense of false positives. This means that
when selecting suitable reach profiling conditions, the system de-
signer can feasibly select as high a refresh interval/temperature as
possible that keeps the resulting amount of false positives tractable.
This approach primarily relies on identifying the cost of false posi-
tives for the particular system in question, possibly sacrificing the
ability to handle a large number of false positives in favor of low
profiling runtime.

As a concrete example, from studying data similar to those pre-
sented in Figures 9 and 10 averaged across all 368 chips, we find
that for 99% coverage at a modest 50% false positive rate, we attain
a profiling runtime speedup of 2.5x over the brute-force mechanism
when we extend the refresh interval by 250ms. We find that we can
push the speedup to over 3.5x while maintaining the same level of
coverage by either increasing the temperature or lengthening the
refresh interval even further, but such aggressive reach profiling
conditions result in greater than 75% false positive rates.

6.2 Online Profiling Frequency
In order to enable a longer refresh interval, we not only have to pro-
vide a way to profile for retention failures, but also have to guarantee
that retention failure profiling provides sufficient coverage to pre-
vent erroneous system operation. Given failures that are missed by
profiling due to less-than-100% coverage and non-zero new failure
accumulation rates (Section 5.3), we need a method by which to
estimate profile longevity, i.e., the amount of time before a profile
is no longer correct (i.e., when reprofiling becomes necessary). In
this section, we analyze the types of errors that can be missed by
profiling and present a theoretical model for allowable error rates
and profile longevity.

6.2.1 Failures Missed by Profiling. Retention failure profil-
ing can only capture cells that fail at the profiling conditions. Cells
missed during profiling due to DPD effects (Section 5.4) and newly-
failing cells that did not fail during profiling due to environmental
factors (e.g., temperature shifts, soft errors) or due to VRT effects
(Section 5.3) cannot be observed by profiling. Prior works acknowl-
edge that there will inevitably be failures that are missed by profiling
and argue that some form of ECC is necessary to allow safe opera-
tion with a longer refresh interval [42, 62, 81]. Our observation of
continuously-accumulating new failures in LPDDR4 DRAM chips
(Section 5) leads us to agree with this argument for the use of ECC.
Thus, in order to enable online profiling, we need to determine 1)
what error rates can be tolerated by an ECC-based system and 2)
at what point the accumulated failures will exceed the correction
capability of ECC and require reprofiling.

6.2.2 Allowable Errors and Tolerable Error Rates. In or-
der to estimate the probability of system failure given DRAM reten-
tion errors in the presence of various types of error correction codes
(ECC), we estimate the error rate as observed by the system, called
the uncorrectable bit error rate (UBER), as a function of the raw bit
error rate (RBER), defined as the ratio of failing DRAM cells. We de-
fine system failure as exceeding an UBER of 1) 10−15 for consumer
applications [71] and 2) 10−17 for enterprise applications [4].

Given a general system using k-bit ECC (with k = 0 defined as no
ECC, k = 1 as SECDED ECC [67], etc.) and an ECC word size of
w, we define the UBER as the probability of observing an error in a
single DRAM ECC word, normalized to the number of bits per ECC
word:

UBER =
1
w

P[uncorrectable error in a w-bit ECC word] (2)
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We obtain an uncorrectable error in an ECC word when we have an
n-bit error ∀ n > k. This means that we can expand Equation 2 in
terms of n:

UBER =
1
w

w

∑
n=k+1

P[n-bit failure in a w-bit ECC word] (3)

representing the sum of the probabilities of all possible k-bit ECC
uncorrectable errors. In particular, for k = 0 and k = 1, we have 0
and 8 additional bits per 64-bit data word, respectively. For these
cases, Equation 3 takes the form:

UBER(k = 0) =
1

64

64

∑
n=1

P[n-bit failure in a 64-bit ECC word]

UBER(k = 1) =
1

72

72

∑
n=2

P[n-bit failure in a 72-bit ECC word]

(4)

The probability of an n-bit error in a k-bit word can be modeled
by a binomial distribution, assuming that DRAM retention failures
are independent and randomly distributed, as has been shown in
previous work [6, 95]. Given that these assumptions hold, we can
use the RBER R as the probability of a single-bit failure within
DRAM, and expand the probability of an n-bit failure in a k-bit ECC
word using a binomial distribution in terms of R:

P[n-bit failure in a w-bit ECC word] =
(

w
n

)
Rn (1−R)w−n (5)

Putting the pieces together, we arrive at:

UBER =
1
w

w

∑
n=k+1

(
w
n

)
Rn (1−R)w−n (6)

Table 1 summarizes the maximum tolerable RBER for a target UBER
of 10−15, for various choices of ECC strength. In order to provide
comparison points, the table also translates the tolerable RBER into
actual number of tolerable bit errors for various DRAM sizes.

ECC Strength
No ECC SECDED ECC-2

Tolerable RBER 1.0e−15 3.8e−9 6.9e−7

512MB 4.3e−6 16.3 3.0e3
1GB 8.6e−6 32.6 5.9e+3
2GB 1.7e−5 65.3 1.2e+4
4GB 3.4e−5 130.6 2.4e+4

#
To

le
ra

bl
e

B
it

E
rr

or
s

8GB 6.9e−5 261.1 4.7e+4
Table 1: Tolerable RBER and tolerable number of bit errors
for UBER = 10−15 across different ECC strengths for selected
DRAM sizes

Thus, for any target UBER, we can compute the tolerable RBER,
and hence the maximum number of cells that can be allowed to
escape (i.e., not be detected by) our retention failure profiling mech-
anism while still maintaining correct DRAM operation. By applying
the maximum tolerable RBER to the RBER at any desired target
refresh interval, we can directly compute the minimum coverage
required from a profiling mechanism in order for the retention failure
mitigation mechanism to guarantee correct system operation.

6.2.3 Profile Longevity. Given the maximum tolerable num-
ber of retention failures N provided by Table 1, the number of failures
C missed by profiling due to imperfect profiling coverage, and the
accumulation rate A of new failures as measured in Section 5.3, we
can estimate T , the length of time before we need to reprofile, as:

T =
N−C

A
(7)

For example, with a 2GB DRAM and SECDED ECC as the failure
mitigation mechanism, we can afford up to N = 65 failures while
still maintaining correct DRAM operation. Assuming an aggressive
target refresh interval of 1024ms at 45◦C, we empirically observe
2464 retention failures (Figure 2) and a new failure accumulation
rate of A = 0.73 cells / hour (Figure 4). With 99% coverage, we
compute C = 24.6≈ 25 cells, and applying Equation 7, we obtain
T = 2.3 days. We can use a similar analysis to determine the profile
longevity for any desired configuration and choose an appropriate
tradeoff point between the different reach profiling parameters.

6.3 Enabling Reliable Relaxed-Refresh Operation
In order to determine good reach conditions at which to profile for
a real system running at a longer refresh interval than the default,
we need to know two key pieces of information: 1) the particu-
lar retention failure mitigation mechanism in use, so that we can
constrain the reach profiling tradeoff space, and 2) detailed chip
characterization data, in order to make reliable estimates of reach
profiling benefits and profile longevity, allowing us to determine
which point in the tradeoff space will provide the best overall system
performance/energy improvement.

The choice of retention failure mitigation mechanism determines
the hardware/energy/performance overhead of managing failing
cells, which determines how aggressively we can push the tar-
get/reach conditions before the system can no longer cope with the
number of failures and false positives. The mitigation mechanism
therefore constrains both the target conditions (i.e., the resultant
RBER without mitigation) and the maximum number of false posi-
tives, which in turn restricts the range of the reach conditions.

Detailed chip characterization data (as in Figures 9 and 10) is nec-
essary to produce accurate estimates of all of the parameters of the
actual system, including the expected RBER, the profile longevity,
the required coverage, and even the reach conditions themselves.
While these parameters can be estimated from general trends across
many chips, the variations among different chips mean that truly
reliable relaxed refresh operation requires estimating profiling pa-
rameters based on data from the actual chip.

Currently, DRAM vendors do not provide this data, but it would
be reasonable for vendors to provide this data in the on-DIMM serial
presence detect (SPD) as done in [52]. Otherwise, the user would
have to characterize his/her own device. Even though a detailed
characterization may take prohibitive amounts of time, a few sample
points around the tradeoff space could provide enough information in
conjunction with the general trends across many devices to develop
accurate estimations. However, the general problem of efficiently
obtaining per-chip characterization data is itself an open research
direction and is beyond the scope of this work.

Once these two critical pieces of information are available, the
system designer can decide what the best tradeoff is between profile
longevity, coverage, false positive rate, and runtime according to
his/her own system configuration. Despite the overall trend similari-
ties we observe between the DRAM chips we evaluate in Section 5,
the optimal choice of reach conditions depends on the particular
system and its tradeoffs between cost, performance, power, and
complexity, and it is up to the user to determine the most suitable
configuration for his/her own needs.

7 END-TO-END IMPLEMENTATION
Reach profiling provides a general-purpose retention failure pro-
filing methodology whose exact use and design parameters (Sec-
tion 6.3) depend on the error mitigation mechanism used for reduced-
refresh-rate operation. A system designer should utilize reach profil-
ing uniquely depending on desired performance/energy targets and
ease/overhead of implementation. For example, the designer is free
to choose where to implement the core profiling algorithm (e.g., at
the memory controller, the operating system, etc.), how to save and
restore the state of DRAM before and after a profiling round (i.e.,
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each individual instance of online profiling consisting of all itera-
tions and data patterns), how to efficiently profile large portions of
DRAM without significant performance loss, etc. However, a thor-
ough exploration of the design space regarding the implementation
of reach profiling is beyond the scope of this paper.

In order to effectively present the insight behind the tradeoffs
involved in reach profiling, we provide and evaluate REAPER, a
naı̈ve (yet robust) example implementation of reach profiling that
assumes a full-system pause each time retention failures are profiled.
REAPER enables a variety of retention failure mitigation mecha-
nisms [61, 63, 76, 79, 95, 96] for reliable operation at longer refresh
intervals. We experimentally validate that, even with these worst-
case assumptions, REAPER preserves a significant amount of the
benefit of an ideal profiling mechanism that has zero overhead while
outperforming brute-force profiling in terms of both performance
and power consumption.

7.1 REAPER Implementation
Reach profiling requires the ability to manipulate the DRAM re-
fresh interval and/or the DRAM temperature, both of which can be
achieved with commodity off-the-shelf DRAM. REAPER imple-
ments reach profiling in firmware running directly in the memory
controller. Each time the set of retention failures must be updated,
profiling is initiated by gaining exclusive access to DRAM. REAPER
has the ability to manipulate the refresh interval directly, but for sim-
plicity, we assume that temperature is not adjustable (as shown in
Section 5.5, manipulating either the temperature or the refresh in-
terval achieves the same effect). REAPER conducts reach profiling
and stores the addresses of the failing cells it finds at locations dic-
tated by the retention failure mitigation mechanism of choice.4 At
the completion of profiling, REAPER releases exclusive DRAM
access and the system resumes normal operation. In the remainder
of this section, we describe how this implementation of reach profil-
ing can be combined with two example retention failure mitigation
mechanisms from prior work to reduce refresh operations.

7.1.1 REAPER Supporting ArchShield. As a demonstrative
example, we combine REAPER with ArchShield [76] to enable
refresh rate reduction. ArchShield requires a small amount of ad-
ditional logic in the memory controller for detecting accesses to
known-faulty addresses, which are stored in 4% of DRAM in a
reserved segment known as the FaultMap. The REAPER firmware
provides these faulty addresses via periodically profiling DRAM
for retention failures following the methodology in Section 3.2. All
detected failures are stored into the FaultMap, which ArchShield
accesses to determine which failing addresses must be remapped.

7.1.2 REAPER SupportingMulti-Rate Refresh. In order to
show REAPER’s flexibility for integration with other retention fail-
ure mitigation mechanisms, we describe REAPER working with
RAIDR [63]. RAIDR groups DRAM rows into different bins, ac-
cording to the rows’ retention times, and applies different refresh
rates to each bin. REAPER enables RAIDR by periodically updating
the bins using the set of failures discovered each time profiling is
conducted. This enables the system to reduce the refresh interval
for most of the rows within DRAM, which results in overall system
performance increase and energy reduction.

7.2 Evaluation Methodology
Given that profiling rounds require on the order of seconds or min-
utes (Section 7.3.1) and the time between online profiling rounds
4Profiling involves modifying the contents of DRAM. Data must be saved and restored
before and after profiling is run, respectively. While a naı̈ve implementation may
flush all DRAM data to secondary storage (e.g., hard disk drive, SSD, NVM) or other
parts of DRAM, a more efficient implementation could hide most or all of this latency.
Efficiently implementing DRAM data save and restore is an orthogonal problem to this
work. Therefore, we do not take DRAM data save and restore overheads into account in
our performance and energy evaluations.

can be on the order of hours (Section 6.2.3), we cannot feasibly
simulate workloads in order to demonstrate latency effects due to
online profiling. Instead, we simulate our workloads without the
profiling overhead and report performance results using throughput
in terms of instructions-per-cycle (IPC). We then use the following
model to compute overall system performance accounting for online
profiling overhead:

IPC real = IPC ideal× (1−profiling overhead) (8)
where IPC ideal is the measured throughput of simulated workloads,
and pro f iling overhead is the proportion of real system time spent
in profiling. Our profiling overhead model assumes worst-case
configurations, pessimistically assuming that applications make zero
forward progress while profiling. Our full system performance
model roughly estimates the worst-case performance degradation
expected from an implementation of reach profiling.

We use Ramulator [2, 53] to evaluate performance and DRAM-
Power [1] to evaluate DRAM power consumption. We simulate 20
multiprogrammed heterogeneous workload mixes, each of which
is constructed by randomly selecting 4 benchmarks from the SPEC
CPU2006 benchmark suite [3]. Multi-core system performance is
measured in terms of the weighted speedup metric [28, 91]. We
provide our evaluated system configuration in Table 2.

Processor
4 cores, 4GHz clock frequency, 3-wide issue, 8
MSHRs/core, 128-entry instruction window

Last-level Cache 64B cache line, 16-way, 8MB cache size

Memory
Controller

64-entry read/write request queues, FR-FCFS schedul-
ing policy [83, 102], open/closed row policy [50, 51]
for single/multi-core

DRAM
LPDDR4-3200 [37], 4 channels, 1 rank, 8 banks/rank,
32K-256k rows/bank, 2KB row buffer

Table 2: Evaluated system configuration

7.3 Performance and Energy Evaluation
We develop a detailed model for profiling overhead, taking into
account extra DRAM accesses required for profiling, latencies in-
volved in reading/writing data patterns to DRAM, and time con-
sumed waiting for the extended refresh intervals. We use this model
in conjunction with Equation 8 to reliably estimate worst-case sys-
tem performance impact and additional DRAM power consumption.
In this section, we present our 1) model for profiling performance
and power consumption overhead for brute-force profiling and reach
profiling, and 2) results for end-to-end system performance and
DRAM power consumption using brute-force profiling, reach profil-
ing, and the ideal profiling mechanism that does not impact system
performance or power consumption. We find that while profiling
power consumption overheads are very low across a wide range of
DRAM sizes and refresh intervals, profiling performance overheads
become significant for large DRAM chips and high online profiling
frequencies. In such cases where profiling performance significantly
impacts overall system performance, reach profiling maintains a
large fraction of the benefits of using a longer refresh interval (e.g.,
providing 14.8% higher performance than brute-force profiling on
average for a 64Gb chip running at a 1280ms refresh interval at
45◦C), as we show in Section 7.3.2.

7.3.1 Profiling Overhead. We model the overhead of online
profiling by accumulating the latencies of individual operations re-
quired to run a single round of profiling. We assume that profiling
requires a full system pause, with no useful work being done while
the profiler is running. One round of profiling consists of Nit iter-
ations, each of which consists of reading/writing DRAM with Ndp
different data patterns. Our end-to-end runtime model is as follows:

Tprofile = (TREFI +Twr DRAM +Trd DRAM) ∗Ndp ∗Nit (9)
where TREFI is the profiling refresh interval that DRAM must wait
with refresh disabled in order to accumulate errors; Twr DRAM is the
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time to write a data pattern into DRAM; and Trd DRAM is the time to
read DRAM and compare against the original data pattern. For 32
8Gb DRAM chips with TREFI = 1024ms, Trd/wr DRAM = 0.125s†,
Ndp = 6, and Nit = 6, we find that Tprofile ≈ 3.01 minutes, and for 32
64Gb chips, Tprofile ≈ 19.8 minutes.

In order to demonstrate the overall system performance degrada-
tion from profiling, Figure 11 plots the proportion of overall system
time spent profiling for a variety of different profiling intervals
and DRAM sizes assuming 16 iterations of brute-force profiling at
1024ms using 6 data patterns and their inverses. The x-axis repre-
sents the online profiling frequency in hours, and the y-axis shows
the proportion of total system-time spent profiling. To compare
the brute-force method against REAPER, we plot the performance
overheads with hashed (brute-force) and solid (REAPER) bars. We
show results for the 2.5x profiling runtime speedup of reach profiling
over brute-force profiling, found experimentally in Section 6.1.2.
The differently-colored bars represent DRAM modules consisting
of 32 individual DRAM chips, with each chip ranging from 8Gb
to 64Gb in size. We observe that at shorter profiling intervals, the
performance degradation is prohibitively high and is exacerbated by
larger DRAM chip sizes. For example, we find that for a profiling
interval of 4 hours and a 64Gb chip size, 22.7% of total system time
is spent profiling with brute-force profiling while 9.1% of time is
spent profiling with REAPER.
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Figure 11: Total system time spent profiling with REAPER and
brute-force profiling for different online profiling intervals us-
ing 32 DRAM chips, for different chip sizes.

In order to demonstrate the overall DRAM power overhead as-
sociated with profiling, Figure 12 shows the total DRAM power
required for profiling across the same sweep of configurations as
Figure 11. Power consumption overhead is calculated using the
average energy-per-bit costs for different DDR commands obtained
from our LPDDR4 DRAMPower model [1]. We estimate the num-
ber of extra commands required for profiling and show the total
DRAM energy consumed for one round of profiling divided by the
online profiling interval. The x-axis represents the online profiling
frequency in hours, and the y-axis shows the DRAM power con-
sumption in nanowatts. We see that power consumption has a strong
dependence on DRAM size and shows a similar scaling trend as
profiling performance overhead with respect to the profiling interval.
However, the absolute power consumption is very low (on the order
of nanowatts), because the majority of profiling runtime is spent wait-
ing for retention failures to occur (i.e., the profiling refresh interval)
rather than actively accessing DRAM. We show in Section 7.3.2 how
profiling itself results in negligible additional power in the DRAM
system, even in the extreme case of very frequent profiling and large
DRAM sizes.

†This value is based on empirical measurements from our infrastructure using 2GB
of LPDDR4 DRAM. We scale this number according to DRAM size throughout our
evaluation to account for the larger number of accesses.
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Figure 12: DRAM power consumption of REAPER and brute-
force profiling for different online profiling intervals using 32
DRAM chips, for different chip sizes

.

7.3.2 End-to-end System Evaluation Results. We evaluate
the overall effects of REAPER on system performance and DRAM
power consumption by applying our profiling overhead model to
Equation 8. We compare REAPER with both online brute-force pro-
filing and the ideal profiling mechanism that incurs no performance
or energy overhead. The ideal mechanism mirrors the approach
taken by prior works on refresh rate reduction [61, 63, 76, 79, 95, 96],
which assume that offline profiling is sufficient. Considerable ev-
idence against the sufficiency of offline profiling is provided by
both prior work on DRAM characterization [42, 62] and our own
observations (Sections 5.3 and 6.2.1). We exclude ECC-scrubbing
based mechanisms from our evaluations due to their passive ap-
proach to failure profiling, which cannot guarantee failure coverage
in the same way as an active profiling mechanism, as discussed in
Section 3.2.

Figure 13 shows the results of this analysis, demonstrating the
overall system performance improvement (top) and DRAM power
consumption reduction (bottom) due to operating with a longer
refresh interval across all of our simulated workloads for a variety
of DRAM sizes each consisting of 32 individual DRAM chips of the
specified capacity (8-64Gb). Each triplet of boxes presents results
for online brute-force profiling, REAPER, and the ideal profiling
mechanism, in order from left to right. Results are shown for various
lengthened refresh intervals from 128ms to 1536ms and for the case
of no refresh, which is shown as a single box. For each refresh
interval, the profiling parameters used to compute overhead are
obtained using the experimental data for failure rates at 45◦C as
shown in Section 5. Profile longevity is estimated in the best case for
each configuration, assuming that the profilers achieve full coverage
each time they are run. This assumption is reasonable for profilers
achieving high (e.g., 99%) coverage and allows us to decouple the
results from failure rates of specific DRAM chips. Results are
all normalized to the base performance or power consumption at
the default refresh interval of 64ms without profiling. The boxes
represent the distribution of benchmarks from the 25th to the 75th
percentiles, the whiskers show the data range, and the orange and
black lines represent medians and means, respectively. We make
four major observations based on these results.

First, REAPER enables a high performance improvement and
a high DRAM power reduction by reliably increasing the refresh
interval. REAPER enables 512ms as the best overall operating
point across all evaluated DRAM chip sizes, providing an average of
16.3% (maximum 27.0%) performance improvement and an average
of 36.4% (maximum 47.4%) power reduction for 64Gb chips. This
is very close to the average performance gain of 18.8% (31.2% max-
imum) and average power reduction of 41.3% (54.1% maximum)
that comes with eliminating all refreshes (rightmost “no ref” bars).
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Figure 13: Simulated end-to-end system performance improvement (top) and DRAM power reduction (bottom) over 20 heteroge-
neous 4-core workloads for different refresh intervals at 45◦C, taking into account online profiling frequency and profiling overhead.

Second, REAPER significantly outperforms the brute-force mech-
anism, especially at high refresh intervals (>= 1024ms). While
the ideal profiling mechanism enables increasing gains with longer
refresh intervals, both REAPER and brute-force profiling overheads
become more significant for refresh intervals beyond 1024ms. This
is due to the high VRT failure accumulation rate (Section 5.3) at
long refresh intervals, which requires a high online profiling fre-
quency. However, at such high refresh intervals, REAPER preserves
much more of the ideal profiling benefit than does brute-force pro-
filing. For example, with 64Gb DRAM chips, at a refresh interval
of 1024ms, using REAPER provides 13.5% average (24.7%) maxi-
mum performance improvement while using brute-force profiling
provides only 7.5% average (18% maximum) performance improve-
ment. REAPER’s performance benefit over brute-force profiling
increases with longer refresh intervals because REAPER can sustain
higher online profiling frequencies better, showing that REAPER is
superior to brute-force profiling.

For refresh intervals below 512ms, both REAPER and brute-
force profiling provide benefits that are very close to that of ideal
profiling since the performance overhead of both mechanisms is low.
This is due to the low VRT failure accumulation rate observed in
Section 5.3 for short refresh intervals, resulting in a high profile
longevity. However, short refresh intervals do not provide the full
benefits of employing longer refresh intervals, so we would like to
enable as high a refresh interval as possible with as low overhead as
possible.

Third, REAPER enables high performance operation at very long
refresh intervals that were previously unreasonable to operate the
system at. For refresh intervals longer than 512ms, the high online
profiling frequency means that profiling overhead becomes signif-
icant (as supported by Figure 11), and this overhead eventually
results in overall performance degradation. At a refresh interval
of 1280ms, the performance impact of profiling becomes clearly
visible: using brute-force profiling with 64Gb DRAM chips leads to
overall system performance degradation (-5.4% on average). How-
ever, REAPER still maintains significant performance benefit (8.6%

on average) at 1280ms, demonstrating that REAPER enables longer
refresh intervals that were previously unreasonable to operate the
system at.

Fourth, both REAPER and brute-force profiling have negligible
impact on overall DRAM power consumption across all refresh in-
tervals and DRAM chip sizes. While Figure 12 shows that REAPER
consumes significantly less power than brute-force profiling at the
same configuration, profiling power consumption is a very small
fraction of total DRAM power consumption to begin with. This
means that although the profiling process has a large effect on over-
all system performance, it does not contribute significantly to DRAM
power consumption. Thus, both REAPER and brute-force profil-
ing are effective at greatly reducing DRAM power consumption by
enabling a longer refresh interval.

We can use the results of Figure 13 to estimate the benefits ob-
tained by using any retention failure mitigation mechanism. For
example, ArchShield [76] extends the default refresh interval up to
1024ms at the cost of approximately 1% overall system performance
(Section 5.1 of [76]). The overall system performance improvement
can be estimated by subtracting ArchShield’s reported performance
cost (in [76]) from the ideal profiling performance gain (in Fig-
ure 13), resulting in an overall performance improvement of 15.7%
on average (28.2% maximum) using 64Gb DRAM chips at a re-
fresh interval of 1024ms. However, as we show the need for an
online profiling mechanism (Section 6.2), the actual overall perfor-
mance benefit must be adjusted to account for profiling overhead.
We observe performance improvements of 6.5% on average (17%
maximum) when ArchShield is combined with brute-force profiling,
and 12.5% on average (23.7% maximum) when it is combined with
REAPER. Thus, we find that using REAPER leads to an average
performance improvement of 5.6% over using brute-force profiling.
A similar analysis can be conducted using other state-of-the-art re-
tention failure mitigation mechanisms to estimate overall system
speedup and DRAM power consumption.

We conclude that REAPER is an effective and low-overhead pro-
filing mechanism that enables high-performance operation at very
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long refresh intervals (beyond 1024ms) that were previously not rea-
sonable to employ due to the high associated profiling overhead. As
a caveat to the data presented in this section, it is important to note
that Figures 11, 12, and 13 are all based on specific assumptions (e.g.,
45◦C temperature, 2.5x performance improvement of reach profil-
ing vs. online brute-force profiling, 32 chips per DRAM module,
100% coverage by profiling, 20 randomly-formed heterogeneous
workload mixes) and we are not covering the entire design space
with these results. This means that there likely exist other conditions
under which REAPER may perform even better, including both
different temperatures, at which we would expect failure rates and
therefore profile longevity to change, and varying system require-
ments (e.g., choice of retention failure mitigation mechanism, target
profiling coverage and false positive rate, target profile longevity,
target UBER, etc.). These conditions may result in different choices
of reach profiling parameters, which can lead to a higher-than-2.5x
performance improvement for reach profiling over brute-force profil-
ing. This increase in reach profiling performance translates directly
to reduction in profiling overhead, which in turn translates to even
greater end-to-end system performance improvement and greater
DRAM power reduction than presented here.

8 RELATED WORK
To our knowledge, this is the first work that 1) analyzes and
presents experimental data on the data retention characteristics of
real LPDDR4 DRAM chips, 2) proposes a viable mechanism for pro-
filing DRAM retention failures quickly and efficiently, 3) presents a
rigorous analysis framework for understanding and evaluating mer-
its of retention time profiling mechanisms, and 4) experimentally
characterizes the complex tradeoff space of retention time profiling
mechanisms in terms of the three major metrics we introduce for
profiling: coverage, false positive rate, and profiling runtime.

As part of our analysis framework, we provide, for the first time,
retention time data from 368 LPDDR4 DRAM devices. Many recent
works conduct detailed experimental studies of real DRAM chips
in terms of their reliability, data retention, and latency behavior [20–
22, 25, 33, 38–40, 42–44, 48, 49, 54–56, 62, 70, 86, 92, 93, 98, 99].
Similarly, many recent works conduct detailed experimental studies
of the reliability and data retention behavior of real NAND flash
memory chips [9–19, 29, 65, 66, 69, 78, 85]. None of these works
analyze and present data from real LPDDR4 DRAM chips, which
we do in this paper.

We have already discussed and analyzed various retention fail-
ure mitigation mechanisms in Section 3.1. This proliferation of
works [61, 63, 76, 79, 95, 96] reflects the importance of the re-
fresh problem, which is also a major scaling challenge for modern
DRAM [41, 68]. AVATAR [81] proposes a profiling technique to
enable these refresh reduction mechanisms, but as discussed in Sec-
tion 3.2, it does not guarantee finding the full set of failing cells in
the presence of data pattern dependence. REAPER solves this by
testing with numerous data patterns at longer refresh intervals and/or
higher temperatures to quickly identify the set of failing cells.

A scheme that would only refresh each cell right before it is
about to experience a retention failure is the ideal refresh scheme
for DRAM, but it is very difficult to employ in the field because
of numerous complications in DRAM cells. Many works show
how retention failures also depend on many different variables [40–
44, 49, 60, 62, 81, 82, 98, 101] and state that it is a very difficult
problem to find a comprehensive set of failing cells [60, 62, 77].
Several prior works analyze retention failures in real DRAM de-
vices [6, 25, 33, 38, 42–44, 49, 56, 62, 81, 86, 93, 95] and propose
methods to approach benefits of the ideal refresh scheme, but they
do not comprehensively develop efficient methods for or explore
the tradeoff space of retention failure profiling. To our knowledge,
we are the first explore the complex tradeoff space of profiling the
failing cells and the first to propose an efficient method for finding

such failing cells, thereby enabling many proposed mechanisms that
depend on accurate and efficient identification of failing cells.

Other works proposed reducing refresh overheads without requir-
ing knowledge of cells that fail at larger refresh intervals [5, 6, 8,
26, 27, 30, 35, 40, 45, 46, 64, 67, 73, 74, 80, 94], e.g., by better
scheduling, taking advantage of software and hardware access pat-
terns to reduce refreshes, and reducing refreshes for non-critical data.
These works can be used together with the more aggressive refresh
reduction techniques that REAPER enables.

9 CONCLUSION
This paper rigorously explores the complex tradeoff space associated
with DRAM retention profiling mechanisms using new experimen-
tal data from 368 modern LPDDR4 DRAM chips. In an effort to
develop a rigorous understanding of how retention failure profiling
can be made viable for increasing the refresh interval, we experimen-
tally characterize DRAM chips at various temperatures and refresh
intervals and analyze the probability of failure of different cells in
DRAM as well as tradeoffs of retention time profiling. Following
rigorous analysis of the collected data, we propose reach profiling,
a technique whose key idea is to profile DRAM at a longer refresh
interval and/or a higher temperature relative to the target refresh
interval/temperature in order to quickly discover an overwhelming
majority of all possible failing cells at the target conditions. We
show that reach profiling enables significant system performance
improvement and DRAM power reduction, outperforming the brute-
force approach and enabling high-performance operation at longer
refresh intervals that were previously unreasonable to employ due
to the high associated profiling overhead. We conclude that reach
profiling can be an enabler for many past and future DRAM refresh
reduction mechanisms. We also hope that the new experimental
characterization and the analysis of the data retention characteristics
of modern LPDDR4 DRAM devices presented in this work will
serve as an enabler for others to develop new techniques to tackle
the difficult yet critical problem of DRAM refresh.
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