An Experimental Study of Reduced-Voltage Operation in Modern FPGAs for Neural Network Acceleration

<u>Behzad Salami</u>

Fahrettin Koc

Osman Unsal

Baturay Onural

Oguz Ergin

Hamid Sarbazi-Azad

Ismail Yuksel

Adrian Cristal

Onur Mutlu

Barcelona Supercomputing Center Centro Nacional de Supercomputación

50th IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), 30th June, 2020

Executive Summary

- <u>Motivation</u>: Power consumption of neural networks is a main concern
 ✓ Hardware acceleration: GPUs, FPGAs, and ASICs
- **<u>Problem</u>**: FPGAs are at least 10X less **power-efficient** than equivalent ASICs
- <u>Goal</u>: Bridge the **power-efficiency gap** between ASIC- and FPGA-based neural networks by **Undervolting below nominal level**

<u>Evaluation Setup</u>

- ✓ **5** Image classification workloads
- ✓ **3** Xilinx UltraScale+ ZCU102 platforms
- ✓ 2 On-chip voltage rails

<u>Main Results</u>

- ✓ Large voltage guardband (i.e., 33%)
- ✓ >3X power-efficiency gain

- Motivation and Background
- Our Goal
- Methodology
- Results
 - Overall Voltage Behavior
 - Power-Reliability Trade-off
 - Frequency Underscaling
 - Environmental Temperature
- Prior Works
- Summary, Conclusion, and Future Works

Motivation and Background

- Our Goal
- Methodology
- Results
 - Overall Voltage Behavior
 - Power-Reliability Trade-off
 - Frequency Underscaling
 - Environmental Temperature
- Prior Works

• Summary, Conclusion, and Future Works

Motivation and Background

<u>Motivation</u>

- ✓ Power consumption of neural networks is a main concern
- ✓ Hardware acceleration: GPUs, FPGAs, and ASICs
- ✓ **FPGAs**: Getting popular but **less power-efficient** than equivalent ASICs
- ✓ Large voltage guardbands (12-35%) for CPUs, GPUs, DRAMs
- ✓ Any potential of "Undervolting FPGAs" for power-efficiency of neural networks?

• <u>Background</u>

- ✓ Neural Networks: Widely deployed with an inherent resilience to errors
- ✓ **FPGAs**: Higher throughput than **GPUs** and better flexibility than **ASICs**
- ✓ Undervolting: Reduces power cons., may incur reliability or performance issues

Motivation and Background

- Our Goal
- Methodology
- Results
 - Overall Voltage Behavior
 - Power-Reliability Trade-off
 - Frequency Underscaling
 - Environmental Temperature
- Prior Works
- Summary, Conclusion, and Future Works

Our Goal

• Primary Goal

- Bridge the power-efficiency gap between ASIC- and FPGA-based neural networks by:
 - Undervolting (i.e., underscaling voltage below nominal level)

<u>Secondary Goals</u>

- ✓ Study the voltage behavior of real FPGAs (e.g., guardband)
- ✓ Study the **power-efficiency gain** of undervolting for neural networks
- ✓ Study the reliability overhead
- ✓ Study the **frequency underscaling** to prevent the accuracy loss
- ✓ Study the effect of **environmental temperature**

- Motivation and Background
- Our Goal
- Methodology
- Results
 - Overall Voltage Behavior
 - Power-Reliability Trade-off
 - Frequency Underscaling
 - Environmental Temperature
- Prior Works
- Summary, Conclusion, and Future Works

Overall Methodology

- 5 CNN image classification workloads, i.e., VGGNet, GoogleNet, AlexNet, ResNet50, Inception.
- Xilinx DNNDK to map CNN into FPGA
 ✓ By default optimized for INT8
- **3** identical samples of Xilinx ZCU102
 - ZYNQ Ultrscale+ architecture
 - Hard-core ARM for data orchestration
 - FPGA for CNN acceleration
- **2** on-chip voltage rails, via PMBus

V_{CCINT}: DSPs, LUTs, buffers, ...
 V_{CCBRAM}: BRAMs

V_{nom}= 850mV (set by manufacturer)

- Motivation and Background
- Our Goal
- Methodology

• Results

- Overall Voltage Behavior
- Power-Reliability Trade-off
- Frequency Underscaling
- Environmental Temperature
- Prior Works
- Summary, Conclusion, and Future Works

- Motivation and Background
- Our Goal
- Methodology
- Results
 - Overall Voltage Behavior
 - Power-Reliability Trade-off
 - Frequency Underscaling
 - Environmental Temperature
- Prior Works
- Summary, Conclusion, and Future Works

Overall Voltage Behavior

- **<u>Guardband</u>**: Large region below nominal level (*V_{nom}* = 850*mV*)
- **<u>Critical</u>**: Narrower region below guardband ($V_{min} = 570mV$)
- **<u>Crash</u>**: FPGA crashes below critical region (*V*_{crash} = **540***mV*)

Slight variation of voltage behavior across platforms and benchmarks

- Motivation and Background
- Our Goal
- Methodology
- Results
 - Overall Voltage Behavior
 - Power-Reliability Trade-off
 - Frequency Underscaling
 - Environmental Temperature
- Prior Works
- Summary, Conclusion, and Future Works

Power-Reliability Trade-off

Power-efficiency (GOPs/W) gain

- >3X power saving (2.6X by eliminating guardband and further 43% in critical region)
- Slight variation across 3 platforms and 5 workloads

Reliability overhead (i.e., CNN accuracy loss)

- No accuracy loss in the guardband, accuracy collapse in the critical region
- Slight variation across 3 platforms and 5 workloads

- Motivation and Background
- Our Goal
- Methodology
- Results
 - Overall Voltage Behavior
 - Power-Reliability Trade-off
 - Frequency Underscaling
 - Environmental Temperature
- Prior Works
- Summary, Conclusion, and Future Works

Frequency Underscaling

- **Simultaneous** frequency underscaling *t*o prevent CNN accuracy collapse in the **critical voltage region**
- For each voltage level below V_{min}, we found the F_{max}, the maximum operating frequency at which there is no accuracy loss
- Leads to **performance and energy-efficiency loss**

Best setting for **High-performance** and **Energy-efficiency** Best setting for **Power-efficiency**

VCCINT (mV)	Fmax (Mhz)	GOPs (Norm)	Power (W) Norm)	GOPs/W (Norm)	GOPs/J (Norm)
570	333	1	1	1	
565	300	0.94	0.97	0.97	0.87
560	250	0.82	0.84	0.99	0.75
555	250	0.83	0.78	1.06	0.8
550	250	0.83	0.75	1.1	0.83
545	250	0.83	0.74	1.12	0.84
540	200	0.7	0.56	1.25	0.75
(Voltage steps= 5mV, Frequency steps= 50Mhz)- shown for GoogleNet					

- Motivation and Background
- Our Goal
- Methodology
- Results
 - Overall Voltage Behavior
 - Power-Reliability Trade-off
 - Frequency Underscaling
 - Environmental Temperature
- Prior Works
- Summary, Conclusion, and Future Works

Environmental Temperature

- Effects of environmental temperature on power-reliability
 - ✓ Use **fan speed** to test temperature in [34 °C, 50 °C]
 - ✓ On-board temperature monitored by PMBus
- Temperature effects on power consumption
 - ✓ \downarrow *Temp* → \downarrow *Power* (*direct* relation of power and temp)
 - ✓ By undervolting, the impact of temperature on power consumption *reduces*.
- Temperature effects on **reliability**
 - ✓ \downarrow *Temp* → \uparrow *Accuracy loss* (*indirect* relation of reliability and temp)
 - ✓ In our temperature range, V_{min} and V_{crash} do **not** change significantly.

- Motivation and Background
- Our Goal
- Methodology
- Results
 - Overall Voltage Behavior
 - Power-Reliability Trade-off
 - Frequency Underscaling
 - Environmental Temperature

Prior Works

• Summary, Conclusion, and Future Works

Prior Works

<u>Undervolting</u>

- ✓ Studies for off-the-shelf real CPUs, GPUs, ASICs, DRAMs
- ✓ Large voltage guardband (from 12% to 35%) for many devices
- ✓ This work extends such studies for off-the-shelf FPGAs especially for neural network acceleration and confirms large guardbands (i.e., 33%)

<u>Power-Efficient Neural Networks</u>

- ✓ Studies on architectural-, hardware-, and software-level techniques
- ✓ Undervolting in neural network ASIC accelerator (e.g., GreenTPU-DAC'19)
- ✓ This work proposes a hardware-level undervolting for further power-saving (>3X) in FPGAs.

• <u>Reliability in Neural Networks</u>

- ✓ Analytical and simulation-based studies (e.g., Thundervolt-DAC'18)
- ✓ Some studies on real hardware (e.g., EDEN-MICRO'19)
- ✓ This work studies the reliability of neural networks on real FPGAs when operating at reduced voltage levels.

- Motivation and Background
- Our Goal
- Methodology
- Results
 - Overall Voltage Behavior
 - Power-Reliability Trade-off
 - Frequency Underscaling
 - Environmental Temperature
- Prior Works

• Summary, Conclusion, and Future Works

Summary, Conclusion, and Future Works

• <u>Summary</u>

- ✓ We improve the **power-efficiency (>3X)** of off-the-shelf FPGAs via **undervolting** for neural network accelerators:
 - 2.6X by eliminating the guardband (i.e., 33%) without any cost
 - \blacktriangleright **43%** by further undervolting below the guardband *with the cost of*
 - either accuracy loss, when the *frequency is not underscaled*
 - or performance loss, when the *frequency is underscaled*

• <u>Conclusion</u>

✓ Undervolting is an effective way to achieve significant power-saving for FPGA-based neural network accelerators

<u>Future Works</u>

 HW & SW extension of our undervolting for FPGA clusters and other neural network models and tools

An Experimental Study of Reduced-Voltage Operation in Modern FPGAs for Neural Network Acceleration

<u>Behzad Salami</u>

Fahrettin Koc

Osman Unsal

Baturay Onural

Oguz Ergin

Hamid Sarbazi-Azad

Ismail Yuksel

Adrian Cristal

Onur Mutlu

Ekonomi ve Teknoloji Üniversite

Barcelona Supercomputing Center Centro Nacional de Supercomputación

50th IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), 30th June, 2020