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Abstract

We empirically evaluate an undervolting technique, i.e.,
underscaling the circuit supply voltage below the nominal
level, to improve the power-efficiency of Convolutional Neural
Network (CNN) accelerators mapped to Field Programmable
Gate Arrays (FPGAs). Undervolting below a safe voltage
level can lead to timing faults due to excessive circuit la-
tency increase. We evaluate the reliability-power trade-off
for such accelerators. Specifically, we experimentally study
the reduced-voltage operation of multiple components of real
FPGAs, characterize the corresponding reliability behavior of
CNN accelerators, propose techniques to minimize the draw-
backs of reduced-voltage operation, and combine undervolting
with architectural CNN optimization techniques, i.e., quanti-
zation and pruning. We investigate the effect of environmental
temperature on the reliability-power trade-off of such acceler-
ators.

We perform experiments on three identical samples of mod-
ern Xilinx ZCU102 FPGA platforms with five state-of-the-art
image classification CNN benchmarks. This approach allows
us to study the effects of our undervolting technique for both
software and hardware variability. We achieve more than 3X
power-efficiency (GOPs/W) gain via undervolting. 2.6X of
this gain is the result of eliminating the voltage guardband
region, i.e., the safe voltage region below the nominal level
that is set by FPGA vendor to ensure correct functionality in
worst-case environmental and circuit conditions. 43% of the
power-efficiency gain is due to further undervolting below the
guardband, which comes at the cost of accuracy loss in the
CNN accelerator. We evaluate an effective frequency under-
scaling technique that prevents this accuracy loss, and find
that it reduces the power-efficiency gain from 43% to 25%.

1. Introduction

Deep Neural Networks (DNNs) and specifically Convolutional
Neural Networks (CNNs) have recently attained significant
success in image and video classification tasks. They are fun-
damental for state-of-the-art real-world applications running
on embedded systems as well as data centers. These neural
networks learn a model from a dataset in their training phase
and make predictions on new, previously-unseen data in their
classification phase. However, their power-efficiency is in-
herently the primary concern due to the massive amount of
data movement and computational power required. Thus, the

scalability of CNNs for enterprise applications and their de-
ployment in battery-limited scenarios, such as in drones and
mobile devices, are crucial concerns.

Typically, hardware acceleration using Graphics Process-
ing Units (GPUs) [135], Field Programmable Gate Arrays
(FPGAs) [85, 101], or Application-Specific Integrated Cir-
cuits (ASICs) [22, 42, 102] leads to a significant reduction in
CNN power consumption [109]. Among these, FPGAs are
rapidly becoming popular and are expected to be used in 33%
of modern data centers by 2020 [28]. This increase in the
popularity of FPGAs is attributed to their power-efficiency
compared to GPUs, their flexibility compared to ASICs, and
recent advances in High-Level Synthesis (HLS) tools that
significantly facilitate easier mapping of applications on FP-
GAs [6, 82, 84, 92–94, 114]. Hence, major companies, such as
Amazon [44] (with EC2 F1 cloud) and Microsoft [29] (with
Brainwave project), have made large investments in FPGA-
based CNN accelerators. However, recent studies show that
FPGA-based accelerators are at least 10X less power-efficient
compared to ASIC-based ones [12, 73, 74]. In this paper, we
aim to bridge this power-efficiency gap by empirically under-
standing and leveraging an effective undervolting technique
for FPGA-based CNN accelerators.

Power-efficiency of state-of-the-art CNNs generally im-
proves via architectural-level techniques, such as quantiza-
tion [137] and pruning [67]. These techniques do not signifi-
cantly compromise CNN accuracy as they exploit the sparse
nature of CNN applications [3, 80, 134]. To further improve
the power-efficiency of FPGA-based CNN accelerators, we
propose to employ an orthogonal hardware-level approach:
undervolting (i.e., circuit supply voltage underscaling) below
the nominal/default level (Vnom), combined with the aforemen-
tioned architectural-level techniques. FPGA vendors usually
add a voltage guardband to ensure the correct operation of
FPGAs under the worst-case circuit and environmental con-
ditions. However, these guardbands can be very conservative
and unnecessary for state-of-the-art applications. Supply volt-
age underscaling below the nominal level was already shown
to provide significant efficiency improvements in CPUs [78],
GPUs [66, 138], ASICs [17], and DRAMs [18, 50]. This pa-
per extends such studies to FPGAs. Specifically, we study
the classification phase of FPGA-based CNN accelerators, as
this phase can be repeatedly used in power-limited edge de-
vices (unlike the training phase, which is invoked much less
frequently). Unlike simulation-based approaches that may



not be accurate enough [90, 132], our study is based on real
off-the-shelf FPGA devices.

The extra voltage guardband can range between 12-35% of
the nominal supply voltage of modern CPUs [78], GPUs [138],
and DRAM chips [18]. Reducing the supply voltage in this
guardband region does not lead to reliability issues under nor-
mal operating conditions, and thus, eliminating this guardband
can result in a significant power reduction for a wide variety
of real-world applications. We experimentally demonstrate a
large voltage guardband for modern FPGAs: an average of
33% with a slight variation across hardware platforms and
software benchmarks. Eliminating this guardband leads to
significant power-efficiency (GOPs/W ) improvement, on av-
erage, 2.6X, without any performance or reliability overheads.
With further undervolting, the power-efficiency improves by
an extra 43%, leading to a total improvement of more than 3X.
This additional gain does not come for free, as we observe
exponentially-increasing CNN accuracy loss below the guard-
band region. With further undervolting below this guardband,
our experiments indicate that the minimum supply voltage
at which the internal FPGA components could be functional
(Vcrash) is equal to, on average, 63% of Vnom. Further reducing
the supply voltage results in system crash.

We evaluate our undervolting technique on three identical
samples of the Zynq-based ZCU102 platform [125], a repre-
sentative modern FPGA from Xilinx. However, we believe that
our experimental observations are applicable to other FPGA
platforms as well, perhaps with some minor differences. We
previously showed benefits of reduced-voltage operation for
on-chip memories on different, older FPGA platforms [96].
Other works observed similar behavior for different types of
CPUs [78], GPUs [138], and DRAM chips [18]. In this paper,
we characterize the power dissipation of FPGA-based CNN ac-
celerators under reduced-voltage levels and apply undervolting
to improve the power-efficiency of such accelerators.1

We experimentally evaluate the effects of reduced-voltage
operation in on-chip components of the FPGA platform, in-
cluding Block RAMs (BRAMs) and internal FPGA compo-
nents, containing Look-Up Tables (LUTs), Digital Signal Pro-
cessors (DSPs), buffers, and routing resources.2 We perform
our experiments on five state-of-the-art CNN image classifica-
tion benchmarks, including VGGNet [106], GoogleNet [110],
AlexNet [51], ResNet [35], and Inception [110]. This en-
ables us to experimentally study the workload-to-workload
variation on the power-reliability trade-offs of FPGA-based
CNN accelerators. Specifically, we extensively characterize
the reliability behavior of the studied benchmarks below the
guardband level and evaluate a frequency underscaling tech-
nique to prevent the accuracy loss in this voltage region. Our

1Our exploration of the FPGA voltage behavior and the subsequent power-
efficiency gain is applicable to any application.

2These internal FPGA components share a single voltage rail in the studied
FPGA platform. To our knowledge, such voltage rail sharing is a typical case
for most modern FPGA platforms.

study also examines the effects of architectural quantization
and pruning techniques with reduced-voltage FPGA operation.
Finally, we experimentally evaluate the effect of environmen-
tal temperature variation on the power-reliability behavior of
FPGA-based CNN accelerators.

1.1. Contributions

To our knowledge, for the first time, this paper experimen-
tally studies the power-performance-accuracy characteristics
of CNN accelerators with greatly reduced supply voltage ca-
pability implemented in real FPGAs. In summary, we achieve
a total of more than 3X power-efficiency improvement for
FPGA-based CNN accelerators. We gain insights into the
reduced-voltage operation of such accelerators and, in turn,
the effect of FPGA supply voltage on the power-reliability
trade-off. We make the following major contributions:
• We characterize the power consumption of FPGA-based

CNN accelerators across different FPGA components. We
identify that the internal on-chip components, including
processing elements, contribute to a vast majority of the
total power consumption. We reduce this source of power
consumption via our undervolting technique.

• We improve the power-efficiency of FPGA-based CNN ac-
celerators by more than 3X, measured across five state-of-
the-art image classification benchmarks. 2.6X of the power-
efficiency gain is due to eliminating the voltage guardband,
which we measure to be on average 33%. An additional
43% gain is due to further undervolting below the guardband,
which comes at the cost of CNN accuracy loss.

• We characterize the reliability behavior of FPGA-based
CNN accelerators when executed below the voltage guard-
band level and observe an exponential reduction in CNN
accuracy as voltage reduces. We observe that workloads
with more parameters, e.g., ResNet and Inception, are rela-
tively more vulnerable to undervolting-related faults.

• To prevent CNN accuracy loss below the voltage guardband
level, we combine voltage underscaling with frequency un-
derscaling. We experiment with a supply voltage lower than
Vnom and with operating frequency Fop < Fmax. Our exper-
iments show that the most energy-efficient operating point
is the one with the maximum frequency and minimum safe
voltage, namely, Vmin. However, lower voltage and lower
frequency lead to better power-efficiency.

• We combine voltage underscaling with the existing CNN
quantization and pruning techniques and study the power-
reliability trade-off of such optimized FPGA-based CNN
accelerators. We observe that these bit/parameter-size reduc-
tion techniques (quantization and pruning) slightly increase
the vulnerability of a CNN to undervolting-related faults;
but, they deliver significantly higher power-efficiency when
integrated with our undervolting technique.

• We study the effect of environmental temperature on the
power-reliability trade-off of reduced-voltage FPGA-based
CNN accelerators. We observe that temperature has a direct
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effect on the power consumption of such accelerators. How-
ever, at very low voltage levels, this effect is not noticeable.

• We evaluate the effect of hardware platform variability by
repeating our experiments on three identical samples of
the Xilinx ZCU102 FPGA platform. We find large volt-
age guardbands in all platforms (an average of 33%), i.e.,
Vmin = 0.67∗Vnom = 570mV . However, across three FPGAs,
we observe a variation on Vmin, i.e., ∆Vmin = 31mV . This
variation can be due to process variation. Our results show
that the variation of guardband regions across different CNN
workloads is insignificant.

2. Background
In this section, we briefly introduce the most important con-
cepts used in this paper, including the architecture of CNNs as
well as the undervolting technique.

2.1. Convolutional Neural Networks (CNNs)

DNNs are a class of Machine Learning (ML) methods that
are designed to classify unseen objects or entities using non-
linear transformations applied to input data [53]. DNNs are
composed of biologically inspired neurons, interconnected to
each other. Among different DNN models, multi-layer CNNs
are a common type, which has recently shown acceptable
success in classification tasks for real-world applications.
2.1.1. Phases of a CNN: Training and Classification. A
CNN model encompasses two stages: training and classifi-
cation (inference). Training learns a model from a set of
training data. It is an iterative, usually a single-time (or rel-
atively infrequently-executed) step, including backward and
forward phases. It adjusts the CNNs parameters, i.e., weights
and biases, which determine the strength of the connections
between different neurons across CNN layers. The training
phase minimizes a loss function, which directly relates to the
accuracy of the neural network in the classification phase. In
contrast, inference is a post-training phase that aims to classify
unknown data, using the trained network model. The infer-
ence phase is more frequently executed in edge devices with
power-constrained environments. The target of this paper is
the inference stage, similar to many existing efforts on the
acceleration of CNNs [32, 50, 109].
2.1.2. Internal Architecture of a CNN. A CNN is composed
of multiple processing layers such as Convolution, Pooling,
Fully-Connected, and SoftMax for feature extraction with var-
ious abstractions. Other customized layers can be used case
by case for more optimized feature extraction, such as Batch
Normalization [71]. The functionality of each type of layer
depends on the way in which the neurons are interconnected.
Convolution layers generate a more profound abstraction of
the input data, called a feature map. Following each Convolu-
tion layer, there is usually a Max/Avg Pooling layer to reduce
the dimensionality of the feature map. Successive multiple
Convolution and Pooling layers generate in-depth informa-
tion from the input data. Afterward, Fully-Connected layers

are typically applied for classification purposes. Finally, the
SoftMax layer generates the class probabilities from the class
scores in the output layer. Between layers, there are activation
functions, such as Relu or Sigmoid, to add non-linear prop-
erties to the network. The required computations of different
layers are translated to matrix multiplication computations.
Thus, matrix multiplication optimization techniques, such as
FFT or Strassen [52], can be applied to accelerate the inference
implementation. Matrix multiplication is an ideal application
to take advantage of parallel and data flow execution model
used in FPGA-based hardware accelerators.
2.1.3. Architectural Optimizations. To improve the power-
efficiency of CNNs, two most commonly-used architectural-
level techniques are quantization [136] and pruning [67].3

These two techniques rely on the sparse nature of CNNs,
i.e., a vast majority of CNN computations are unnecessary.
Quantization aims to reduce the complexity of high-precision
CNN computation units by substituting selected floating-
point parameters with low-precision fixed-point. Pruning
aims to reduce the model size by eliminating unnecessary
weight/neurons/connections of a CNN. These architectural
techniques are applicable to any underlying hardware. There
are numerous extensions of quantization [136, 137] and prun-
ing [36, 129] techniques. In our experiments, we integrate
typical quantization [34] and pruning [33] techniques with our
proposed hardware-level undervolting technique to further im-
prove the power-efficiency of FPGA-based CNN accelerators.

2.2. Undervolting: Supply Voltage Underscaling Below
the Nominal Voltage Level

The total power consumption of any hardware substrate is di-
rectly related to its supply voltage: quadratically and linearly
with dynamic and static power, respectively. Thus, supply volt-
age underscaling toward the threshold voltage significantly re-
duces power consumption. Voltage underscaling is a common
power-saving approach as manufacturing technology node size
reduces. For instance, the Vnom of Xilinx FPGAs is 1V , 0.9V ,
and 0.85V for implementations in 28nm, 20nm, and 16nm
technology nodes, respectively. The aim of our undervolting
technique is to reduce the supply voltage below the default
Vnom. However, circuit latency can increase substantially when
supply voltage is reduced below the guardband level, and in
turn, timing faults can appear. These timing faults are man-
ifested as bit-flips in memories or logic timing violations in
data paths. They can potentially cause the application to pro-
duce wrong results, leading to reduced accuracy in CNNs,
or, in the worst-case, they may cause system crashes. There
are several approaches to deal with undervolting faults, such
as preventing these faults by: i) simultaneously decreasing
the frequency [111], which has an associated performance
degradation cost, ii) fixing the faults by using fault mitigation
techniques, such as Error Correction Codes (ECCs) for mem-

3There are also other techniques, such as batching [104], loop un-
rolling [130], and memory compression [49].
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ories [9, 99] and Razor shadow latches for data paths [27],
which comes at the cost of extra hardware, or iii) architectural
improvements, such as additional iterations in CNN train-
ing [133] that may incur hardware and/or software adaptation
costs.

There are two approaches to undervolting studies: i)
simulation-based studies [89, 108, 127, 132], or ii) direct im-
plementation or testing on real hardware fabrics, mainly per-
formed on CPUs, GPUs, ASICs, and DRAMs [9, 18, 50, 78,
81, 138]. The simulation-based approach requires less engi-
neering effort. However, validation of simulation results on
real hardware is the primary concern with such an approach.
In contrast, the real hardware evaluation approach requires
substantial engineering effort, and it is device- and vendor-
dependent. Such a real hardware approach leads to exact
experimental results and it provides an opportunity to study
device-dependent parameters, such as voltage guardbands and
real power and reliability behavior of underlying hardware. In
this paper, we follow the real hardware approach by evaluating
undervolting on real modern off-the-shelf FPGA devices for
state-of-the-art CNN workloads and benchmarks.

3. Experimental Methodology
Figure 1 depicts the overall methodological flow of our exper-
iments. In this section, we elaborate on its different aspects,
including our implementation methodology, benchmarks, and
undervolting methodology of our FPGA platform.
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Figure 1: Our overall methodology (for simplicity, we show a
simplified block diagram of Xilinx DNNDK [122].).

3.1. CNN Model Development Platform

For our implementation, we leverage the Deep Neural Net-
work Development Kit (DNNDK) [122], a CNN framework
from Xilinx. DNNDK is an integrated framework to facil-
itate CNN development and deployment on Deep learning
Processing Units (DPUs). In this paper, we use DNNDK as
it is a freely-available framework instead of a specialized cus-
tom design, to ensure that the results reported in this paper
are reproducible and general-enough for state-of-the-art CNN
implementations. Although we do not expect a significant
difference by experimenting on DNNDK versus other DNN
platforms, our future plan is to verify this by repeating the
experiments on other platforms, such as DNNWeaver [101].
DNNDK provides a complete set of toolchains with compres-
sion, compilation, deployment, and profiling, for the mapping
of CNN classification phases onto FPGAs integrated with
hard CPU cores via a comprehensive and easy-to-use C/C++
programming interface.

Among the components of DNNDK, the DEep ComprEs-
sioN Tool (DECENT) is responsible for quantization and prun-
ing tasks. The quantization utility of DECENT can convert
a floating-point CNN model to a quantized model with the
precision of at most INT8 [34]. The pruning utility aims to
minimize the model size by removing unnecessary connec-
tions of the CNN [33]. We perform our baseline evaluation
on a model with INT8 precision and without any pruning opti-
mization. However, in Section 6, we evaluate different config-
urations to provide a more comprehensive analysis. There are
different sizes of soft DPUs provided by DNNDK with various
hardware utilization rates [123]. Among them, B4096 is the
largest model that utilizes a maximum fraction of BRAMs and
DSPs, i.e., 24.3% and 25.6%, respectively, resulting in a peak
performance of 4096 operations/cycle with a default DPU fre-
quency of 333Mhz and DSP frequency of 666Mhz. In total, a
maximum of three B4096 DPUs can be used in the hardware
platform evaluated in this paper. Our experiments are based
on the B4096 configuration to achieve peak performance.

3.2. CNN Benchmarks

We evaluate undervolting in FPGA-based CNN accelerators
with five commonly-used image classification benchmarks,
shown in Table 1: VGGNet [106], GoogleNet [110], AlexNet
[51], ResNet [35], and Inception [110]. To perform a com-
prehensive analysis and study workload-to-workload variation
better, we choose models whose parameter sizes vary from a
few MBs, e.g., GoogleNet, to hundreds of MBs, e.g., AlexNet.
Our benchmarks have different numbers and types of layers,
as shown in Table 1. The default activation function used in
benchmarks is Relu.

3.3. Undervolting

In this section, we briefly explain the prototype FPGA platform
and the associated voltage control setup.
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Table 1: Evaluated CNN Benchmarks.

CNN Dataset Parameters Inference Accuracy (%)
Model Name Inputs Outputs #Layers Size Literature Our design @Vnom

VGGNet Cifar-10 32*32 10 6 8.7MB 87% [106] 86%
GoogleNet Cifar-10 32*32 10 21 6.6MB 91% [110] 91%
AlexNet Kaggle Dogs vs. Cats 227*227 2 8 233.2MB 96% [51] 92.5%
ResNet50 ILSVRC2012 224*224 1000 50 102.5MB 76% [35] 68.8%
Inception ILSVRC2012 224*224 1000 22 107.3MB 68.7% [110] 65.1%

3.3.1. Prototype FPGA Platform. Our prototype is based
on the Xilinx ZCU102 FPGA platform fabricated at a 16nm
technology node. We choose this platform because it is i)
equipped with voltage underscaling capability, ii) supported
by DNNDK. We repeat experiments on three identical samples
of ZCU102 to study the effect of hardware platform variability.
ZCU102 is populated with the Zynq UltraScale+ XCZU9EG-
2FFVB1156E MPSoC that combines a Processing System
(PS) and user-Programmable Logic (PL) in the same device.
The PS part features a quad-core 64-bit ARM Cortex-A53
and is mainly used for the host communication in DNNDK.
The PL part has 32.1Mbit of BRAMs, 600K LUTs, and 2520
DSPs. For the CNN implementation, DPUs are mapped into
the PL side. As mentioned earlier, our baseline hardware con-
figuration employs three B4096 DPUs, the maximum possible
number, leading to a maximum utilization fraction of more
than 75% for BRAMs and DSPs. ZCU102 is equipped with an
8GB 64-bit DDR-4 off-chip memory. In our implementation,
this memory contains input images and CNN parameters. It is
also used for interfacing purposes with the host.

3.3.2. Undervolting Methodology. Unfortunately, there is no
voltage scaling standard for FPGAs. Different vendors have
their unique voltage management methodologies. Moreover,
there are some platforms without voltage scaling capability,
such as the Xilinx Zedboard [7]. Even a single vendor’s differ-
ent devices do not necessarily have the same voltage distribu-
tion model. Although this non-standard approach of vendors
adds some constraints to experimental studies, such as the one
conducted in this paper, we believe that, with minor changes,
the methodology we explain below for ZCU102 can be ap-
plicable to other platforms, as, for instance, we previously
studied for on-chip memories of older FPGA generations [96].

Figure 2, adapted from [125], depicts the voltage distribu-
tion model of ZCU102. Here, the voltage scaling capabil-
ity is provided using an on-board voltage regulator that can
convert an input voltage level of 12V into different voltage
levels. The voltage level of the output lines, usually called volt-
age rails, is fully configurable and also addressable using the
Power Management Bus (PMBus) standard [83]. Each voltage
rail feeds one or more components of the FPGA platform.
ZCU102 is equipped with three voltage regulators, which in
total provide 26 voltage rails accessible through the PMBus.
In this paper, we focus on on-chip voltage rails: VCCINT and
VCCBRAM , as shown in Figure 2. VCCINT is accessible with

PMBus address 0x13 and Vnom = 850mV ; it supplies multiple
PL components, including DSPs, LUTs, buffers, and routing
resources. VCCBRAM is accessible with PMBus address 0x14
and Vnom = 850mV ; it supplies the BRAMs of the PL. To ac-
cess these voltage rails for monitoring and regulation, we use
a PMBus adapter and the provided API [65]. Using a similar
approach and different PMBus commands, we monitor the
power consumption of each voltage rail as well as the on-chip
temperature.

Voltage
Regulator

DSPs, LUTs, ...VCCINT:
0.85V @ 0x13

BRAMsVCCBRAM:
0.85V @ 0x14

Auxiliary I/O

VCC3V3:
3.3V @ 0x17 I/O

VCCAUX:
1.8V @ 0x15

.

.

.

12 V

.

.

.

Monitor & Regulate

PM
Bu

s

On-chip PL Voltage Rails

On-chip PS/Off-chip Voltage Rails

Our Focus 

in this Study

Figure 2: Voltage distribution on the Xilinx ZCU102 FPGA,
adapted from [125].

4. Experimental Results
We present and analyze our experimental results from reduced-
voltage operation on FPGA boards. These results are collected
at ambient temperature. Section 7 presents further temperature
analysis. Each result presented in this paper is the average of
10 experiments, in order to account for any variation between
different experiments; although, the variation we observed
was negligible.

4.1. Power Analysis of FPGA-based CNN Accelerators at
the Nominal Voltage Level (Vnom)

We measure the total on-chip power consumption of the base-
line configuration to be an average of 12.59W for benchmarks,
at the nominal voltage level (Vnom) and ambient temperature.
This value includes the power consumption at on-chip volt-
age rails, including VCCBRAM and VCCINT . We observe that
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internal FPGA components on the VCCINT rail dissipate more
than 99.9% of this on-chip power. We believe this obser-
vation is due to power-efficient BRAM designs, using tech-
niques like dynamic power gating [124], in modern Ultrascale+
FPGA platforms, including in the studied ZCU102 FPGA.
Older generations of Xilinx FPGAs like the 7-series are not
equipped with this capability [121]. Thus, for such older
devices, BRAM power consumption was the main source
of FPGA power consumption, as shown in previous stud-
ies [1, 96, 97, 99]. For the rest of the paper, as we study the
power-reliability trade-off, we concentrate on VCCINT due to
its dominance in FPGA power consumption.

4.2. Overall Voltage Behavior

Our experiments reveal that a large voltage guardband be-
low Vnom exists for VCCINT , as shown in Figure 3 for three
hardware platforms and five CNN benchmarks. In the volt-
age guardband region, as we reduce supply voltage there is
no performance or reliability degradation, and thus, under
normal conditions, eliminating this voltage guardband can
lead to significant power savings without any overhead. As
Figure 3 shows, we measure the average guardband amount
to be 850mV − 570mV = 280mV , with a slight variation
across different benchmarks. In other words, we observe
that Vmin = 570mV (on average) is the minimum safe voltage
level of the accelerator, where there is no accuracy loss. As
we further undervolt below Vmin, we enter a region called the
critical region in which the reliability of the hardware and, in
turn, the accuracy of the CNN starts to decrease significantly.
As Figure 3 depicts, we measure the average critical voltage
region size, to be 570mV −540mv = 30mV , with a slight vari-
ation across different benchmarks. As we further undervolt
below Vmin, we reach a point at which the FPGA does not re-
spond to requests and it is not functional. This point is called
Vcrash. We find that Vcrash = 540mV on average, with a slight
variation across different hardware platforms.

Figure 3: Voltage regions with a slight workload-to-workload
variation (averaged across three hardware platforms).

Figure 4 illustrates the overall behavior we observe for the
power-efficiency and CNN accuracy trade-off on our FPGA-
based CNN accelerator. As we perform undervolting, the
FPGA enters the guardband region, where we observe no relia-
bility degradation (i.e., CNN accuracy loss), and therefore, the
power-efficiency comes with no cost. We observe this behav-
ior until we reach the point Vmin, i.e., minimum safe voltage
level. With further undervolting, the FPGA enters the critical
region, where power-efficiency constantly increases, but we
start to observe fast-increasing CNN accuracy loss. When we
undervolt down to a specific point, called Vcrash, the FPGA
becomes non-functional and starts to hang. Sections 4.3 and
4.4 provide more details on the power-reliability trade-off. Our
demonstration is on three identical samples of Xilinx ZCU102.
However, we believe that the overall voltage behavior, illus-
trated in Figure 4, is reproducible for other FPGA platforms
as well.

Figure 4: Overall voltage behavior observed for VCCINT .

4.3. Detailed Power-Efficiency Analysis

Figure 5 presents the power-efficiency experimental results
(GOPs/W ) for five CNN workloads, averaged across three
FPGA hardware platforms. The power-efficiency gain at Vcrash
is more than 3X of that at nominal voltage level, i.e., Vnom,
for the same design of the given CNN accelerator. 2.6X of
the gain in power-efficiency is the result of eliminating the
voltage guardband without any CNN accuracy loss. 43%
further power-efficiency gain is due to further undervolting
in the critical region, which has an associated CNN accuracy
loss cost.

Figure 5: Power-efficiency (GOPs/W ) improvement via under-
volting (averaged across three hardware platforms).
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The power-efficiency gain via undervolting until Vmin is
not application-dependent, so it is useful for any applica-
tion mapped onto the same FPGA. However, the reliabil-
ity overhead in the critical region below Vmin is application-
dependent due to different vulnerability levels of different
applications/workloads.

4.4. Detailed Reliability Analysis

As we undervolt until Vmin, there is no reliability overhead.
However, as we further undervolt below Vmin, the reliability
of the hardware is significantly affected due to the further
increase in datapath delay. The effect of the reliability loss
is fully application-dependent due to different inherent re-
silience levels of different applications. In this paper, we study
this effect on several CNN workloads. Figure 6 depicts our
experimental results. As shown before, as we reduce the sup-
ply voltage, power-efficiency improves. When we reduce the
supply voltage below Vmin, we observe that the accuracy of
all benchmarks gradually reduces. With further undervolting,
when the supply voltage reaches an average of Vcrash = 540mV
across different platforms and benchmarks, the accuracy of the
benchmarks drops greatly, and the classifier behaves randomly.
Our experiments show that benchmarks with more parameters,
e.g., ResNet and Inception are relatively more vulnerable to
undervolting faults below Vmin. Also, as seen, there is a vari-
ation of ∆Vmin = 31mV and ∆Vcrash = 18mV across different
FPGAs. This variation can be due to the process variation
across different FPGAs.

5. Frequency Underscaling
As shown earlier, in the critical voltage region below the guard-
band, CNN classification accuracy dramatically decreases. In
this section, we aim to overcome this accuracy loss by ex-
ploiting frequency underscaling. To be more precise, we aim
to find a more energy-efficient voltage setting than the un-
dervolted Vmin, which also provides accurate results. To this
end, for each supply voltage setting below Vmin, we aim to
identify the maximum frequency value Fmax with which the
system does not experience any accuracy loss. When we find
this frequency point, we evaluate the energy efficiency of the
system. As we underscale the frequency of the system, the
performance of the application reduces. Therefore, we use the
GOPs/J metric as it accommodates for both performance and
energy consumption.

Table 2 summarizes the results of the frequency underscal-
ing in the critical region. These experiments are based on
frequency and voltage steps of 25Mhz and 5mV , respectively.
The column VCCINT corresponds to the supply voltage of a
given setting. The column Fmax corresponds to the maximum
frequency at which there is no accuracy loss. The remaining
columns: GOPs, Power, GOPS/W , GOPS/J are normalized
to the respective values of executing the system in the default
setting VCCINT = Vmin = 570mV,Fmax = 333Mhz which are
the baseline settings of our accelerator. Table 2 indicates that
multiple voltage settings VCCINT map to the same operating
Frequency Fmax: supply voltages between 560mV to 545mV
require the same frequency of Fmax = 250Mhz. This is because
the frequency step we use is 25Mhz. Using smaller steps of
frequency can lead to more spread-out Fmax values.

Table 2: Evaluation of frequency underscaling to prevent CNN
accuracy loss in the critical voltage region (averaged across
three hardware platforms). Best result with frequency under-
scaling in terms of each metric is marked in blue.

VCCINT
(mV)

Fmax

(Mhz)
GOPs

(Norm)
Power(W )

(Norm)
GOPs/W
(Norm)

GOPs/J
(Norm)

570 333 1.00 1.00 1.00 1.00
565 300 0.94 0.97 0.97 0.87
560 250 0.83 0.84 0.99 0.75
555 250 0.83 0.78 1.06 0.80
550 250 0.83 0.75 1.10 0.83
545 250 0.83 0.74 1.12 0.84
540 200 0.70 0.56 1.25 0.75

For all the combinations of (Vi,Fi) that provide error-free
results presented in Table 2 in the critical region, power de-
creases with decreasing Vi < Vmin and Fi < Fmax. This is be-
cause we decrease both the supply voltage and the operating
frequency. However, at the same time, this leads to decreas-
ing the system performance. Consequently, the best voltage-
frequency combination in terms of energy-efficiency (GOPs/J)
is the one with the highest frequency of Fmax = 333Mhz, which
also is our baseline. In other words, it is not worth to under-
scale the frequency and voltage to find a more energy-efficient
optimal point. However, as a trade-off, the design is more
power-efficient (i.e., has higher GOPs/W ) at lower voltage-
frequency levels, up to 25% at Vcrash = 540mV .

(a) VGGNet. (b) GoogleNet. (c) AlexNet. (d) ResNet. (e) Inception.

Figure 6: Effect of reduced supply voltage on the accuracy of CNN workloads (separately for three hardware platforms).
(Vnom: , Vmin:�,Vcrash:F)
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6. Combining Undervolting with Architectural
CNN Optimization Techniques

In this section, we experimentally evaluate undervolting for
employing the CNN’s quantization and pruning techniques.
Via experiments, we observe that these bit reduction tech-
niques can deliver additional power-efficiency gains propor-
tional to the quantization/pruning level. However, applying
these techniques can slightly increase the vulnerability of
CNNs to undervolting-related faults. This section reports
results for VGGNet as we observe similar results for other
workloads.

6.1. Quantization

Our baseline is optimized with INT8 precision. As shown in
Table 1, this precision does not incur any significant accuracy
loss in comparison to baseline models that use floating-point
precision. For further analysis of the effect of undervolting
with lower precision models, we evaluate INT7, INT6, INT5,
and INT4 precisions. Using DNNDK, we observe significant
accuracy loss for INT3, INT2, and INT1 when executed at
Vnom. Thus, we do not present them in this paper.

Figure 7 shows results of different precisions (INT8 to
INT4). We find that i) when operating at reduced-voltage
levels, accuracy loss is relatively high due to lower precision;
ii) power-efficiency is proportional to voltage as well as quan-
tization levels. In conclusion, combining low-precision and
low-voltage operation can significantly deliver higher power-
efficiency. However, it comes at the cost of accuracy loss.

(a) CNN Accuracy. (b) Power-efficiency (GOPs/W ).

Figure 7: Effect of undervolting at different quantization levels
for VGGNet (averaged across three hardware platforms).

6.2. Pruning

Figure 8 shows results of pruned and baseline (without any
pruning) models. We find that undervolting-related faults have
a relatively more significant effect on the pruned model. How-
ever, this comes with higher power-efficiency of the pruned
model, as shown in Figure 8b, due to fewer operations in the
pruned model. With undervolting, power consumption reduces
for both pruned and baseline models, at a similar rate. Vcrash
is different for the pruned model. Specifically, the pruned
version demonstrates a higher Vcrash voltage equal to 555mV
in contrast to the baseline Vcrash of 540mV .

(a) CNN Accuracy. (b) Power-efficiency (GOPs/W ).

Figure 8: Effect of undervolting on pruned CNN models for
VGGNet (averaged across three hardware platforms).

7. Effect of Environmental Temperature
The power consumption of a modern chip, including FPGAs,
also depends on temperature. Temperature affects static power
consumption. As the external temperature increases, the leak-
age current and, in turn, the leakage-induced static power
increases [11, 38, 39, 47]. As technology node size reduces,
a large fraction of power consumption comes from the static
power. Therefore, temperature has a larger effect on the power
consumption of denser chips [69]. On the other hand, temper-
ature can have a considerable effect on circuit latency [70, 72],
i.e.,, circuit latency decreases as the temperature increases in
contemporary technology nodes. Therefore, there are fewer
undervolting-related faults at higher temperatures.

To understand the combination of multiple effects men-
tioned above, we study the effect of the environmental tem-
perature on the power-reliability trade-off of our FPGA-based
CNN accelerator under reduced-voltage operation. To this
end, we use GoogleNet as a benchmark and undervolt VCCINT .
We discuss the voltage behavior in both critical and guardband
regions at different temperatures ranging from 34◦C to 52◦C
degrees. To regulate the FPGA temperature, we control the
fan speed using the PMBus interface. We also use the same
PMBus interface to monitor the on-board live temperature. By
doing so, we can test different ambient temperatures ranging
from 34◦C to 52◦C degrees.4

7.1. Temperature Effect on Power Consumption

Figure 9 depicts the power consumption of our CNN accelera-
tor when executing GoogleNet with different VCCINT values at
different temperatures. Clearly, temperature has a direct effect
on power consumption. As temperature increases, power con-
sumption proportionally increases. This is due to increase in
static power when the chip heats up. Dynamic power consump-
tion is also affected by temperature, but this effect is almost
negligible. Importantly, we observe that the effect of tempera-
ture on power consumption reduces for lower voltages. For ex-
ample power change from 34◦C to 52◦C are 0.46% and 0.15%,
respectively at VCCINT = 850mV and VCCINT = 650mV .

4[34◦C, 52◦C] is the temperature range that we could generate using
the fan speed. Experimenting with wider temperature ranges requires more
facilities, which were not available to us.
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Figure 9: Power consumption of our reduced-voltage CNN
accelerator at temperature range of [34◦C, 52◦C], shown for
GoogleNet (averaged across three hardware platforms).

7.2. Temperature Effect on Reliability

Figure 10 shows the effect of temperature on the accuracy of
our reduced-voltage CNN accelerator. Our experiment demon-
strates that i) there is no noticeable change in the size of the
guardband and critical regions, and ii) higher temperature at a
particular voltage level leads to higher CNN accuracy. This
is because at higher temperatures, there are fewer undervolt-
ing related errors due to decreased circuit latency, an artifact
due to the Inverse Thermal Dependence (ITD) property of
contemporary technology nodes [72, 113].

Figure 10: Accuracy of our reduced-voltage CNN accelerator
at temperature range of [34◦C, 52◦C], shown for GoogleNet
(averaged across three hardware platforms).

7.3. Discussion

In our setup, considering the power-reliability trade-off dis-
cussed, the optimal setting is at Temp=50◦ and VCCINT =
565mV , i.e., the minimum voltage level at which there is
almost no accuracy loss due to the healing effect of high tem-
perature. However, the disadvantage of operating at higher
temperatures is the overall decrease in lifetime reliability. Be-
low, we summarize our findings on temperature effects.
• There is a negligible change in the value of Vmin = 570mV

across temperatures, and thus, there is no significant change
in the guardband region. However, the system crashes rela-
tively earlier over temperature variation. We expect, though,
that when the system undergoes a wider temperature range,
there will be a more noticeable change in the Vmin and Vcrash.

• At any specific voltage point in either region, power con-
sumption directly increases as temperature increases, mainly
due to the direct relation of static power consumption and
temperature.

• The effect of temperature on power consumption is signifi-
cantly less at lower voltage levels, due to the relatively lower
contribution of static power to total power consumption.

• In the critical voltage region and at any specific voltage
level, higher temperature leads to higher CNN accuracy.
The power cost of the higher temperature in the critical
voltage region is relatively low.
Consequently, a lower voltage can be applied at higher

temperatures without causing significant accuracy loss at a
small power cost.

8. Related Work

To our knowledge, this paper provides the first study evaluating
the effect of reduced-voltage operation in FPGA-based CNN
accelerators. In this section, we review related works on i)
undervolting, ii) power-efficient CNNs, and iii) reliability of
CNNs.

8.1. Undervolting

Supply voltage underscaling below the nominal level is an
effective approach to improve the power-efficiency of digi-
tal circuits. There are two different approaches to studying
undervolting: simulation or real experiments.
8.1.1. Simulation Studies. This approach simulates hard-
ware to study undervolting. It is convenient for early-
stage studies as it does not require large engineering ef-
fort. However, this approach lacks the information of real
hardware, and thus, validation of results is the main con-
cern. Most of the existing simulation-based studies are for
CPUs [81, 89, 108, 127] and specifically for CPU components
such as caches [2,23,118,119,126] and branch predictors [20].
There are also studies for ASIC CNN accelerators [5, 86, 132].
Following this approach, studies on FPGA-based designs are
either fully in simulation [70] or emulation of FPGA netlists
on simulation frameworks [45, 90].
8.1.2. Experimental Studies on Real Hardware. Evaluating
undervolting on real hardware is another approach that has
recently been considered for multiple devices [31, 79]. Doing
so requires relatively more engineering effort as well as con-
sidering physical constraints, such as non-standard device- and
vendor-dependent voltage distribution models. Yet, the results
produced are accurate and can be directly used in real-world
applications.

Undervolting of real hardware is studied for various sys-
tem components, such as CPUs [8, 10, 43, 76, 77], GPUs [55,
56, 138], ASICs [17, 48, 75], DRAMs [18, 19, 50], and Flash
disks [14–16]. These studies focus on voltage guardband anal-
ysis, fault characterization, and fault mitigation. Undervolting
on real FPGAs is not thoroughly investigated. Very recent
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works on FPGA undervolting are either accompanied with fre-
quency underscaling [1, 103] that can diminish performance,
or are limited to BRAMs [91, 95–97, 99]. This paper, for the
first time, extends real FPGA undervolting studies to multiple
on-chip components of modern FPGA fabrics and evaluates it
in-detail on the power-accuracy trade-off of CNN applications.

8.2. Power-efficient CNNs

Many works aim to improve CNN power-efficiency by opti-
mizing the CNN architecture as well as the underlying hard-
ware. In this paper, to achieve significant power-efficiency,
we combine our hardware-level FPGA undervolting technique
with architectural CNN optimization techniques, including
quantization and pruning.
8.2.1. Architectural Techniques. This approach aims to re-
duce the parameter size of a CNN. The methods of this ap-
proach are independent of the underlying hardware, and in
theory, they can be applied to any hardware, including hard-
ware accelerators. The most common techniques are quantiza-
tion [34, 136, 137], pruning [33, 67, 129], batching [104], loop
unrolling [130], and memory compression [26, 49]. Among
these, quantization and pruning have shown significant effi-
ciency without significantly compromising the CNN accuracy;
hence, we focus on them in our experiments.
8.2.2. Hardware-level Techniques. An orthogonal approach
to reducing CNN power is to optimize the underlying hardware.
To this end, since traditional processor-based architectures are
inherently power-hungry and not suitable for CNNs, exploiting
a dedicated hardware accelerator is the first approach. Further
power savings are possible with low-level techniques, such as
undervolting.
• Hardware Accelerators: Data-flow execution models us-

ing GPUs [37, 46], FPGAs [60, 64, 101, 107, 120] and
ASICs [4, 21, 42, 115] are more efficient choices for CNNs
than traditional CPUs. Among these, FPGAs are more flexi-
ble compared to ASICs and more efficient than GPUs. Effi-
cient exploitation of the underlying hardware is fundamental
for power-efficiency, using techniques like resource parti-
tioning [105] and reuse [88, 131]. Our work uses an indus-
trial tool [122] that inherently exploits these techniques.

• Undervolting: Undervolting has been shown to provide
significant power-efficiency benefit for CNNs when applied
to SRAMs [17], DRAMs [50], ASICs [17, 48, 68, 128, 132],
and heterogeneous systems [24, 25, 100].

8.3. Reliability of CNNs

Although CNNs are inherently resilient to some error rate
in data or underlying hardware, high enough error rates can
cause significant accuracy loss. Error sources can be harsh
environments, process manufacturing defects, undervolting,
ionizing particles, noise in data, among others. Hence, CNN
reliability is an active research area. Existing studies are based
on fault injection or real errors.

8.3.1. Simulation-based Fault Injection. These studies in-
ject randomly-generated faults into CNNs, but they do not
consider undervolting [30, 40, 41, 57, 58, 63, 87, 98]. This
approach provides an opportunity for comprehensive fault
characterization of CNNs, such as the sensitivity of different
layers, different location of faults, among others. However,
these works do not consider faults in real hardware, which
potentially can lead to inaccurate analysis.
8.3.2. Faults in Real Hardware. In real-world applica-
tions, such as IoT, airspace, and driver-less cars, CNNs
can potentially experience different types of faults. Var-
ious works evaluate CNN reliability on faulty real hard-
ware, e.g., soft errors [13, 61, 62, 112] and undervolting in
ASICs [17, 54, 59, 116, 117]. This approach requires signif-
icant engineering effort but can result in relatively more ac-
curate results. None of these works study CNN reliability on
undervolted FPGAs.

9. Summary and Future Work

In this paper, we experimentally evaluated the effects of supply
voltage underscaling below the nominal level on real FPGA-
based CNN accelerators. We showed that we could improve
the power-efficiency of such accelerators by more than 3X
via undervolting. 2.6X of the power-efficiency improvement
comes from eliminating the voltage guardband (without com-
promising CNN accuracy), while the remaining 43% improve-
ment comes from undervolting further below the guardband
(which comes with CNN accuracy loss). We conclude that
undervolting can significantly improve the power-efficiency
of FPGA-based neural network accelerators.

As future work, we aim to develop i) fault mitigation tech-
niques for very low-voltage regions even when the design
operates at the maximum frequency (Fmax), ii) dynamic volt-
age adjustment techniques considering temperature, accuracy,
power consumption, and performance trade-off. We also aim
to expand our experiments in hardware, by evaluating more
FPGAs, as well as in software, by repeating experiments on
other CNN platforms like DNNWeaver [101]. Finally, we
believe it is promising to study potential security issues of
FPGA-based CNN accelerators under reduced supply voltage
levels.
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