
Rethinking Divide and
Conquer—Towards
Holistic Interfaces of the
Computing Stack

Schahram Dustdar

TU Wien

Onur Mutlu

ETH Z€urich

Nandita Vijaykumar

University of Toronto

Abstract—We argue that the abstractions between the layers of the computing stack and

the components of computing systems, especially the HW/SW interface, have to be

rethought to cope with the ever-growing complexity of problem domains and their

manifestations in the underlying computing systems. The divide and conquer approach to

hardware/software with aminimal interface is unable to cope with complexity. Rethinking

the abstractions and interfaces between the application, system, and architecture can

lead to significant benefits in improving performance, efficiency, resilience, security, and

programmability, at the same time.

MOTIVATION
& THE “DIVIDE AND conquer” paradigm has been

used since the beginnings of computing and its

engineering practices. This approach is taught in

courses in all Computer Science curricula at uni-

versities and has remained unchallenged and

unquestioned ever since. The definition of

“divide and conquer” according to the Merriam

Webster dictionary is: “to make a group of peo-

ple disagree and fight with one another so that

they will not join together against one: ‘His mili-

tary strategy is to divide and conquer.’” As such,

Digital Object Identifier 10.1109/MIC.2020.3026245

Date of current version 20 November 2020.

Department: Internet of Things, People, and ProcessesDepartment: Internet of Things, People, and Processes
Editor: Schahram Dustdar, dustdar@dsg.tuwien.ac.at

November/December 2020 Published by the IEEE Computer Society 1089-7801 � 2020 IEEE 45
Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on February 09,2021 at 18:17:07 UTC from IEEE Xplore. Restrictions apply.

this principle is visibly used in our daily design

and engineering practices and is a fundamental

property of virtually all organizational and politi-

cal systems today.

The main issue and often unexpected and

counter-intuitive result of the “divide and con-

quer” methodology is that it utterly fails to cre-

ate the ever increasing complex ultra-large-scale

systems. Furthermore, this methodology is chal-

lenged in helping to design and engineer systems

that provide coherent functionality utilizing

often conflicting properties, over time. New tech-

nologies including Internet of Things (IoT) sen-

sors and edge devices are now being integrated

into mainstream software systems and systems

engineers aim at “integrating” them into existing

systems following the “divide and conquer”

approach. Naturally, this approach causes many

issues (similar to an attempt to integrate a new

organ into the Autonomic Nervous System (ANS)

of the human body, and then manage all commu-

nications to provide a neatly integrated systems

thereafter).

The “integration paradigm”—as a direct

result of the “divide and conquer” approach to

engineering—led ultimately to a number of

“patches” in systems engineering over the years.

In the domain of software, several concepts

were introduced to cope with the problems

introduced by the consequences of failed true

integration: Cookies (1994), Java (1995), Java-

Script (1995), Web services (1998), and Semantic

Web (1999), just to name a few. In the hardware

domain, the ability to integrate is restricted to

devices obeying well-defined, yet very inexpres-

sive and rigid, interfaces such as the processor-

memory, processor-storage, and various bus/

channel interfaces to interconnect components

and peripherals.

The “divide and conquer” method has cer-

tainly served us well over the past decades.

Many industries, including the Hardware, Net-

working, Storage, and Software industries have

thrived based on its principles. The “divide and

conquer” principle has been applied on two

dimensions: horizontal and vertical. Vertically,

across layers of the computing stack, and hori-

zontally, across components in a layer, interfa-

ces are created and obeyed so that one layer

(e.g., software) does not need to know much

about another layer (e.g., hardware) and so that

one component (e.g., the memory chip) does not

need to know much about another component,

thus each layer/component can independently

be optimized and developed. Today, we are

reaching a level of complexity in our systems

(hardware and software), which makes it very

hard for engineers to design, model, program,

maintain, and test with the divide and conquer

approach. Both, the benefits and the downsides

of the “divide and conquer” method are multiple

and we will discuss them in the following para-

graphs in some detail.

CHARACTERISTICS OF THE DIVIDE
AND CONQUER PARADIGM

In virtually all areas of engineering, the divide

and conquer method is used in the large as well

as in the small as a method to create specific

algorithms and designs. It is a powerful tool

for solving conceptually difficult problems:

fundamentally, it is a method of breaking the

problem into subproblems, of finally combining

subproblems to solve the original, usually big-

ger, problem.

Advantages of the “divide and conquer”

method include: enabling distribution of work, by

drawing administrative, organizational, as well

as management and technical separations of

concerns. It allows for lowering the communica-

tions and coordination costs during development

and processing; it enables parallelization of a

task across components, assuming the task can

be partitioned into components with minimal

communication. iIt eases the reasoning about

the overall system, including its costs. It

increases the efficiency and productivity of the

systems’ creation; it allowed for complex archi-

tectures to be created and maintained.

Disadvantages of the “divide and conquer”

method include: if the work cannot be partitioned

to separate components with little communica-

tion, data movement inside the overall system

(Computer Architecture as well as Software)

becomes extensive and causes large bottlenecks;

there is no method to provide a built-in end-to-end

(holistic) management of the overall system for

various differentmetrics because the components

are by design not holistically designed and

Internet of Things, People, and Processes

46 IEEE Internet Computing

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on February 09,2021 at 18:17:07 UTC from IEEE Xplore. Restrictions apply.

coordinated; it has massive limitations and issues

in maintaining all Quality of Service (QoS)-type of

guarantees; it renders the overall system hard to

predict and hard to reason about.

An example bottleneck created by divide-

and-conquer: The Data Movement Wall. One

key disadvantage of divide and conquer leading

to extreme energy inefficiency (and large perfor-

mance loss) in modern systems is the fact that it

causes large amounts of data movement between

different components that are designed sepa-

rately from each other. Take, for example, the

simple separation of the processor and memory

from each other, a design choice that has been

prevalent for at least the past 60 years. The pro-

cessor is considered the master and the memory

is treated as a device whose sole function is to

store data and serve the commands of the pro-

cessor. As a result, the CPU can only perform any

operation on the data once the data is in brought

into the CPU cache from main memory. The pro-

cess of moving data from main memory to the

CPU incurs a long latency, and consumes a signifi-

cant amount of energy. A single memory access

consumes 2-3 orders of magnitude more energy

than a complex addition operation performed in

the processor.15,18 These costs are often exacer-

bated by the fact that much of the data brought

into the caches is not reused by the CPU,16,18 pro-

viding little benefit in return for high latency and

energy cost. Our results show that 62.7% of the

entire system energy in a modern SoC running

key workloads such as web browsing, machine

learning inference (Google Tensorflow), and

video capture and decoding, is spent solely on

data movement!15 In other works, we have dem-

onstrated that by holistically redesigning the pro-

cessor and memory such that processing can be

done very close to or inside the memory, five key

graph processing workloads can be accelerated

by 13.8X16 and their energy reduced by 8X16 and

key query latencies in databases can be reduced

by as much as 12X17, on average, due to the elimi-

nation of large amounts of data movement. Thus,

there could be great benefits in replacing the

divide and conquer methodology for designing

processor vs. memory with a more holistic meth-

odology of designing processor andmemory.

We argue that we are at a point in computing

where the complexity of systems we create and

the energy cost of data movement as well as

the need for energy efficiency is rendering the

“divide and conquer” approach to designing sys-

tems extremely inefficient and incapable in pro-

viding key end-to-end requirements (such as

predictability, security, latency, QoS; see sidebar

“Higher System Complexity with Humans in the

Loop”). With this in mind, in this paper, we ask

the key questions: How can we create coherent,

scalable, efficient systems that consists of bil-

lions of heterogeneous components? Can the

“divide and conquer” method be extended and

engineered in a way so we can still keep it but

make better use of it? Can we enable much more

effective systems that provide larger end-to-end

benefits? We identify the current interfaces

between layers and components as a culprit that

prevents holistic and efficient heterogeneous

designs. These interfaces are very narrow, rigid,

and inexpressive. In this paper, we examine the

“interface expressiveness” problem between

computing layers and components and propose

“holistic interfaces” as a solution direction.

INTERFACE EXPRESSIVENESS: A KEY
ISSUE FOR HOLISTIC DESIGN

A key characteristic of the “divide and con-

quer” approach lies in the interfaces it creates

across different layers (vertical) and across dif-

ferent components (horizontal), as shown in

Figure 1. These interfaces enable communication

and coordination across layers/components so

that different components can communicate and

synchronize with each other. However, due to

Figure 1. Abstract examples of the interfaces in the

computing stack: vertical and horizontal.

November/December 2020 47
Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on February 09,2021 at 18:17:07 UTC from IEEE Xplore. Restrictions apply.

the design mentality of the modern divide and

conquer approach, these interfaces are quite

inexpressive and minimal. As a result, such inter-

faces greatly limit the building of a holistic sys-

tem from different components and lead to a

profound inability to construct systems that can

provide holistic performance, reliability, secu-

rity, QoS, energy, predictability guarantees, and a

profound difficulty in managing the underlying

heterogeneous components (in both software

and hardware).

Examples of inexpressive and limited interfa-

ces abound in the computing systems we design

today, across layers (vertical) and across com-

ponents (horizontal), including the following

(which are loosely depicted in Figure 1):

Higher System Complexity with Humans in the Loop

T oday, we witness the evolution of a new breed of sys-
tems, which are composed of three building blocks:

people, software services, and things. In the past, people
were considered outside the system, interacting with the
system, but not a functional building block of the system
itself. Therewas hardly the notion of designing the interfaces
of people-based systems and no attention was given to
how exactly one can build mechanisms for machines (soft-
ware/hardware ensembles) and humans to collaborate in
an automated way. Computer Science in general and Soft-
ware Engineering in particular, predominantly focused on
the design and engineering of Software (services). More
recently, since the dawn of cloud computing, the business
side of information systems became more relevant as a
design issue, i.e., how many resources and when they are
used and how much they cost are designed as firs- class
entities in information systems. Things, in the sense of the
Internet of Things (IoT), were not even considered for main
building blocks of software systems and were considered
mainly the domain of electrical engineering projects and
certainly not to be tightly integrated with software systems.
Of course, that changed dramatically with the emergence
of the Internet of Things. IoT sensors of all sorts became of
concern for software-intensive projects, e.g., in buildings,
factories, and even in so called Smart Cities. Other exam-
ples include Smart Homes, Smart Governments, eHealth
networks, andenergy networks, just to namea few.

If we observe closely, we can say that the field of com-
puter science may be, to a first order, mimicking the
human body and brain with all of its developments. This is
true for computer architecture in general but also for soft-
ware. The way we may have assumed how the brain oper-
ated (perhaps 70+ years ago) still serves as a blueprint for
how the CPU works and is architected today as well as how
software itself is designed. The IoT sensors are the newest
development along those lines, mimicking the human sen-
sors for their ability to sense their environment and provide
that data to a computing device, today, typically operat-
ing on the Cloud (i.e., Cloud Data center). Therefore, we

can say that the IT industry is developing is a copy of our
own “self,” for example, mimicking the Autonomic Nervous
System (ANS). However, there are also significant differen-
ces from the ANS. It is worthwhile noting that all the organs
are ontologically distinct but operationally harmonized
and balanced in the ANS. This situation is worthwhile to rep-
licate in the IoT/Cloud/Edge Computing ecosystems.

The ANS can be considered a perfect template for
what is currently being built in the IoT/Edge/Cloud Com-
puting ecosystem: The ANS consists of a network of net-
works, connecting organs and nerves via the spine.
Sensors are all over the ANS and provide data exchange
functions inside those networks as well as to the brain. The
analogy to the information systems with IoT sensors (allow-
ing the perceptions for the information systems), edge
devices, and cloud computing data centers is truly amaz-
ing, but clearly intended. What is important to note in this
context is that the fundamental properties of the ANS and
its resilience is actually not visible. We can say it is “built-in”,
an inherent characteristic of the system itself. Another
important property is that the ANS - or in fact any system
such as this - could not be built by merely integrating sub-
systems, which were previously engineered. This is, how-
ever, exactly what is being done in our current state-of-the
art in distributed systems and computing in general. We
first design and engineer “silos” (often referred to as vertical
solutions) and then their integration is being addressed
with simple and minimal interfaces. In the past few deca-
des this approach worked to an extent. However, it is
becoming more than evident that the level of complexity
we have reached today in our distributed systems does
not allow to design, engineer, monitor, test, and execute
and maintain them efficiently anymore. To use an analogy
from the human body, it would be as if we had designed
the kidney and then we move on to integrate it with the
liver and then with the heart and so on, without providing
good interfaces and harmony between these different
components. It should be obvious that this approach can-
not work successfully in complex ultra-large-scale systems.

Internet of Things, People, and Processes

48 IEEE Internet Computing

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on February 09,2021 at 18:17:07 UTC from IEEE Xplore. Restrictions apply.

1. The hardware/software interface (i.e., the

instruction set architecture), which is mostly

limited to the expression of instructions and

data locations in terms of memory and regis-

ter addresses.8

2. The processor/memory interface, which is

mostly limited to primitive read/write/refresh

commands, addresses, and simple data com-

munication protocols.18

3. The processor/storage interface, which is

mostly limited to read/write-based communi-

cation protocols.

4. The system software/microarchitecture inter-

face, which is mostly limited to very special-

ized instructions and memory addresses.

5. The programmer/language interface, which

is mostly limited to low-level constructs

defined in programming languages (e.g., data

structures, control flow constructs), but

unable to convey programmer’s intent, goals,

and problem constraints.

Take, for example, a key cross-layer interface,

the hardware/software interface (see Figure 2),

which creates a boundary between two major

layers of computing, the hardware and the soft-

ware, enabling each to develop and be optimized

in a “divide and conquer” manner. If this interface

does not enable enough quality communication

and creates a bottleneck (because it is not expres-

sive enough, as shown in Figure 2), the hardware

would not have enough information about what

the program is doing. The hardware could try to

re-construct the high-level information that is

available in software but gets lost through the

interface. This, however, causes great complexity,

cost, and energy inefficiencywhile providing ques-

tionable benefit in many workloads.8–10 The

extremely valuable information available at the

software level is wasted as it is not communicated

to the hardware. We will get back to the HW/SW

interface again, since it forms a huge bottleneck

that fundamentally affects all our computing sys-

tems and their properties today.

Take, as a key example of a component-level

interface, the processor/memory interface (or the

memory-controller/memory interface), which

creates a boundary between two major compo-

nents of computing and enabling each component

to be developed and optimized in a “divide and

conquer” manner. In modern systems, this inter-

face is minimal: the processor can simply issue

basic commands (read, write, refresh, wait, etc.)

and addresses to memory and memory simply

responds with data. This results in a dumb mem-

ory device, which is incapable of doing anything

other than storing data. As a result, a significant

amount of data movement ensues because mem-

ory can do nothing else to the data but send it to

(or receive it from) the processor. This datamove-

ment causes great energy inefficiency and perfor-

mance loss, as we discussed above (under the

DataMovementWall). Similarly, because themem-

ory cannot communicate its physical characteris-

tics and structure to the processor/memory-

controller, the processor treats memory essen-

tially as a black box and applies worst-case-driven

policies to it.11–13 For example, every memory cell

is refreshed every 64 ms in modern DRAM, even

though an overwhelming majority of cells do not

require to be refreshed for 256 ms and even lon-

ger.11 In general, most information regarding

energy, performance, resilience, and security (see

the RowHammer problem),12,19 QoS, predictability

(and likely any other key optimizationmetric) gets

lost due to the extremely limited interface

between the processor and memory. Alterna-

tively, the system becomes too complex to

recover the lost information (via high-cost and

high-complexity techniques) that could otherwise

be simply communicated via a more expressive

interface.18

HARDWARE/SOFTWARE INTERFACE:
A CRITICAL CROSS-LAYER
INTERFACE TO RETHINK

Traditionally, the key interfaces between the

software stack and the architecture (the ISA and

Figure 2. Software/Hardware Interface as a

bottleneck.

November/December 2020 49
Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on February 09,2021 at 18:17:07 UTC from IEEE Xplore. Restrictions apply.

virtual memory) have been primarily designed to

convey program functionality, ensuring the pro-

gram is executed as required by software. An

application is converted into ISA instructions

and a series of accesses to virtual memory for

execution in hardware. The application is,

hence, stripped down to the basics of what is

necessary to execute the program correctly, and

the higher level semantics of the program are

lost (see the funnel in Figure 2). For example,

even the simple higher level notion of different

data structures in a program is not available to

the OS or hardware architecture, which deal

only with virtual/physical pages and addresses.

While the higher level semantics may be irrele-

vant for correct execution, these semantics

could prove very useful to the system for perfor-

mance, energy, resilience, QoS, privacy, and

security optimizations.

Despite the rapid evolution and advance-

ments at all levels of the computing stack, from

application to hardware, the key abstractions in

the computing stack and the role they play have

largely stayed the same. This leads to an ever-

growing disconnect between the levels of the

stack when it comes to conveying higher level

program semantics from the application to the

wide range of system-level and architectural com-

ponents that aim to improve performance, effi-

ciency, resilience, and security, to name a few.

The cross-layer abstractions are narrow, in terms

of the information conveyed and rigid, in terms of

the roles played by each of the levels. This dis-

connect has two important implications that

makes achieving many key metrics (e.g.,

programmability, portability, resource efficiency,

resilience, performance, energy efficiency, and

security) significantly challenging:

Implication 1: System/architecture is

unaware of higher level program semantics.

The program is stripped down to the basics of

what is solely required to execute the program

correctly (to the ISA and memory addresses)

and higher level program information is lost (see

Figure 2). Optimizations at the system/hardware

level could be far more effective when driven by

direct knowledge of application behavior and

program semantics, thus enabling the system/

architecture to efficiently adapt to the applica-

tion characteristics.

Implication 2: Application/system man-

ages low-level hardware resources with lim-

ited visibility and access. The application and

system software need to be aware of low-level

system resources, and manage them appropri-

ately to tune for the optimization metrics. This

causes challenges in programmability, portabil-

ity, resource efficiency, and other metrics to be

satisfied. The software may not always have visi-

bility into available resources such as available

cache space (e.g., in virtualized environments)

and even if it does, software has little access to

many hardware features that are critical when

optimizing for performance (e.g., caching poli-

cies, memory mapping).

The implications of this disconnect

are only growing: Trends in domain-specific

specialization has led to the development

of domain-specific languages, compilers, and

frameworks (e.g., Halide, Pochoir, TensorFlow,

CNTK; see sidebar “Prior Approaches to Cross-

Layer Communication”); and hardware speciali-

zation in the form of accelerators (e.g., GPUs,

FPGAs), specialized memories (e.g., 3-D XPoint,

HBM) and ASICs (e.g., machine learning acceler-

ators). This leads to ever more diversity and

complexity in software and hardware resources,

making them harder than ever to effectively

employ and harness. Similarly, virtualization

of system resources has become pervasive,

where multiple applications are consolidated

on the same platform to enable better effi-

ciency, and applications are flexibly deployed

across a range of platforms depending on cost

constraints and performance requirements

(Cloud computing). This further reduces the vis-

ibility the system/architecture has over the

applications that are running on them and

makes static software optimizations far less

effective since the available system resources

may be unknown and constantly changing. The

rise of data-centric computing over increasing

volumes of data places ever more stress on

memory and compute resources and has driven

rapid development and hence, increased com-

plexity, at different levels of the stack to

improve resource efficiency. Increased complex-

ity at each level makes it more challenging for

the system/architecture to infer application

characteristics and vice versa.

Internet of Things, People, and Processes

50 IEEE Internet Computing

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on February 09,2021 at 18:17:07 UTC from IEEE Xplore. Restrictions apply.

Prior Approaches to Cross-Layer Communication

Hardware-Software Cooperative
Approaches

T he challenges of predicting program behavior and
hence the benefits of knowledge from software in

memory system optimization are well known.1–14 There
have been numerous hardware-software cooperative
techniques proposed in the form of fine-grain hints imple-
mented as new ISA instructions (to aid cache replace-
ment, prefetching, etc.),1–7 program annotations or
directives to convey program semantics and programmer
intent,8–10 or hardware-software co-designs for specific
optimizations.11–14 These approaches, however, have two
significant shortcomings. First, they are designed for a spe-
cific optimization and are limited in their implementation to
address only challenges specific to that optimization. As a
result, they require changes across the stack for a single
optimization (e.g., cache replacement, prefetching, or
data placement). Second, they are often very specific
directives to instruct a particular component to behave in
a certain manner (e.g., instructions to prefetch specific
data or prioritize certain cache lines). These specific direc-
tives create portability and programmability concerns
because these optimizations may not apply across differ-
ent architectures and they require significant effort to
understand the hardware architecture to ensure the direc-
tives are useful.

Domain-Specific Languages (DSLs) and
Expressive Programming Models/Runtime
Systems
Domain-specific languages (DSLs) and domain-specific
frameworks are specialized for a specific domain of applica-
tions (e.g., image processing,15 graph processing,16,17

machine learning18,19) and improve expressiveness by pro-
viding higher-level constructs specialized for that domain.
This makes increasing programmer productivity and ena-
bles the underlying software stack to produce high perfor-
mance code implementations by leveraging knowledge of
the application characteristics. These languages are how-
ever specialized for a single application domain and are
hence restricted in usage to what can be expressed in that
language. While these languages provide higher-level con-
structs tailored for a specific domain (e.g., images), they are
not powerful enough to express context, reliability/security
requirements, SLAs, programmer intent, etc.

Numerous software-only approaches tackle the dis-
connect between an application, the OS, and the under-
lying resources via programming models and runtime

systems that allow explicit expression of data locality and
independence21–25 in the programming model. This
explicit expression enables the programmer and/or run-
time system to make effective memory placement deci-
sions in a NUMA system or produce code that is optimized
to effectively leverage the cache hierarchy. These
approaches are entirely software-based and are hence
limited to using the existing interfaces to the architectural
resources. Furthermore, these systems are specific to an
application type (e.g., operations on tiles, arrays), and
hence can only benefit applications that fit a certain type.

& REFERENCES

1. X.Gu, T. Bai, Y. Gao, C. Zhang, R. Archambault, andC. Ding,

“P-OPT: Program-directed optimal cachemanagement,” in

Int. Workshop LanguagesCompilers Parallel Comput.,

Springer, Berlin, Heidelberg, pp. 217–231, Jul. 2008.

2. J. Brock, X. Gu, B. Bao, and C. Ding, “Pacman: Program-

assisted cache management,” ACM SIGPLAN Notices,

vol. 48, no. 11, pp. 39–50, 2013.

3. Z. Wang, K. S. McKinley, A. L. Rosenberg, and C. C.

Weems, “Using the compiler to improve cache

replacement decisions,” in Proc. Int. Conf. Parallel Archit.

Compilation Techn., Sept. 2002, pp. 199–208.

4. K. Beyls, and E. H. D’Hollander, “Generating cache hints for

improvedprogramefficiency,” J. Syst. Archit., vol. 51, no. 4,

pp. 223–250, 2005.

5. J. B. Sartor, S. Venkiteswaran, K.S. McKinley, and Z. Wang,

“Cooperative cachingwith keep-me and evict-me,” in 9th

Annu.Workshop Interaction Between Compilers Comput.

Archit., pp. 46–57, Feb. 2005.

6. H. Yang, R. Govindarajan, G.R. Gao, and Z. Hu, “Compiler-

assisted cache replacement: Problem formulation and

performance evaluation,” in Int. Workshop Languages

Compilers Parallel Comput., Springer, Berlin, Heidelberg,

pp. 77–92, Oct. 2003.

7. “Memory management optimizations on the Intel Xeon Phi

coprocessor,” Intel Compiler Lab, 2015. [Online].

Available: https:// software.intel.com/ sites/default/les/

managed/b4/24/mem_management_dgemm.pdf

8. N. Agarwal, D. Nellans, M. Stephenson, M. O’Connor, and

S. W. Keckler, “Page placement strategies for GPUs with in

heterogeneous memory systems,” in Proc 20th Int. Conf.

Archit. Support Programming Languages Operating Syst.,

2015, pp. 607–618.

November/December 2020 51
Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on February 09,2021 at 18:17:07 UTC from IEEE Xplore. Restrictions apply.

TOWARDS HOLISTIC INTERFACES
We believe there are some fundamental prop-

erties of programs and components that do not

get conveyed across the key interfaces we have

today, including:

- Data structure information and semantics

(locality, access pattern, etc.).8,9

- Data flow characteristics of programs. Which

component needs which data (and poten-

tially when).

- Programmer intent in a given piece of code6

and data.

- SLA requirements, QoS, and contracts driven

by the user.

9. A.Mukkara, N. Beckmann, andD. Sanchez, “Whirlpool:

Improving dynamic cachemanagement with static data

classification,”ACMSIGARCHComput. Archit. News, vol. 44,

no. 2, pp. 113–127, 2016.

10. S. R. Dulloor et al., “Data tiering in heterogeneous memory

systems,” in Proc. 11th Eur. Conf. Comput. Syst., 2016,

pp. 1–16.

11. T. F. Chen, “An effective programmable prefetch engine

for on-chip caches,” in Proc. 28th Annu. Int. Symp.

Microarchit., 1995, pp. 237–242.

12. S. P. Vander Wiel, and D. J. Lilja, A compiler-assisted data

prefetch controller. in Proc. IEEE Int. Conf. Comput. Des.:

VLSI Comput. Processors, Cat. No. 99CB37040, 1999,

pp. 372–377.

13. T. C. Chiueh, “Sunder: A programmable hardware prefetch

architecture for numerical loops,” inSupercomputing’94:

Proc. ACM/IEEEConf. Supercomputing,1994, pp. 488–497.

14. Z. Wang, D. Burger, K. S. McKinley, S. K. Reinhardt, and

C. C. Weems, “Guided region prefetching: a cooperative

hardware/software approach,” in Proc. 30th Annu. Int.

Symp. Comput. Archit., 2003, pp. 388–398.

15. J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand,

and S. Amarasinghe, “Halide: A language and compiler for

optimizing parallelism, locality, and recomputation in

image processing pipelines,” in Proc. 34th ACM SIGPLAN

Conf. Programming Language Des. Implementation,

pp. 519–530, 2013. [Online]. Available: https://doi.org/

10.1145/2491956.24621762013

16. Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin,

and J. M. Hellerstein, “Distributed graphlab: A framework

for machine learning in the cloud,” 2012, arXiv:1204.6078.

17. K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. Amber

Hassaan, R. Kaleem, T.-H. Lee, A. Lenharth, R. Manevich,

M.M�endez-Lojo, D. Prountzos, and X. Sui, “The tao of

parallelism in algorithms,” inProc. 32ndACMSIGPLAN

Conf. Programming LanguageDes. Implementation, 2011,

pp. 12–25. [Online]. Available: https://doi.org/10.1145/

1993498.1993501

18. F. Seide, and A. Agarwal, “CNTK: Microsoft’s open-source

deep-learning toolkit,” in Proc. 22nd ACM SIGKDD Int.

Conf. Knowl. Discov. Data Mining, pp. 2135–2135, 2016.

19. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,

M. Devin, S. Ghemawat, G. Irving, M. Isard, and M. Kudlur,

“Tensorflow: A system for large-scale machine learning,” in

12th USENIX Symp. Operating Syst. Des. Implementation,

pp. 265–283, 2016.

20. P. Charles et al., “X10: An object-oriented approach to

non-uniform cluster computing,” in Proc. 20th Annu. ACM

SIGPLAN Conf. Object-Oriented Program., Syst., Lang.,

Appl., 2005, pp. 519–538. [Online]. Available: https://doi.

org/10.1145/1094811.1094852

21. B. L. Chamberlain, D. Callahan, and H. P. Zima, “Parallel

programmability and the chapel language,” Int. J. High

Perform. Comput. Appl., vol. 21, no. 3, pp. 291–312, 2007.

22. K. Fatahalian et al., “Sequoia: Programming the memory

hierarchy,” in Proc. ACM/IEEE Conf. Supercomputing,

2006, pp. 83–es.

23. G. Bikshandi et al., “Programming for parallelism and

locality with hierarchically tiled arrays,” in Proc. 11th ACM

SIGPLAN Symp. Princ. Pract. Parallel Program., 2006,

pp. 48–57.

24. M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion:

Expressing locality and independence with logical

regions,” in Proc. Int. Conf. High Perform. Comput., Netw.,

Storage Anal., 2012, pp. 1–11.

25. J. Guo, G. Bikshandi, B. B. Fraguela, M. J. Garzaran, and

D. Padua, “Programming with tiles,” in Proc. 13th ACM

SIGPLAN Symp. Princ. Pract. Parallel Program., 2008,

pp. 111–122.

Internet of Things, People, and Processes

52 IEEE Internet Computing

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on February 09,2021 at 18:17:07 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1145/2491956.24621762013
https://doi.org/10.1145/2491956.24621762013
https://doi.org/10.1145/1993498.1993501
https://doi.org/10.1145/1993498.1993501
https://doi.org/10.1145/1094811.1094852
https://doi.org/10.1145/1094811.1094852

- Elasticity requirements of the given

components.1-5

- User goals and context.7

- Key internal characteristics of a given com-

ponent so that another component or layer

can manage the component much more effi-

ciently, e.g., internal characteristics of a

memory chip exposed to the memory

controller.11–13

- Reliability requirements of different data10

and code portions.

- Security requirements of different data and

code portions.

- Privacy requirements of data and storage

portions.

We elaborate on initial examples of how the

communication of some of the above properties

across various interfaces could be useful in

achieving various goals.

Example 1: Data Structure Information

Today’s interfaces communicate little about

higher level program semantics from software to

underlying layers. Data structure level informa-

tion is one example. Our recent work, called

Expressive Memory (XMem),8 shows that having

an interface that communicates data structure

access semantics and locality characteristics

from the software to the hardware can enable sig-

nificant performance benefits by adapting the

management policies in the memory system to

the characteristics and requirements of different

data structures and program portions. XMem

provides (i) a flexible and extensible abstraction,

called an Atom, enabling the application to

express key program semantics in terms of how

the program accesses data and the attributes of

the data itself, and (ii) new cross-layer interfaces

to make the expressed higher level information

available to the underlying OS and architecture.

By providing key information that is otherwise

unavailable, XMem exposes a new, rich view of

the program data to the OS and the different

architectural components that optimize memory

system performance (e.g., caches, memory con-

trollers). XMem enables architectural/system-

level techniques to leverage key program seman-

tics that are challenging to predict or infer. It also

improves the efficacy and portability of software

optimizations by alleviating the need to tune

code for specific hardware resources (e.g., cache

space). While XMem is designed to enhance and

enable a wide range of memory optimizations,

our recent work8 demonstrates the benefits of

XMem via two concrete use cases: (i) improving

the performance portability of software-based

cache optimization by expressing the semantics

of data locality in the optimization and (ii)

improving the performance of OS-based page

placement in DRAM by leveraging the semantics

of data structures and their access properties.

While extensive future work is needed, we

believe XMem is an initial yet important step in

breaking the inexpressiveness and rigidity in the

cross-layer interfaces between program seman-

tics and system software and hardware. Many

use cases of XMem exist, with significant benefits

in performance, programmability, and resource

efficiency, as demonstrated.8 We hope XMem

encourages future work to explore rearchitect-

ing the traditional interfaces to enable many

other benefits that are not possible today.

Example 2: Reliability Requirements of Data

One key information that could be extremely

helpful in improving system cost, resilience,

complexity, scalability, and security is the reli-

ability/resiliency requirements of different pieces

of data that programs/system deal with. If the

system knows the reliability requirements of

data, it could treat different data in different ways:

for example, reliability-critical data can be allo-

cated in extremely reliable (yet high cost and

low-capacity memory) whereas data that is not

as critical, i.e., data that can tolerate errors, can

be allocated in much lower cost, larger capacity,

less reliable memory (as shown in Figure 3).

Today, such data-level reliability requirements

cannot be communicated via the inexpressive

Figure 3. Expressing heterogeneous reliability

requirements across the stack.

November/December 2020 53
Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on February 09,2021 at 18:17:07 UTC from IEEE Xplore. Restrictions apply.

and rigid interfaces we have between layers. Yet,

our experience with a variety of data-intensive

workloads (including Microsoft’s production

Web Search workload) shows that commun-

icating the reliability/resiliency/error-tolerance

requirements of different pieces of data from the

software to the operating system and hardware,

and managing heterogeneous-reliability memory

systems using this information, can lead to great

improvements in data center scalability, effi-

ciency, and cost.10 We believe many such oppor-

tunities exist in both software and hardware

optimization if the interfaces are enriched with

expressive and flexible information about the

reliability/resiliency requirements and error tol-

erance of different data items.

Example 3: Programmer Intent

Another key information that is currently not

conveyed across the software/hardware interface

is the intent of the programmer in a given piece of

code. In our earlier work, the Origins Model,7 we

demonstrate an “intent-based programming mod-

el” for context-aware applications in large-scale

pervasive systems. In the Origins Model, an origin

is an abstraction of any source of context informa-

tion. Origins are universal, discoverable, compos-

able, migratable, and replicable components that

are associated with type and meta-information.

They create an adequate foundation for the devel-

opment of context-aware applications. Based on

them, four processing operations are defined in

theOriginsModel: filter, infer, aggregate, and com-

pose. As such, these operations provide a power-

ful mechanism to express a rich set of processing

schemes in context-aware applications. Based on

the Origins Model, we present the Origins Tool-

kit—a proof-of-concept implementation devel-

oped using the Scala programming language and

the Akka toolkit to provide a distributed, scalable,

and fault-tolerant solution. Similarly, we propose

to use such a mechanism to be utilized for map-

ping the software requirements and intents of the

programmer to hardware architectures, including

information related to context awareness.

Example 4: Elasticity Requirements

Elasticity is the property of returning to an

initial state or form following deformation.

Today we mimic this property in computer sys-

tems to create elasticity primitives that enable

engineers to attach elasticity properties at

multiple abstraction levels to software services,

ranging from actual programming code and

cloud services to hardware elements such as

FPGAs, core-to-core interfaces, etc. We argue1–5

that elasticity should be engineered in a three-

dimensional model, trading off between resour-

ces, quality, and costs. In this model, the engi-

neer determines the principal rules of how

many and which (1) resources (software serv-

ices, people) using which (2) quality of input

and output (data, performance, etc.) under

which (3) costs should be possible. Therefore,

it is possible to express many types of elasticity

properties as a function that should be per-

formed only if it has certain cost properties and

has certain data quality inputs and certain data

quality outputs. We developed a whole suite of

tools and methods,1-5 enabling the designer of

the system to specify the elasticity require-

ments by mapping them to constraints and

selecting a strategy for how to satisfy and

enforce those constraints. We believe such an

approach can be extended through the hard-

ware/software interface and conveyed elasticity

requirements/properties can enable extremely

efficient and flexible management of underlying

hardware systems and components.

MANAGING GROWING (SOFTWARE
AND HARDWARE) COMPLEXITY

As complexity and scale of hardware and soft-

ware grow and components become increasingly

heterogeneous (at all layers and components),

overall system design, and management complex-

ity increases. We believe that the management of

such complexity and the underlying resources

requires much more expressive and fluid interfa-

ces that can convey information across layers and

components. For example, heterogeneous and con-

tinuously changing compute resources (e.g., CPUs,

GPUs, TPUs, FPGAs, specialized ASIC accelerators,

in-memory computation engines, quantumacceler-

ators) and memory resources (multiple types of

DRAM, NVM, Flash memory, many levels of caches

at every component, etc.) are very difficult to

manage and exploit if interfaces are inexpressive

and rigid.

We, therefore, posit that we need expressive

interfaces for heterogeneity management. In fact,

we believe the hardware componentswill bemore

fluid in the future and software will effectively

Internet of Things, People, and Processes

54 IEEE Internet Computing

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on February 09,2021 at 18:17:07 UTC from IEEE Xplore. Restrictions apply.

allocate and connect the hardware components

needed for its most efficient execution and user-

level and system-level goals. We argue that future

many-core systems should bedesigned to support

the management of many different metrics (e.g.,

power, performance, reliability, security, energy

efficiency, cost) automatically across competing

or cooperating applications. The users and the

system can specify service-level agreements

(SLAs) for tasks and the runtime system should

automatically exploit the underlying asymmetry

to satisfy SLAs with minimal power/energy con-

sumption. It is our vision that future runtime

systems (with the support of hardware) will auto-

matically decide where to run different tasks (or

program portions) and how to exploit/morph

asymmetric/configurable hardware to maximize

power efficiency while satisfying application

requirements.

To enable this, there needs to bemuch research

doneonquestions suchas 1)Howshould asymmet-

ric components be designed to achieve maximum

efficiency? 2) What monitoring should be per-

formed in hardware/software for task characteriza-

tion, matching to components, and mapping? 3)

How should the system software be designed to

automaticallymanage resources based on dynamic

demand? 4) What are the interfaces necessary

across layers of the stack and across software or

hardware components that would enable efficient

management of heterogeneity? Given the complex-

ity of these tasks and theneed for automatic discov-

ery of task demands, we believe statistical/machine

learning techniques should play an important role

in future systems.Automatic resourcemanagement

with hardware/software cooperation will also

enable a system that continuously optimizes itself

by adapting to dynamic changes in operational

environment andworkloads.

ROLE OF LEARNING AND
CONTINUOUS SELF-OPTIMIZATION
AND ADAPTATION

We believe learning, training, and inference will

play a key role inmanaging fluid hardware and soft-

ware resources. Based on learning, software and

hardware can optimize the overall systemarchitec-

ture (hardware and software) for the “problem”

that is being solved by the system at any given

time, both at the macro-level (user intent, SLAs,

programmer intent, etc.) and the micro-level (effi-

ciency of each hardware components). As a very

specialized example from a single, yet extremely

important, hardware component, our research

shows that a memory controller that is designed

using reinforcement learning principles can effec-

tively adapt its control policies to changing work-

load behavior and system conditions.20 Such a

controller has a much higher performance than a

state-of-the-art controller designed based on heu-

ristics chosen by the hardware designer. Many

other such opportunities exist to “morph” the

hardware resources to continuously changing

workload and system characteristics via learning

and self optimization.

SPECIALIZED “PROBLEM SOLVERS”
FOR HOLISTIC COMPUTING

We argue that the notion of such “problem

solvers” (i.e., connected software/hardware com-

ponents) that are continuously and dynamically

generated to match the problem, environment,

resources at any given time, is very powerful.

This notion can compose different components

as well as utilize different computing paradigms

with the goal of providing the best-fit system

(softwareþhardware) that satisfies the high-level

goals and requirements conveyed by a rich,

expressive interface. The interfaces between

layers/components and learning mechanisms to

compose hardware/software components into

specialized “problem solvers,” both of which we

extensively discussed before, are critical chal-

lenges (and opportunities). Such specialization

can, perhaps ironically, lead to a more holistic

way of designing computing systems and solving

problems. Figure 4 depicts an example system

cycling through different phases of “problem

Figure 4. Dynamic “problem solvers” for Phases 1,

2, 3 of a given “problem”.

November/December 2020 55
Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on February 09,2021 at 18:17:07 UTC from IEEE Xplore. Restrictions apply.

solvers” and morphing both the hardware and

software components to match the system/user

goals/intent at any given phase.

CONCLUSION
We argue that we are at a point in computing

where the increasing complexity of systems we

create and the energy cost of data movement as

well as the need for energy efficiency are concur-

rently rendering the “divide and conquer”

approach to designing systems extremely ineffi-

cient and incapable in providing key end-to-end

requirements (e.g., energy, performance, predict-

ability, security, latency, and QoS). We provided

evidence that the existing interfaces between

layers of the computing stack and between differ-

ent computing components are very limiting due

to their inexpressiveness and rigidity. We argue

for a new design approach that enables “holistic

interfaces” across computing layers and compo-

nents. Through examples, we show that even sim-

ple incarnations of rethinking the abstractions and

interfaces between the application, system, archi-

tecture, and hardware components can provide

significant benefits in improving performance, effi-

ciency, resilience, security, and programmability.

We hope that future work builds on this new

“holistic interfaces” approach to enable novel

ultra-scalable heterogeneous systems with strong

end-to-end guarantees andhigh efficiency.

& REFERENCES

1. S. Dustdar, Y. Guo, B. Satzger, and H.-L. Truong,

“Programming directives for elastic computing,”

IEEE Internet Comput., vol. 16, no. 6, pp. 72–77,

Nov./Dec. 2012.

2. D. Moldovan, G. Copil, and S. Dustdar, “Elastic

systems: Towards cyber-physical ecosystems of

people, processes, and things,” Comput. Standards

Interfaces, vol. 57, pp. 76–82, 2018.

3. G. Copil, D. Moldovan, H. Linh, and S. Dustdar,

“Continuous elasticity: Design and operation of elastic

systems,” It - Inf. Technol., vol. 58, no. 6, pp. 329–348,

2016.

4. G. Copil, D. Moldovan, H. Linh, and S. Dustdar,

“rSYBL: A framework for specifying and controlling

cloud services elasticity,” Trans. Internet Technol.,

vol. 16, no. 3, pp. 18:1–18:20, 2016.

5. A. Gambi, W. Hummer, H. Linh Truong, and

S. Dustdar, “Testing elastic computing systems,”

IEEE Internet Comput., vol. 17, no. 6, pp. 76–82,

Nov./Dec. 2013.

6. S. Nastic, S. Sehic, M. V€ogler, H.-L. Truong, and

S. Dustdar, “PatRICIA – A novel programmingmodel

for IoT applications on cloud platforms,” in Proc. 6th

IEEE Int. Conf. Service Oriented Comput. Appl .,

Dec. 16–18, 2013, pp. 53–60.

7. S. Sehic, S. Nastic, M. V€ogler, F. Li, and S. Dustdar,

“Entity-adaptation: A programming model for

development of context-aware applications,” in Proc.

29th Annu. ACM Symp. Appl. Comput., Mar. 24–28,

2014, pp. 436–443.

8. N. Vijaykumar et al., “A case for richer cross-layer

abstractions: bridging the semantic gap with

expressive memory,” in Proc. 45th Int. Symp. Comput.

Architecture, Los Angeles, CA, USA, Jun. 2018.

9. N. Vijaykumar, E. Ebrahimi, K. Hsieh, P. B. Gibbons, and

O. Mutlu, “The locality descriptor: A holistic cross-layer

abstraction to express data locality in GPUs,” in Proc.

45th Int. Symp. Comput. Archit., Jun. 2018, pp. 829–842.

10. Y. Luo et al., “Characterizing application memory error

vulnerability to optimize data center cost via

heterogeneous-reliability memory,” in Proc. 44th Annu.

IEEE/IFIP Int. Conf. Dependable Syst. Netw .,

Jun. 2014, pp. 467–478.

11. J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “RAIDR:

Retention-aware intelligent DRAM refresh,” in Proc.

39th Int. Symp. Comput. Archit., Jun. 2012, pp. 1–12.

12. Y. Kim et al., “Flipping bits in memory without

accessing them: An experimental study of DRAM

disturbance errors,” in Proc. 41st Int. Symp. Comput.

Archit., Jun. 2014, pp. 361–372.

13. D. Lee et al., “Adaptive-latency DRAM: Optimizing

DRAM timing for the common-case,” in Proc. 21st Int.

Symp. High-Performance Comput. Archit., Feb. 2015,

pp. 489–501.

14. R. Hameed et al., “Understanding sources of

inefficiency in general-purpose chips,” in Proc. ISCA,

2010, pp. 37–47.

15. A. Boroumand et al., “Google workloads for consumer

devices: Mitigating data movement bottlenecks,” in

Proc. 23rd Int. Conf. Archit. Support Program. Lang.

Operat. Syst., Mar. 2018, pp. 316–331.

16. J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi,

“A scalable processing-in-memory accelerator

for parallel graph processing,” in Proc. 42nd

Int. Symp. Comput. Archit., Jun. 2015,

pp. 105–117.

Internet of Things, People, and Processes

56 IEEE Internet Computing

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on February 09,2021 at 18:17:07 UTC from IEEE Xplore. Restrictions apply.

17. V. Seshadri et al., “Ambit: In-memory accelerator for

bulk bitwise operations using commodity DRAM

technology,” in Proc. 50th Int. Symp.Microarchit.,

Oct. 2017, pp. 273–287.

18. O. Mutlu, “Memory scaling: A systems architecture

perspective,” in Proc. 5th Int. Memory Workshop,

May 2013, pp. 21–25.

19. O. Mutlu, “The RowHammer problem and other issues

we may face as memory becomes denser,” in Proc.

Des., Automat. Test Eur. Conf., Mar. 2017,

pp. 1116–1121.

20. E. Ipek, O. Mutlu, J. F. Mart�ınez, and R. Caruana,

“Self optimizing memory controllers: a reinforcement

learning approach,” in Proc. 35th Int. Symp. Comput.

Archit., Jun. 2008, pp. 39–50.

Schahram Dustdar is a Professor of Computer Sci-

ence heading the Distributed Systems Group, the TU
Wien, Vienna, Austria. From 2004–2010, he was Honor-
ary Professor with the Department of Computing Sci-
ence, the University of Groningen, Groningen, The

Netherlands. From 1999–2007, he worked as the co-
founder andChief Scientist withCarambaLabsSoftware
AG, Vienna, Austria. FromDecember 2016 until January

2017, he was a Visiting Professor with the University of
Sevilla, Sevilla, Spain, and in 2017, hewas a Visiting Pro-
fessor with UC Berkeley, Berkeley, CA, USA. In summer

2018, he is an MHI Distinguished Visitor, University of
Southern California, Center for Cyber-Physical Systems
and the Internet of Things USC Viterbi School of Engi-

neering. He is Co-Editor-in-Chief of the new ACM Trans-
actions on the Internet of Things as well as Editor-in-
Chief of Computing (Springer). He is an Associate Editor
of IEEE TRANSACTIONS ON SERVICES COMPUTING, IEEE TRANS-

ACTIONS ON CLOUD COMPUTING, ACM Transactions on
the Web, and ACM Transactions on Internet Technol-
ogy, as well as on the Editorial Board of IEEE Internet

Computing and IEEE Computer. He is an IEEE Fellow
(2016) for his contributions on Elastic Computing, a
recipient of the IEEE TCSVC Outstanding Leadership

Award, for Outstanding Leadership in ServicesComput-
ing (2018), the ACM Distinguished Scientist award
(2009), the IBM Faculty Award (2012), an elected mem-
ber of the Academia Europaea: The Academy of

Europe,where he isChairmanof the Informatics Section.
For more information see his Webpage at: http://dsg.
tuwien.ac.at/Saff/sd. He is the corresponding author of

this article. Contact him at dustdar@dsg.tuwien.ac.at.

Onur Mutlu is a Professor of Computer Science with
ETHZurich. He is also a FacultyMemberwith Carnegie

Mellon University, Pittsburgh, PA, USA, where he pre-
viously held the Strecker Early Career Professorship.
His current broader research interests include com-
puter architecture, systems, security, and bioinformat-

ics. A variety of techniques he, along with his group

and collaborators, has invented over the years have
influenced industry and have been employed in com-
mercial microprocessors and memory/storage sys-

tems. His industrial experience spans starting the
Computer Architecture Group, Microsoft Research
(2006–2009), and various product and research posi-
tions with Intel Corporation, Advanced Micro Devices,

VMware, and Google. He received the Ph.D. and M.S.
degrees in ECE from the University of Texas at Austin
and the B.S. degree in computer engineering and psy-

chology from the University of Michigan, Ann Arbor,
MI, USA. His industrial experience spans starting the
Computer Architecture Group at Microsoft Research

(2006-2009), and various product and research posi-
tions at Intel Corporation, Advanced Micro Devices,
VMware, and Google. He received the IEEE Computer

Society Edward J. McCluskey Technical Achievement
Award, ACM SIGARCH Maurice Wilkes Award, the
inaugural IEEE Computer Society Young Computer
Architect Award, the inaugural Intel Early Career Fac-

ulty Award, CMU Ladd Research Award, faculty part-
nership awards from various companies, a healthy
number of best paper or “Top Pick” paper recognitions

at various computer systems, architecture, and hard-
ware security venues. He is an ACM Fellow “for contri-
butions to computer architecture research, especially

in memory systems”, IEEE Fellow for “contributions to
computer architecture research and practice”, and an
electedmember of the Academy of Europe (Academia

Europaea). His computer architecture course lectures
and materials are freely available on YouTube, and his
research group makes software artifacts freely avail-
able online. For more information, please see his web-

page at http://people.inf.ethz.ch/omutlu/. Contact him
at omutlu@gmail.com.

Nandita Vijaykumar is an Assistant Professor with

the Computer Science Department, the University of

Toronto, Toronto, ON, Canada, and the Department of

Computer and Mathematical Sciences, the University

of Toronto Scarborough, Scarborough, ON, Canada.

She received the Ph.D. degree in the electrical and

Computer Engineering Department, Carnegie Mellon

University, Pittsburgh, PA, USA. Her research interests

inlude the general area of computer systems and

architecture with a focus on the interaction between

programming models, systems, and architectures to

improve programmability and portability in achieving

high performance. Her industrial experience includes

a full-time position at advanced micro devices and

internships with Advanced Micro Devices, Microsoft

Research, Nvidia Research, and Intel Labs. She

received the Bachelor’s degree in electrical and elec-

tronics engineering from PES Institute of Technology,

Bangalore. India. She was the recipient of the Benja-

min Garver Lamme/Westinghouse Fellowship. Contact

her at nandita@cs.toronto.edu.

November/December 2020 57
Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on February 09,2021 at 18:17:07 UTC from IEEE Xplore. Restrictions apply.

http://dsg.tuwien.ac.at/Saff/sd.
http://dsg.tuwien.ac.at/Saff/sd.
http://people.inf.ethz.ch/omutlu/
Computer Science Department
University of Toronto
University of Toronto
Department of Computer and Mathematical Sciences
Department of Computer and Mathematical Sciences
University of Toronto Scarborough
University of Toronto Scarborough

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

