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3ETH Zürich, Zürich, Switzerland,
4Hanyang University, South Korea

Corresponding Authors’ Email: muhammad.shafique@tuwien.ac.at, ttheocharides@ucy.ac.cy

Abstract—Machine Learning (ML) techniques have been
rapidly adopted by smart Cyber-Physical Systems (CPS) and
Internet-of-Things (IoT) due to their powerful decision-making
capabilities. However, they are vulnerable to various security
and reliability threats, at both hardware and software levels,
that compromise their accuracy. These threats get aggravated
in emerging edge ML devices that have stringent constraints in
terms of resources (e.g., compute, memory, power/energy), and
that therefore cannot employ costly security and reliability mea-
sures. Security, reliability, and vulnerability mitigation techniques
span from network security measures to hardware protection,
with an increased interest towards formal verification of trained
ML models.

This paper summarizes the prominent vulnerabilities of mod-
ern ML systems, highlights successful defenses and mitigation
techniques against these vulnerabilities, both at the cloud (i.e.,
during the ML training phase) and edge (i.e., during the
ML inference stage), discusses the implications of a resource-
constrained design on the reliability and security of the system,
identifies verification methodologies to ensure correct system
behavior, and describes open research challenges for building
secure and reliable ML systems at both the edge and the cloud.

I. INTRODUCTION

Fueled by independent developments in semiconductor tech-
nology, computing, communication, control signal genera-
tion, sensors and actuators, the concept of a unified Smart
Cyber-Physical System (CPS) has evolved into a ubiquitous
paradigm. CPS, as the name implies, links the cyber and the
physical environments with smart control. Together with the
evolution of Internet-of-Things (IoT), which provides remote
access to the CPS for controlling and monitoring the inter-
connected computing devices, the standard architecture of a
Smart CPS comprises three major layers [1]: edge, fog and
cloud. The edge of the system is what connects the system
to the physical environment, for instance, the sensors. The
fog is the central layer where most system computations
generally occur. However, to reduce transmission overhead or
for data privacy, initial computations may occur at the edge
too. The cloud is what connects the system to a large-scale
cyberspace, which performs extensive processing, storage and
communication between different cyber-physical systems.

Improving the decision making, monitoring and control
capabilities across different CPS/IoT layers is critical for

emerging applications. As the complexity, volume, and rate
of data produced by IoT with many smart cyber-physical
systems is increasing, Machine Learning (ML) has emerged as
a dominant paradigm for analytics, decision-making, percep-
tion, and understanding. Consequently, reliability and security
vulnerabilities of ML systems can have cascading effects on
smart CPS applications and critically impact ML operation
across all layers.

The most recent developments in Machine Learning (ML),
especially in Deep Learning, evolved from the concept of a
single-layer neural network, the perceptron [2], to the Multi-
Layer Perceptron (MLP) [2] and the current intricate multi-
layer Deep Neural Networks (DNNs) [3][4], with the objective
of approaching and even exceeding human decision making
capabilities for a certain set of tasks. Due to their effectiveness
at handling large amounts of data, learning (and sometimes
re-learning [5]) input characteristics, and demonstrating high
accuracy during inference of unseen inputs, ML systems
have proliferated to numerous real-world applications. These
include object detection [6], face recognition [7], speech
recognition [8], spam filtering [9], malware detection [10],
smart grids [11], and even safety-critical applications like
autonomous driving [12], intelligent transportation [13] and
health-care [14][15], where errors may lead to catastrophic
results.

Despite their high inference accuracy in practical appli-
cations, ML systems are highly vulnerable to security and
reliability threats at both the cloud and the edge. Poisoning
the training data (e.g., by inserting random or crafted noise to
the data) with incorrectly-labelled inputs, inserting malicious
components into the system hardware, polluting inputs with
imperceptible noise during inference (i.e., during the run-time
operation of a system), and monitoring system side channels
to deduce the underlying model are some of the ways in
which an attacker can breach the security of an ML system.
Even in the absence of an explicit attacker, process variation
during hardware fabrication, memory errors, environmental
conditions around the system during training and inference
can compromise the reliability of an ML system. Approaches
to defend ML systems against these concerns exist, but each
approach has its own limitations. Fig. 1 summarizes both the
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Fig. 1: Overview of threats and challenges associated with ML-based systems: reliability threats and corresponding mitigation techniques
(bottom), and security attacks and corresponding defenses (top).

security and reliability threats that can affect the accuracy of
ML systems and their respective countermeasures.

In this article, we aim to provide a comprehensive overview
of vulnerabilities that affect modern ML systems, survey state-
of-the-art attacks and defense mechanisms, describe differ-
ent solution directions and challenges, and identify potential
promising avenues to research.

To ease reading, we provide the list of the acronyms used
in this article in Table I.

The rest of the article is organized as follows (see Fig. 2):
• Section II provides a taxonomy of ML that categorizes

different network types, explains the ML design cycle, and
introduces basic concepts about security and reliability.

• Section III highlights the various attack strategies that jeop-
ardize the integrity of ML systems, particularly at the cloud
and edge levels, explains how these attacks are implemented,
and identifies mechanisms that can lead to the mitigation of
the attacks.

• Section IV describes the defenses against the security attacks
to secure ML systems, and states the shortcomings of these
defenses.

• Section V elaborates on the reliability concerns that reduce
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TABLE I: List of Acronyms used in this survey.

Terminology Acronym
Artificial Intelligence AI
Binarized Neural Network BNN
Capsule Network CapsNet
Conjunctive Normal Form CNF
Counter-Example Guided Abstraction Refinement CEGAR
Convolutional Neural Network CNN
Cyber-Physical System CPS
Deep Neural Network DNN
Denial-of-Service DoS
Generative Adversarial Network GAN
Internet-of-Things IoT
Linear Programming LP
Long Short-Term Memory LSTM
Machine Learning ML
Mixed Integer Linear Programming MILP
Multi-Layer Perceptron MLP
Neural Network NN
Recurrent Neural Network RNN
Satisfiability Modulo Theories SMT
Satisfiability solving SAT solving
Spiking Neural Network SNN

the accuracy of ML systems, specifically when deployed at
the edge, in the absence of an explicit attacker.

• Section VI discusses the state-of-the-art techniques to mit-
igate the impact of the reliability issues in ML, and their
corresponding limitations.

• Section VII elaborates on the use of formal methods for
Neural Network (NN) verification, presents the various types
of verification techniques and their use for DNN verification
in state-of-the-art, and explains the reasons for their limited
success.

• Section VIII discusses the open research challenges and per-
spectives towards designing secure and reliable ML systems.

II. MACHINE LEARNING: CONCEPTS AND TERMINOLOGY

An ML system, like any other traditional system, takes
in the input(s) and generates the corresponding output(s).
However, unlike traditional systems, the ML system is capable
of learning via input features and using the learned features in
decision-making, which provide ML systems with the ability
to perform tasks that are very challenging to perform using
traditional systems.

NNs are often involved in the main decision-making of
many modern ML systems. An NN comprises of an input

layer that connects the external environment to the ML system,
an output layer that outputs a decision, and hidden layer(s)
sandwiched between the input and output layers. State-of-the-
art ML systems commonly use DNNs with two or more hidden
layers. Each layer comprises of neurons/nodes, which connect
to other neurons in the corresponding layers via a non-linear
activation function. Each neuron has its associated parameters
i.e., weight, bias, and/or filter coefficient. A detailed overview
of neural networks can be found in [16][17].

A. Neural Network Taxonomy

If the input propagates through the network in only one
direction, the network is said to be feed-forward. If there are
feedback loops in the network, the network is called a recur-
rent neural network (RNN)[18]. Long Short-Term Memories
(LSTMs) [19] are a branch of recurrent networks that retain
information for a long duration, which makes them well-suited
for time series prediction. When every neuron in one layer is
connected to “all” neurons in the preceding layer, the network
is said to be fully-connected; otherwise, the network is sparse.

Since their advent, NNs have progressively improved over
three generations (see Fig. 3). The details of the NN types of
each generation can be found in Appendix IX.

First Generation of NNs: The first generation of NNs [20]
is comprised of single-layer and multi-layer perceptrons
(MLPs) [21]. MLPs are generally made up of multiple fully-
connected layers connected with thresholding activations.

Second Generation of NNs: To reduce the number of
parameters in a network, this generation of NN introduces
convolutional neural networks (CNN), which make use of con-
volutional layers comprising of convolutional filters to extract
important features from the input, while providing a certain
degree of shift invariance to the network [22]. A convolutional
layer typically uses continuous non-linear activations, and it
is often followed by a pooling layer. Pooling layers reduce
the network parameters even further by retaining only the
most important features from the preceding layer, which leads
to information loss. This generation of NNs are increasingly
being deployed in practical ML systems.

A relatively new approach to solve the problem of informa-
tion loss in CNNs is the use of capsule networks (CapsNets)
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[23]. CapsNets have hidden layers comprised of intercon-
nected vectors that have input features and input probabilities,
which allow these networks to learn spatial correlations be-
tween input features. As a result, CapsNets are able to infer
high level entities quite similarly to human perception.

Another interesting approach towards NNs is the Generative
Adversarial Networks (GANs) [24]. These networks make
use of the simultaneous interplay between a generator and a
discriminator, where the generator produces realistic synthetic
inputs while the discriminator learns to differentiate between
the real and synthetic inputs. This enables the NNs to generate
synthetic outputs that are very difficult to distinguish from the
real ones.

Third Generation of NNs: This generation of NNs makes
use of Spiking Neural Networks (SNNs) [25] in an attempt
to emulate human brain like functioning. Unlike the networks
discussed earlier, which consider the normalized firing fre-
quency of neurons, SNNs use spike trains to mimic the spatio-
temporal characteristics of the biological neurons.

B. Neural Network Design Cycle

Fig.4 provides an overview of the NN-based ML design
cycle, which can be categorized in the training and inference
stages. Training is typically performed at the Cloud, while
inference is typically performed at the edge in real-world
Smart CPS systems (e.g., autonomous vehicles and wearable
healthcare devices). In certain IoT/CPS systems thT are not
constrained with resources or real-timeliness, inference may
also be performed at the Fog or Cloud (e.g., predictions on
social networks and large-scale hospital data).

Training: Before deploying the NN into an ML system, the
NN must be trained. Training is a resource-intensive process,
generally carried out by third party cloud servers, which
involves the use of a training dataset to find suitable values for
the network parameters. Training is composed of a forward-
pass and a backward-pass. The forward-pass calculates the
predicted output values by propagating inputs through the
network, using the current parameter values. The backward-
pass updates the network parameters while minimizing the loss

function associated with correct and predicted output values.
This process (i.e., a forward-pass and a backward-pass), when
repeated once for all the samples in the training dataset, is
called an epoch. The overall training process of a NN involves
several epochs.

At the end of each epoch, the accuracy of the network is
analyzed for some unseen data, which is not part of the training
dataset, i.e., the validation dataset. The result of this testing
can be used to fine tune the network hyper-parameters, like
the number of layers, and select the best trained model. The
training process then resumes, and the network parameters
are again updated using the training dataset until either the
process reaches the maximum number of epochs (or cycles),
or the network reaches the desired level of accuracy with the
validation dataset.

The most common way to check the final inference accuracy
of a trained network is to use a testing dataset. If the
trained network is able to classify testing inputs correctly
for more than the desired number of testing inputs, the
network is considered suitable for deployment into a practical
system. However, a DNN might misclassify an input that is
perceptually similar to another input correctly identified by
the same DNN [26]. To ensure the security, reliability and
safety of ML systems for safety-critical applications, e.g.,
autonomous vehicles and smart healthcare, it is imperative
to develop a framework to analyze and verify these critical
misclassifications. An orthogonal research direction, therefore,
is to use formal verification for ascertaining the dependability
of the trained DNN.

Although an established research domain [27][28], formal
verification started gaining interest in the ML research com-
munity only since the last decade. Formal verification is an
approach to check the correct behavior of a system on the basis
of sound mathematical reasoning. Unlike testing, verification
provides guarantees regarding system accuracy, independent
of “specific” system inputs. Hence, as shown in Fig. 5, the
guarantees provided by verification are valid for the entire
(infinite) input domain whereas those provided by testing
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are limited only to the (finite) tested data. In terms of ML
systems, due to the complexity of the underlying system, the
objective of verification is usually to verify the correctness of
the network for bounded input regions, as demonstrated in Fig.
6, rather than for the entire input domain.

Inference: A trained and tested/verified NN can be de-
ployed in a real-world ML system. At this stage, the NN per-
forms classification/decision-making using actual, previously
unseen, data (i.e., in real-time). ML inference is carried out
at the edge of the IoT/CPS system, hence exposing the sys-
tem to numerous security and reliability concerns during the
operations under varying scenarios and harsh environmental
conditions.

C. Robustness

A common term associated with the performance of DNNs
is robustness. Robustness is the DNN property that deter-
mines the integrity of the network under varying operating

Validation Testing
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conditions, and the accuracy of DNN outputs in the pres-
ence/absence of input or network alterations. This can be
divided into two sub-properties: security and reliability [29].
The DNN is said to be secure against an attack if the attacker
cannot steal information (via IP stealing or side channel
attack), engage the system resources (e.g., using hardware
intrusion or Denial-of-Service (DoS) attack), modify the net-
work parameters (e.g., by inserting hardware or neural-level
Trojans), or render an incorrect input to the DNN (e.g., using
an adversarial attack). In case of reliability, there is no explicit
attacker. The network is said to be reliable if it does not display
any changes to its output, parameters, or behavior, due to the
changes in environmental conditions, during fabrication and
deployment.

III. SECURITY VULNERABILITIES OF ML SYSTEMS

As hinted in the previous section, despite being highly
sophisticated in learning and decision making, ML systems
are very vulnerable to attacks. Depending on the type and
intensity of the attack(s), and the application where the sys-
tem is deployed, these ML vulnerabilities can lead to slight
discrepancies in the result, or can lead to lethal consequences
in a safety-critical application [6]. This section describes the
most common security issues in ML systems and DNNs at the
cloud and the edge, as summarized in Table II).

A. Adversarial Attack

Since their discovery, adversarial attacks [26] have been
a widely studied DNN security threat [42][43][44]. In an
adversarial attack, the known DNN parameters are exploited to
minimize the cost function corresponding to noise patterns δx,
which, when added to the input x, can cause misclassification,
as shown in Fig. 7. The noise added is usually imperceptible,
making the task of distinguishing between clean and malignant
inputs nearly impossible. This can be represented formally as:

f(x) 6= f(x+ δx+ EN) s.t. δx ≤ ε (1)
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TABLE II: Summary of the various security threats and their countermeasures for ML-based systems.

Threat
Insertion Point

Vulnerability CountermeasuresDesign Phase
DNN InferenceHardware

Design
DNN
Training

Adversarial Attack 3 Input Gradient Masking [30], Pre-Processing Filters [31],
Adversarial Retraining

Backdoor Attack 3 Network Parameters (W, b) Pruning [32], Fine Tuning [33]
Data Poisoning 3 3 Input Encryption [34][35][36], Local Training
IP Stealing 3 System Response Obfuscation, Encryption [37]
Hardware Trojan 3 Hardware, System Response Equivalence Checking [38], Side-Channel analysis [39]
Side-channel Attack 3 System Response Randomness [40][41]

where EN represents the noise existing in the physical en-
vironment even in the absence of an explicit attacker. The
adversarial noise can lead to either a random incorrect output
class, i.e., an untargeted attack scenario, a specific calculated
output class, i.e., a targeted attack, or simply reduce the
confidence of the correct output class [45], i.e., confidence
reduction.
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Fig. 7: Adversarial Attack on a trained DNN: an adversarial attack
can result in the misclassification (either targeted or random) of
traffic sign boards, which is a concern in autonomous driving [46].

Adversarial attacks can be categorized as either evasive or
poisoning [47], depending on the access of the attacker to the
DNN design cycle. In evasive attacks, the attacker has no
access to the DNN training process and training dataset. The
attack is solely configured during the DNN inference stage,
using either input gradients, output probability vectors, or the
output decision [48]–[54]. For instance, the Fast Sign Gradient
Method (FSGM) [42], determines the direction of the loss
function via the input gradient, scales down its value, and
adds the noise to the input. In the Jacobian Saliency Map
Approach (JSMA) [55], the input gradient (Jacobian) is again
used, but the objective is to add the noise to a subset of input
nodes, sufficient for misclassification. Other works [56][57]
make use of input gradients to propose adversarial attacks.
TrISec [46] improves the imperceptibility of an adversarial
attack by introducing a new methodology that uses additional
parameters (e.g., correlation coefficient between the target
image and the original image, and structural similarity index)
in the DNN training algorithm. Works like [58][48] make use
of output labels to determine attacks in close proximity to the
classification boundary.

In poisoning attacks [59], the attacker has access to the
training dataset/training procedure. The attack is implanted
in the DNN during training by feeding the network with

malicious training data. Fig. 8 shows two example poisoning
attacks that increase the probability of misclassification of an
stop signal (red bars). The data could be poisoned with tailored
noise [32][60], also known as backdoor attack, or simply
through random noise [45]. Sparsity of the network accounts
for the success of poisoning adversarial attacks. Dormant
neurons in a trained DNN have weights and biases too small
to be of any practical significance to the output calculation.
The existence of such neurons signify that the network has the
capacity to learn more. Hence, such networks can be trained
on poisoned data (as shown in Fig. 9). The DNN behaves
correctly for the clean data but exhibits a malignant behavior
for the poisoned data. A recent work demonstrates the use
of poisoning (with noisy image patches) to either misclassify
humans as different objects or completely hide a person from
the object detection system [61].

Attack 1: Intrude the a subset of the training dataset

Attack 2: Append the poisoned data samples to the original training dataset
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Fig. 8: Classification accuracy of DNN trained on a poisoned dataset.
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Fig. 9: Effect of a backdoor on DNN accuracy. The dormant neurons
(red) learn to associate the backdoor with a targeted misclassification
label.

For most of the adversarial attacks, a common inadequacy
is to ignore the pre-processing filtering stage in an ML system
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[31]. The pre-processing stage generally employs different
averaging filters, to smooth out any noise in input. This
undermines, if not completely eliminates, the threat of mis-
classification via adversarial attacks.

B. Neural-Level Trojans

Another class of attacks, the neural-level trojans [62], in-
volves the insertion of additional neurons into a pre-trained
DNN by third-party training servers. The number of extra
neurons must be minimized to avoid raising suspicion re-
garding the DNN model. Conceptually, similar to hardware
trojans in system hardware (discussed later) and backdoor
attacks, the additional neurons in neural-level trojans trigger
malicious DNN behavior only when prompted by specific
inputs. However, most of these attacks require to re-train the
network and use complex internal triggering mechanisms.

C. Hardware Attacks

Hardware trojans [63][64][65][66][67] are malicious com-
ponents implanted into the system hardware, which compro-
mise the security of a ML system. Hardware trojans can
introduce undesired system behavior, or be dormant in the
normal system operation and be triggered at a specific in-
stance. They may leak system information, thus aiding IP
stealing (discussed later), or simply consume system power
and resources.

The attack is usually instigated by an untrusted manu-
facturer/foundry, at the manufacturing stage of the system
lifecycle. The size of the trojan is usually small, and hence
goes unnoticed. Often, the overall number of components on
the chip is kept unchanged and the power trace of the trojan
is also minimized [68], to ensure a successful stealthy attack.

Side channel attacks, as shown in Fig. 10, are another type
of hardware attack that is crafted using leaking information
from the system hardware. Most systems leak information via
side channels such as components’ power consumption [39]–
[41], [69]–[72]. This information can be analyzed and used to
1) compromise the security and privacy of the system, and 2)
reverse engineering and steal the model parameters [73], [74].

Analyzing the different side-channels of a system enables
to target different parameters of an ML system. For instance,
the leaking power traces close to the input of the DNN
provide clues regarding system input, whereas the information
regarding execution times provide predictions for the network
architecture [40][41]. However, a common limitation with
most side-channel attacks is assuming the absence of noise
in the system. Inclusion of noise in the side-channel attack’s
threat model generates randomness in the leaked information,
which reduces the chances of a successful attack.

D. IP Stealing

Attacks to steal Intellectual Property (IP) are another sig-
nificant security threat for ML systems. IP stealing involves
determining either the underlying model of the ML system
(Model Stealing Attack), possibly without any access to
the description or internal parameters of the system [75], or
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Fig. 10: Side-channel attack based on the execution time of individual
input queries, which can be used to decipher the depth of the DNN
model and estimate the network parameters/model.

predicting the data the DNN was trained on using the available
model description (Dataset Stealing Attack) [76]. Both types
of attacks are shown in Fig. 11. Leaking side-channels of
the model, responses of queries to the system, and similar
behavioral network characteristics can be exploited, analyzed,
and reverse engineered to obtain the underlying IP.

(a) Model Stealing Attack

(b) Dataset Stealing Attack

f(x)

x f’(x)

ML Services

Adversary

Data Owner

Adversary

Dataset
Training Predicting dataset

Fig. 11: IP Stealing from a trained DNN: the objective of a stealing
attack can either be: (a) to estimate the underlying DNN model, or
(b) predict the dataset used for DNN training, using multiple queries.

IV. DEFENSES AGAINST SECURITY VULNERABILITIES OF
ML SYSTEMS

To ensure correct operation in the presence of security
attacks, several security defenses have been proposed over the
years. This section describes some of the most prominent ML
system defenses against security threats, categorized according
to the threats they counter.

A. Defending Against Adversarial Attacks

The concerns originating from adversarial attacks are confi-
dence reduction of the true output class and misclassification.
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As shown in Fig. 12, the defenses against adversarial attacks
are generally intended either to 1) increase the perceptibility
of the attack, thereby ensuring that the clean and malignant
inputs are perceptually distinguishable, or 2) reduce the impact
of the attack by enhancing the DNN’s robustness against it.
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Fig. 12: Defenses against adversarial attacks either increase the
perceptibility of adversarial noise (Case I) or decrease the effect
of the adversarial noise (Case II).

For evasion-based adversarial attacks crafted using input
gradients, a natural defense strategy is to hide these gradi-
ents using a technique called gradient masking [30]. This
technique, as explained in Fig. 13, reduces the dependabil-
ity of output classification by retraining the DNN with the
output probability vector. Adversarial training, as shown
in Fig. 14(a), is another commonly used defense [77][78],
where a trained DNN is retrained with adversarial inputs and
the correct corresponding output labels. This improves the
accuracy of the system in the presence of a known attack.
Another defense, which actually constitutes a part of most
practical ML systems, is the use of input pre-processing
[31]. This defense smooths out, transforms and truncates
the noise before it is even fed to the DNN. As shown in
Fig. 14(b), this defense reduces the adversarial noise and hence
reduces the chances of a successful attack. A recent defense
against adversarial attacks is to train robust image classifiers
[79]. This defense exploits the fact that images contain high
redundancy due to the strong correlation between neighboring
pixels, so that a subset of pixels can be used to represent the
same information. This subset is chosen by randomly dropping
pixels from input images, and it is used during DNN training
and inference. The drop rates are chosen randomly between
0% and 100% for each input image and at each epoch. The
model trained on such subsampled datasets is robust against
adversarial attacks.

Most of the above defenses may work against a naive
attack. However, for a strong attack, the defenses may fail.
Many studies show that gradient masking does not increase
the robustness of a DNN [80]–[82], and hence can be broken
with the use of a substitute model to identify the approximate
gradient direction [83]. Pre-processing aware attacks [31] can
break the filtering defense. Likewise, as studied by several
works [84][85], adversarial training overfits a DNN to the ad-
versarial examples and does not necessarily make the network
more robust. Hence, a stronger attack can again make the DNN
fail for certain inputs.

For poisoning-based adversarial attacks, a simple defense
strategy is not to outsource the training process to a third

Training Dataset

Training Labels DNN

Training
Training Samples

Gradient Masking

Training Labels

Training Samples
DNN

Retraining

Output Probabilities

Output 
Probabilities

+

Fig. 13: Using Gradient Masking to hide the input gradients that
might be used by the attacker to determine the perturbations that
need to be inserted to perform the Adversarial Attack.
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Fig. 14: (a) Improving a DNN’s accuracy in the presence of a
known attack by training the dataset with Adversarial Examples
obtained from known adversarial attacks, i.e., Adversarial Training.
(b) Reducing the effects of adversarial noise added to the input via
input pre-processing techniques such as noise filtering, quantization
and other input transformations.

party (i.e., local training). However, training is a lengthy
process, requiring large computational resources. Hence, local
training is not always feasible for large DNNs. To outsource
the training of large DNNs, the training data can be encrypted
before outsourcing it to the third party [34]–[36], to overcome
the impact of data poisoning.

For attacks exploiting dormant neurons in the network,
pruning can be employed to remove the (dormant) neurons
that are not significant to the network inputs, reducing the
chances for a successful backdoor attack. Yet, pruning-aware
attacks [33] can be used to train only the significant network
neurons with backdoor behavior, which eliminates the effec-
tiveness of the pruning defense. Another defense is to fine
tune the DNN with clean inputs [33]. Although this does
not eliminate the backdoors from the network, it significantly
reduces the chances of a successful backdoor attack.

To formulate better defenses against adversarial attacks, a
current research focus is to determine robustness bounds for
DNNs using formal methods [86]–[88]. Although this area of
study is relatively new and generally not scalable to practical
DNNs, it has the potential to determine the actual boundaries
where the DNNs will not be vulnerable to the adversarial
attacks anymore. However, the question of how the knowledge
of these bounds can be used to actually prevent adversarial
attacks is yet to be answered.

B. Defending Against Neural-Level Trojans

Similar to adversarial attacks, the trigger for incorrect DNN
behavior in Neural-Level Trojans is a malicious input. Hence,
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techniques that manipulate or detect input discrepancies can
reduce the effect of neural-level trojans. Such approaches
include input pre-processing [31] to smooth out the input
trigger, input anomaly detection [89] to identify suspicious
input patterns, and prediction distribution [60] to identify
the bias of DNN towards the targeted output. Since trojans are
inserted into pre-trained DNN models, their effect could also
be negated using local training [33], i.e., training the DNN
model locally instead of outsourcing the training process to
third party cloud servers.

C. Defending Against Hardware Attacks

Hardware trojans [63], [90]–[93] are a hardware-related
security problem in ML systems. A hardware trojan is a
malicious modification of a circuit design that results in an
undesired behavior, e.g., leakage of sensitive information,
malfunction, or performance degradation. Since these attacks
make use of hardware modifications, a suitable defense strat-
egy against them is to use formal methods [27], particularly
via equivalence checking. Fig. 15 demonstrates the use of
Binary Decision Diagrams (BDDs) for equivalence checking
[94] of simple gate-level circuits. The biggest obstacle to
implement the equivalence checking defense is the absence
of a golden/reference model of the actual system hardware, to
compare with the intended system model [63][64].
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Fig. 15: Using Binary Decision Diagrams (BDDs) for hardware
equivalence checking.

Other potential defenses against hardware trojans include
side-channel analysis [39] for anomaly detection, and cross-
layer attack modeling via bridging the gap between the hard-
ware and software [38]. This defense often assumes that the
leaking information, e.g., power trace, of the trojan is large
enough to be detectable. The defense becomes ineffective
when the assumption does not hold [68].

As mentioned in the previous section, side-channel attacks
make use of side-channel leakage from the system, often
giving rise to other security vulnerabilities in ML systems,
such as hardware intrusion [45] and IP stealing [39]. Side-
channel attacks often rely on the exactness of the leaking
information, hence, the defense against them rely on the
addition of random noise to system operations. For instance, a
random selection of the next operation, whenever the sequence
of operations does not matter, like selecting the sequence in
which the image pixels are fed to the adder in a NN, could

potentially make the inference of useful knowledge from side-
channels more difficult [95][40][41].

D. Defending Against IP Stealing

The most common IP stealing attacks involve stealing
private or secret information (privacy infringement) and the
robbery of the IP (piracy).

To protect privacy of data, the simplest defenses include
blurring, obfuscation, and even the addition of adversarial
noise to the data [96][97]. In practice, these approaches
may not work well as they may not be strong enough [98].
Relatively stronger defenses include the use of encryption
[34][35], i.e., data confidentiality, while outsourcing the data
for training. Similarly, measures to ensure IP privacy during
third-party DNN training include the use of multiple training
servers for joint dataset [99], verifying the training procedure
[100], ensuring privacy after training by network transforma-
tion [101], obfuscating defenses against reverse engineering-
based attacks [102], [103], and isolating the hardware accel-
erators [104].

To protect IP against piracy, the rounding approach [105]
can be a potential defense. The leaking side channels could
be a potential vulnerability exploited to deploy an IP stealing
attack. Hence, the same side channels could be used for
runtime monitoring to secure the ML system against IP
stealing [39].

V. RELIABILITY THREATS FOR ML SYSTEMS

Security threats are not the only cause for an ML system
not to work as expected. This section discusses several envi-
ronmental/natural factors, which lead to reduced ML system
reliability.

A. Hardware Faults

Errors in the hardware components that build up a system
are generally classified into transient, intermittent, and perma-
nent faults [106][107]. As the name implies, transient faults
induce temporary errors in the system. Intermittent faults, on
the other hand, may cause recurring system glitches. Like
transient faults, intermittent faults can be removed from the
system, often by the use of additional circuitry. Permanent
faults have a lasting impact on the system, and can be removed
mainly by replacing the faulty hardware component.

1) Transient Faults: The nature of applications where the
ML systems are deployed expose these edge devices to
harsh operating conditions like high temperature and altitude.
These conditions, in addition to the increasing circuit clock
frequencies, voltage reduction and technology scaling, have
been continuously increasing the occurrence of transient faults
in systems over past decades [108]. Transient faults can be
random, i.e., occurring unpredictably, or non-random, i.e., can
be reproduced under certain circumstances [106]. Electrostatic
discharge, electromagnetic radiation, noise in hardware inter-
connections, or flaw(s) in fabrication are among the leading
factors contributing to transient faults [109][107].

Soft errors [108] are a type of transient fault, mostly caused
either by 1) a high-speed proton strike from cosmic rays, or 2)
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the emission of an alpha particle from impurities in IC pack-
aging. Both particles generate a charge Qrad in the chip, and if
this charge exceeds a certain threshold value Qth, it is likely to
change the state of the chip, resulting in a bit-flip. This effect,
known as the Single Event Upset (SEU), is becoming a leading
cause of concern with system hardware, particularly memory
chips [110], [111]. With increasing technology miniaturization,
such bit-flips can extend to multiple bits within a single data
word [111], [112]. This phenomenon, termed as a Multiple Bit
Upset (MBU), poses a challenge to robust machine learning.
These effects may lead to misclassification in ML systems, as
shown in Fig. 16(a).
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Fig. 16: Effects of reliability threats, i.e., (a) soft errors, and (b) aging
on ML systems.

2) Intermittent Faults: Such faults are intermittent and
relatively unpredictable, which make them difficult to re-
peat, analyze, and understand. Process variation [29][113]
is the phenomenon that results in small differences in the
physical characteristics of seemingly identical circuit com-
ponents during fabrication. This may lead to intermittent
faults, potentially leading to permanent damage to the system
chip [106]. Similarly, aging [114] (see Fig. 16(b)) can cause
deterioration of system performance and functions over time.
Another important factor contributing to intermittent faults
in hardware is temperature under which the edge device is
operating. Temperature effects [115] reduce system reliability
by increasing device aging and error rates.

Often as the result of component aging, timing errors
occur, where the system is unable to provide correct output
within the expected time. Usually, as the error propagates
through the chain of components, the magnitude of error in-
creases. Not only does this reduce ML classification accuracy,
it may also make the ML model vulnerable to serious security
concerns [116].

Accessing memory with a specific access pattern can in-
troduce access pattern dependent faults, which could be
caused by disturbance errors. These faults create a security
vulnerability known as Rowhammer [117], [118], which is
the phenomenon that repeatedly accessing a row in a modern
DRAM chip causes disturbance errors in physically-adjacent
rows. DRAM data retention failures [119]–[122] can also
cause intermittent and unpredictable faults due to DRAM
variable retention time and data pattern dependence.

3) Permanent Faults: These faults are irreparable, where
the system portrays fixed/repetitive errors like stuck-at faults.

Factors contributing to permanent faults include cosmic radi-
ation, electrostatic discharge (ESD) in device, fabrication
flaws [106], [109], [123], or recurring intermittent faults.

B. Neural Network Anomalies

Environmental noise (EN ) [124][125] has a similar impact
on edge devices as adversarial attacks have on DNNs.

f(x) 6= f(x+ EN) (2)

For instance, for an object classification system, possible
environmental noise could be due to fog or pollution in
atmosphere, which can produce effects of blurring on the
input. Similarly, variations in data acquisition by the edge
sensors can also lead to faulty inference in an ML system.
For an image acquisition system deployed in an autonomous
vehicle, change in either brightness, contrast, camera angle,
or any other photometric transform [77][126] can impact
the decision-making of the vehicle and may lead to serious
consequences [127].

The reason for such DNN anomalies is a lack of generaliza-
tion of DNN for unseen inputs. The classification boundaries
of the DNN outputs may overlap in the hyper-space, as
depicted for a 2D space in Fig. 17 (top). The inputs closer
to these boundaries are vulnerable, and slight input changes,
even in the absence of a malicious attacker, may lead to
misclassification.
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Fig. 17: Inputs close to cluster boundaries (top) in hyperspace
are most vulnerable to environmental adversarial transformations.
Variation during data acquisition (middle) can cause misclassification,
which can lead to drastic effects in ML systems (bottom) [77].
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VI. MITIGATION TECHNIQUES FOR RELIABILITY THREATS
IN ML SYSTEMS

This section discusses several mitigation techniques for the
reliability threats in ML systems discussed in Section V.

A. Mitigation Techniques for Hardware Faults

The most notable approaches to ensure system reliability in
presence of the various hardware faults are as follows.

1) Protection against Transient Faults: Generally, transient
faults can be removed by a component reset or system reboot.
However, these are often not the most desirable solutions.
Interleaving to prevent errors in consecutive bits [128], using
additional circuitry for error detection [129], scrubbing to
periodically remove errors to prevent error accumulation [121],
[130], adding hardware redundancy and voting mechanisms
[131] to rule out the erroneous bits, and using error detection
and correction codes [108], [132]–[134], are generally the
preferred choices to defend against soft errors in memories and
logic. Recently, replicating the complete hardware accelerator
and conjoining the accelerators with majority voting is also
being used to ensure safety in ML systems. For instance,
Tesla’s self-driving car computer has two chips deployed to
tolerate faults [135].

Numerous approaches are available to handle transient er-
rors; yet, all these approaches provide a trade-off between error
detection/correction capability, area, power consumption and
latency. Redundancy-based approaches can incur large area
overhead and cost. A recent work shows that, in a DNN-
based system, the bit flips from 1 to 0 have a more drastic
effect on the system’s classification accuracy than bit flips
from 0 to 1 [136]. This finding could be used for system design
with stronger error correction mechanisms deployed for more
critical bit flips.

2) Protection against Intermittent Faults: As system com-
ponents age at different rates, components in the same chip
may require different levels of protection. Protection tech-
niques that are consistent throughout the system, like chip-
level guardbanding, may thus not be sufficient. A recent work
[137] studies dynamic protection approaches that ensure that
the most vulnerable components receive the highest protection
in the system. The same work also proposes age-aware
workload management to age all components of the system
at the same rate. Disturbance errors like Rowhammer can
be mitigated via probabilistic mechanisms [117] and various
other hardware or software techniques [118]. Online profiling
of memory cells [119]–[121], [138]–[140] can also help the
system to discover and disable weak cells with intermittent or
aging-related errors.

To detect timing errors, several studies propose to use Razor
flip flops [141][142][143]. Once a timing error is detected,
error correction is usually employed by either introducing
slack in computation, skipping a clock cycle, or scaling voltage
to mitigate the error’s effect. However, these approaches may
introduce a delay in execution as the correct result propagates
to the output. Another mitigation approach to defend against
timing errors is formal timing analysis [144][145]. Such

timing verification approaches are intended to ensure that the
system behaves correctly within the defined timing bounds.

3) Protection against Permanent Faults: Hard errors imply
irreversible chip damage, for which the most effective solution
is usually to replace the faulty chip/component. However, this
is a costly solution. A relatively cost-effective alternative to
chip replacement is discarding only the erroneous bits/byte
of the component [146], [147], which minimizes the cost
incurred. Specific to ML systems, techniques like fault-aware
training, pruning, mapping and activation clipping are often
used to address permanent faults [110], [148]–[151]. In fault-
aware training, the DNN is trained for different faults at
multiple levels, like transistor level and logic level, as shown
in Fig. 18(a). This is a computational greedy solution. In fault-
aware pruning, all the DNN connections and parameters that
map to faulty processing elements/nodes are pruned using
fault maps of the baseline hardware (e.g., systolic array-based
accelerator), as shown in Fig. 18(b). In fault-aware mapping,
the saliency of DNN parameters is exploited to define a
mapping of different segments of the DNN. This mapping
is then used to prune the ineffectual parameters of the DNN
while retaining the salient parameters. In activation clipping,
the activation values exceeding the predefined threshold for
a fault-free neural networks are clipped. This eliminates the
need for either pruning or retraining.
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Fig. 18: Mitigation techniques for permanent faults in ML systems

B. Mitigation Techniques against Environmental Noise

Similar to defenses against adversarial attacks (Section
IV-A), pre-processing filters [31] can reduce the effects of
environmental noise in DNNs. Likewise, adversarial training
[78] of the DNN with noisy inputs could improve DNN accu-
racy for certain noise patterns. However, similar to the effect of
using adversarial training for adversarial attacks, this solution
may not work well because adversarial training overfits the
network to adversarial examples but does not ensure better
generalization [84]. Since the accuracy of ML systems in
the presence of environmental noise and varying input data
arise due to the lack of generalization to unseen inputs in
the DNN, an alternative solution could be to train the DNN
on a larger input dataset. However, it is not always possible
to obtain a large and diverse input dataset. To overcome this
limitation, some works propose the generation of synthetic
datasets [152][153][154][155]. Yet, real input domains are
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mostly very large, multi-dimensional, and continuous spaces.
Hence, it is uncertain if any finite number of synthetic input
points could be sufficiently representative of the entire input
domain, allowing the trained DNN to generalize for unseen
inputs.

VII. FORMAL VERIFICATION FOR ROBUST ML

As briefly highlighted in Section II, testing a trained DNN
using a labelled dataset is insufficient to ensure reliable DNN
inference. This is due to the lack of generalization of DNNs for
unseen inputs. Recently, efforts have been made to understand
and interpret the decision making process inside the DNNs,
hoping to provide dependable guarantees regarding DNN
inference. These include exploring input feature space[156],
using saliency maps to understand DNN inference [157], and
developing various certifiability criteria for DNN interpretabil-
ity [158][159][160].

Formal verification provides an orthogonal alternative to
testing that provides formal/mathematical guarantees regarding
NN performance at the edge. The use of formal verification
for hardware and software has existed for a long time [27][28].
Yet, research on verification of neural networks, which forms
an essential component of the ML system, has been an active
domain of research for only a decade. Fig. 19 summarizes
the major milestones reached in NN verification over time,
according to the four major verification categories: SAT/SMT
solving, linear programming, theorem proving, and incomplete
verification.

A. SAT/SMT

Satisfiability (SAT) checking is the branch of formal verifi-
cation where the system model and the property to be verified
for the system are expressed in propositional logic, and written
into Conjunctive Normal Form (CNF), as shown in Fig. 20
(bottom). The formula is then checked by an automatic SAT
solver. Having a SAT output implies that a satisfying solution
to the negation of the property, i.e., a counter-example, has
been found. An UNSAT output implies the absence of any
counter-example, and hence indicates that the stated property
holds for the system. Satisfiability Modulo Theories (SMT)
is a variant of SAT that works similar to SAT solving, as
shown in Fig. 20 (top), but allows the use of theories beyond
propositional logic, like linear arithmetic.

Since SAT solving allows the use of only propositional
variables (i.e., atoms), it is often the verification approach
of choice for Binarized Neural Networks (BNNs) [86][161].
SMT solvers, on the other hand, are preferred for verifying
DNNs with real and/or integer network parameters [162][163].
Another concept often associated with SAT-based verifica-
tion approaches is Counter-Example-Guided based Abstraction
Refinement (CEGAR) [164], which produces more reliable
verification results by iteratively improving the network model
using counter-examples. CEGAR and its variants provide an
efficient verification solution when the DNN is modeled using
over-approximation [165].

However, SAT-based verification suffers from the scalability
problem: state-of-the-art techniques are capable of verifying
only small networks [166][167], comprising of less than 10
neurons, to medium-sized networks [163], comprising of up to
20, 000 neurons. Although some works propose optimizations,
like K-factoring [161], to reduce the size of this problem,
applying these optimizations can be computationally costly.
More rigorous and cost-effective optimizations can improve
the scalability problem with SAT-based DNN verification.

Another challenge is to design more efficient SAT/SMT
solvers. There has been a tremendous improvement in state-
of-the-art SAT solvers in recent years, with increased com-
putational speed and capability to deal with larger networks.
Yet, there is a lack of dedicated tools for DNN verification;
existing tools [162] are not scalable to larger networks. More
powerful SAT/SMT solvers could be key for the improvement
of DNN verification.

B. Linear Programming

Linear Programming (LP) based verification works by defin-
ing the system as a set of linear constraints, and the property
to be verified as an objective function, as shown in Fig.
21. The objective function can be either a minimization or
a maximization function. The search of the minima/maxima
is automatic, and involves the use of linear programmers
[168][169].

For DNN verification, LP is generally used to check the
robustness of the network against adversarial attacks. The
objective is to determine the smallest noise (or noise margin)
that satisfies linear constraints of the network but causes
misclassification at network output [85][88].

As the name suggests, an inherent limitation of LP is that
it requires the constraints to be linear. For DNNs, this poses a
problem due to the presence of non-linear activation functions.
Some works [170][171], as will be discussed in Section
VII-D, replace non-linear activation functions by their linear
approximations. This yields incomplete verification results
since a linear representation is insufficient to fully replicate
the behavior of the actual non-linear activation function. An-
other approach, proposed for ReLU-based networks, is input
bisection for selected network nodes [172]. ReLU is a piece-
wise linear function that works like a half-way rectifier: output
is zero if the input is negative but output equals the input for all
non-negative input values. A calculated input bisection splits
ReLU into two linear functions, at the cost of a larger size
verification problem.

The use of Big-M encoding1 is proposed in several recent
works [59], [87], [174]–[176]. Although the approach ensures
reliable verification results, without a significant increase in
the size of the problem, it also suffers from the scalability

1The Big-M technique is used for the verification of ReLU based networks,
where a binary indicator variable Y is added to the linear constraints to
indicate the linear region of the activation function to which the constraint
belongs, while M provides a valid output upper bound that is greater than
the maximum output value of every ReLU node in the network. We refer the
reader to [173] for details of the technique.
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else
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Fig. 20: Using an SMT solver for verification. CNF expresses
program and property constraints of C code (top), and SAT/SMT
solver for a DNN-based system (bottom).

problem. Reducing the number of constraints by eliminating
the inactive neurons [88], and exploiting the sparsity of
practical DNNs may allow effective verification of practical-
sized ML systems.

C. Interactive Theorem Proving

Theorem proving is a type of formal verification in which
the system and its properties are defined mathematically, and
the properties are verified for the system by rules of natural
deduction [177]. The verification example demonstrated in
Fig. 5 shows how natural deduction based reasoning works.
Fig. 22 gives a more generic view of how theorem proving
works. Generally, for propositional logic and simple circuits,
state-of-the-art theorem provers are able to verify the system
without human intervention, i.e., these systems can be verified
by automatic theorem provers. However, for complex systems,

int x, y, z;
-2x + 3y + z < 110
x + 2y - 3z > 25

minimize (x+y+z)

Program

Linear Constraints 

Objective Function

-2x+3y+z < 110
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Fig. 21: Using a Linear Programmer to define the linear constraints
and the objective function (top), and verification of a DNN-based
system with a Linear Programmer Solver (bottom)

like DNNs, human guidance is essential, and hence verification
of such systems is done via interactive theorem proving.
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Fig. 22: Using Theorem prover for verification of a half-adder (top),
and mathematical model and theorems of Theorem Proving for a
DNN-based system (bottom).
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For verification, the system is represented as a logical model
governed by mathematical principles. The property is similarly
expressed as a formal proof goal. The objective is to use
axioms and rules derived from these axioms to check if the
properties, i.e., system specifications, hold for the system
model, i.e., the implementation.

As expected from a human-guided verification approach,
interactive theorem proving is difficult to execute for two
reasons. First, it requires an in-depth knowledge of the un-
derlying system for realistic system modeling. Second, it
demands the verifier to have an expert understanding of 1)
why a certain property holds for the system, 2) what are the
required assumptions, and 3) how to prove the property on
the basis of sound mathematical principles. Hence, it is no
wonder that interactive theorem proving has been a scarcely
explored research domain for DNN verification. [178] verifies
the perceptron convergence theorem, but the work focuses on a
very small subset of DNNs called binary classifiers, and hence
may not be easy to adopt for large state-of-the-art DNNs.

For more practical theorem proving based DNN verification
approaches, the basic need is to understand how DNNs work,
why they make certain decisions, and what are the mathemati-
cal reasons behind their behavior. The perceptron convergence
theorem [2][179] was proposed almost six decades before it
was formally verified by [178]. Hence, understanding and
developing the theory behind DNN operation seems to be
a logical step before theorem proving could be successfully
employed for DNN verification.

D. Incomplete Verification

Completeness is a notion that decides whether a system
model is sufficient to prove everything about the system.
Incomplete verification often makes use of abstract interpre-
tation, linear approximation and other similar approaches to
formally model the system [180]–[182]. As a result, the system
model is not an exact representation of the actual system but
rather an over-approximation. Verification is then performed
on this approximate model, as shown in Fig. 23. It is important
to note that simulation/testing, which also provides incomplete
results, must not be confused with incomplete verification.
This is because, in testing, the system is considered a black-
box and the tester analyzes the system behavior by feeding the
black-box with a finite set of inputs and recording the output.
In contrast, in incomplete verification, the system is a white-
box representing the simplified version of the actual system,
on which formal verification is performed.

Since incomplete verification involves verifying a simplified
version of the actual system model, this makes the approach
scalable, even to larger DNNs [170][171]. To improve the
completeness of verification, we can use abstraction refinement
approaches like CEGAR [164][165]. This does not entirely
eliminate the problem of incompleteness of verification, but
improves the reliability of verification results.

Incomplete verification often leads to false positives
[170][171]. Whenever the incomplete verifier provides
counter-examples, they are actual scenarios where the property
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end
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Fig. 23: Using Incomplete Verification for 1) verifying a continuous-
domain program (top), and 2) verifying a DNN-based system (bot-
tom).

does not hold for the system. If the verifier provides no
counter-examples, the system may still be unsafe or the
property being verified may still not hold for some inputs to
the system [183].

Incomplete verification is scalable, and, hence, is an at-
tractive verification alternative for DNNs. Yet, its inherent
incompleteness provides the biggest limitation to its accu-
racy. A possible solution is to trade off some scalability of
incomplete verification with completeness [184]. This can be
accomplished by iteratively refining the network model until it
matches the exact system model [164], or combining incom-
plete verification with other complete verification approaches
like SMT solvers or LP.

VIII. OPEN CHALLENGES AND DISCUSSION

Although ML is a rapidly evolving domain, it will probably
pass a long time until ML systems are considered robust. In
ML systems, similar to other systems, a single vulnerability
is sufficient to pose a security or reliability issues that might
prevent the system from obtaining accurate results. However,
it is very challenging to provide strong robustness guarantees,
because we need to deal with a wide range of security and
reliability threats. This section discusses some important (in
our view) open challenges for achieving robust ML systems.

ML systems have numerous security issues mainly related
to 1) outsourced training, 2) untrusted fabrication foundries,
and 3) attacker access to the environment in which the system
is deployed. Among these security issues, some of the most
important are the following:
1) Securing training datasets before outsourcing them for

training. This may involve encrypting the training dataset
from the cloud servers to ensure IP privacy, or minimizing
the impact of data poisoning attacks.

2) Obfuscating ML hyper-parameters, algorithms and IPs.
There are several defenses to successfully obfuscate ML
hyper-parameters, algorithms and IPs using blurring and
noise addition. However, as indicated earlier, these tech-
niques do not often work well in practice. Hence, a
prospective obfuscation method could be the inclusion of
various obfuscation techniques in a single framework, and
random switching between these techniques to ensure a
more secure ML system.

3) Ensuring fairness of training, i.e., preventing bias of the
trained NN. Gradient-based adversarial input generation
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and counter-examples generated via formal verification of
NNs can be used to identify bias in training. This method is
based on the observation that adversarial inputs are more
likely to identify the output classes to which the trained
NN is biased towards.

4) Validating the functional and behavioral correctness of ML
hardware. Formal verification methods may be required to
provide stronger guarantees on the ML hardware opera-
tion by performing verification under diverse security and
reliability conditions.

5) Minimizing the accessibility to side-channel leakages. This
can be achieved by minimizing the sharing of resources
like memory and power, hence ensuring the hardware
isolation of the ML system. However, this may be a costly
solution for most ML applications. Another prospective
solution to ensure minimal access of an attacker to the side-
channel leakages can be the introduction of complementary
synthetic noise to nullify the side-channel signatures of the
system.

The DNN model and the hardware that runs the model
are both vulnerable to inconsistencies in performance over
their life time. Major unresolved reliability challenges in ML
systems include:

1) Developing frameworks to emulate ML systems under di-
verse operating conditions. This is essential to 1) study
and better understand the reliability challenges of the
systems deployed in physical environment, 2) assess the
performance of the available mitigation techniques, and 3)
analyze the trade-offs between these approaches to identify
the solution that ensures the highest system reliability.

2) Providing a fault-safe runtime in case of system discrepan-
cies. Currently, such fault-safe techniques include the use
of redundancies at hardware and software levels, which
ensure that, in case of a component malfunctioning, the
overall performance of the system is not affected. However,
these measures are generally very costly, and hence, there
still exists the need for better fault-safe mechanisms for
ML systems.

3) Hampering the progression of subsystem failures to the
interconnected components. This requires mitigation ap-
proaches that can provide cross-layer reliability to ensure
that a failure in one system component does not propagate
and affect the results of the next system component(s).

Formal verification is a promising way to provide strong
robustness guarantees in ML systems via mathematical proofs.
The major challenges for making formal verification a practi-
cal tool to ensure robustness include:

1) Formally modeling the non-linear, non-convex behavior of
ML systems. Complete verification with existing modelling
approaches (e.g., Big-M) is often not the optimal solution
due to the large number of generated clauses/constraints.
Incomplete verification is also not the optimal solution
because it may lead to false positive results due to over-
approximation.

2) Incorporating the uncertainties of the real world into the
formal system model. Namely, the verification of the system
under different reliability factors, e.g., environmental noise.

3) Inspecting system behavior for all possible inputs. Formal
verification is widely acclaimed due its rigorous analysis
and complete results. However, due to the complexity
of NN verification, current approaches rely on applying
verification to only a subset of inputs (i.e., seed inputs).
Providing complete guarantees regarding system behavior
requires more rigorous verification approaches.

4) Optimizing the verification goal to reduce the computa-
tional complexity of the verification problem. As the size
of the underlying ML system increases, the size of its
formal representation also increases. This requires large
computational overhead and time to formally verify ML
systems. Hence, simplifying the verification problem prior
to the actual verification can reduce the computational
complexity of the problem.

5) Improving the timing efficiency of verification, while en-
suring the completeness of verification results. There is a
trade-off between the timing cost of verification and the
completeness of the verification results. With the devel-
opment of efficient verification tools, the bridge between
timing efficiency and completeness has been reduced.
However, achieving the most optimal trade-off between
timing efficiency and completeness still remains an open
challenge.

6) Scaling the verification algorithm to be applicable to
practically-sized DNNs. With improvements in verification
tools and formalization approaches, the size of the DNNs
that can be formally verified is increasing gradually.

Tackling the previous challenges and research directions
is important for providing secure and reliable ML systems.
However, as ML is a domain that advances very rapidly, there
will probably be new challenges and research directions that
will become important with the emergence of new ML models,
deeper DNNs, unreliable hardware with reduced technology
nodes, and new attack models.

IX. CONCLUSION

Machine Learning (ML), particularly Neural Networks
(NNs), forms an essential component of modern Cyber-
Physical Systems (CPSs). However, due to outsourced training,
compromised foundries, stealthy attackers, system aging, and
the harsh operating environment of these systems, both at
the system cloud and edge, they are vulnerable to numerous
security and reliability concerns. This survey highlight 1) the
most prominent security and reliability challenges for ML
systems, 2) the mitigation approaches to defend the systems
against these challenges, and 3) formal methodologies for
verifying trained NNs. This survey also summarizes the most
important open challenges that hamper robust ML systems.
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[75] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
machine learning models via prediction APIs,” in 25th {USENIX}
Security Symposium ({USENIX} Security 16), 2016, pp. 601–618.

[76] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that
exploit confidence information and basic countermeasures,” in SIGSAC
Conference on Computer and Communications Security. ACM, 2015,
pp. 1322–1333.

[77] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox
testing of deep learning systems,” in Symposium on Operating Systems
Principles. ACM, 2017, pp. 1–18.

[78] ——, “Towards practical verification of machine learning: The case of
computer vision systems,” arXiv preprint arXiv:1712.01785, 2017.

[79] H. Hosseini, S. Kannan, and R. Poovendran, “Dropping pixels for
adversarial robustness,” CoRR, vol. abs/1905.00180, 2019. [Online].
Available: http://arxiv.org/abs/1905.00180

[80] T.-W. Weng, H. Zhang, P.-Y. Chen, A. Lozano, C.-J. Hsieh, and
L. Daniel, “On Extensions of CLEVER: A Neural Network Robustness
Evaluation Algorithm,” in Global Conference on Signal and Informa-
tion Processing (GlobalSIP). IEEE, 2018, pp. 1159–1163.

[81] I. Goodfellow, “Gradient masking causes clever to overestimate adver-
sarial perturbation size,” arXiv preprint arXiv:1804.07870, 2018.

[82] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients give a
false sense of security: Circumventing defenses to adversarial exam-
ples,” arXiv preprint arXiv:1802.00420, 2018.

[83] N. Papernot, P. McDaniel, A. Sinha, and M. Wellman, “Towards the
science of security and privacy in machine learning,” arXiv preprint
arXiv:1611.03814, 2016.

[84] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in Symposium on Security and Privacy (SP). IEEE, 2017,
pp. 39–57.

[85] O. Bastani, Y. Ioannou, L. Lampropoulos, D. Vytiniotis, A. Nori, and
A. Criminisi, “Measuring neural net robustness with constraints,” in
Advances in neural information processing systems, 2016, pp. 2613–
2621.

[86] N. Narodytska, S. Kasiviswanathan, L. Ryzhyk, M. Sagiv, and
T. Walsh, “Verifying properties of binarized deep neural networks,”
in AAAI Conference on Artificial Intelligence, 2018.

[87] S. Dutta, S. Jha, S. Sankaranarayanan, and A. Tiwari, “Output range
analysis for deep feedforward neural networks,” in NASA Formal
Methods Symposium. Springer, 2018, pp. 121–138.

[88] V. Tjeng, K. Y. Xiao, and R. Tedrake, “Evaluating robustness of
neural networks with mixed integer programming,” in International
Conference on Learning Representations (ICLR), 2019.

[89] M. A. Siddiqui, J. W. Stokes, C. Seifert, E. Argyle, R. McCann, J. Neil,
and J. Carroll, “Detecting Cyber Attacks Using Anomaly Detection
with Explanations and Expert Feedback,” in International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019,
pp. 2872–2876.

[90] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B. Sunar,
“Trojan detection using IC fingerprinting,” in 2007 IEEE Symposium
on Security and Privacy (SP’07). IEEE, 2007, pp. 296–310.

[91] S. Adee, “The hunt for the kill switch,” iEEE SpEctrum, vol. 45, no. 5,
pp. 34–39, 2008.

17

http://arxiv.org/abs/1904.08653
http://arxiv.org/abs/1904.08653
http://arxiv.org/abs/1905.00180


[92] Y. Jin and Y. Makris, “Hardware trojan detection using path delay fin-
gerprint,” in 2008 IEEE International workshop on hardware-oriented
security and trust. IEEE, 2008, pp. 51–57.

[93] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan
taxonomy and detection,” IEEE design & test of computers, vol. 27,
no. 1, pp. 10–25, 2010.

[94] L.-T. Wang, Y.-W. Chang, and K.-T. T. Cheng, Electronic design
automation: synthesis, verification, and test. Morgan Kaufmann, 2009.

[95] A. Dubey, R. Cammarota, and A. Aysu, “Maskednet: The first hardware
inference engine aiming power side-channel protection,” arXiv preprint
arXiv:1910.13063, 2010.

[96] Q. Sun, L. Ma, S. Joon Oh, L. Van Gool, B. Schiele, and M. Fritz,
“Natural and effective obfuscation by head inpainting,” in Conference
on Computer Vision and Pattern Recognition, 2018, pp. 5050–5059.

[97] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter, “Accessorize to
a crime: Real and stealthy attacks on state-of-the-art face recognition,”
in SIGSAC Conference on Computer and Communications Security.
ACM, 2016, pp. 1528–1540.

[98] B. Wang and N. Z. Gong, “Stealing hyperparameters in machine
learning,” in Symposium on Security and Privacy (SP). IEEE, 2018,
pp. 36–52.

[99] Z. Ghodsi, T. Gu, and S. Garg, “Safetynets: Verifiable execution of
deep neural networks on an untrusted cloud,” in Advances in Neural
Information Processing Systems, 2017, pp. 4672–4681.

[100] P. Mohassel and Y. Zhang, “SecureML: A system for scalable privacy-
preserving machine learning,” in Symposium on Security and Privacy
(SP). IEEE, 2017, pp. 19–38.

[101] J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neural network
predictions via MiniONN transformations,” in SIGSAC Conference on
Computer and Communications Security. ACM, 2017, pp. 619–631.

[102] M. Isakov, L. Bu, H. Cheng, and M. A. Kinsy, “Preventing neural
network model exfiltration in machine learning hardware accelerators,”
in 2018 Asian Hardware Oriented Security and Trust Symposium
(AsianHOST). IEEE, 2018, pp. 62–67.

[103] Y. Liu, D. Dachman-Soled, and A. Srivastava, “Mitigating reverse
engineering attacks on deep neural networks.”

[104] X. Wang, R. Hou, Y. Zhu, J. Zhang, and D. Meng, “Npufort: a secure
architecture of dnn accelerator against model inversion attack,” in
Proceedings of the 16th ACM International Conference on Computing
Frontiers. ACM, 2019, pp. 190–196.

[105] T. Hunt, C. Song, R. Shokri, V. Shmatikov, and E. Witchel, “Chiron:
Privacy-preserving machine learning as a service,” arXiv preprint
arXiv:1803.05961, 2018.

[106] A. Tuszynski, “Essential Pattern and Sequence Sensitivity in Semi-
conductor Memories,” Minnesota Univ., Minneapolis (USA). Dept. of
Electrical Engineering, Tech. Rep., 1980.

[107] C. Constantinescu, “Trends and challenges in vlsi circuit reliability,”
IEEE micro, vol. 23, no. 4, pp. 14–19, 2003.

[108] R. Baumann, “Soft errors in advanced computer systems,” Design &
Test of Computers, vol. 22, no. 3, pp. 258–266, 2005.

[109] W. D. Greason and G. P. Castle, “The Effects of Electrostatic Discharge
on Microelectronic Devices A Review,” Transactions on industry
applications, no. 2, pp. 247–252, 1984.

[110] J. Zhang, K. Liu, F. Khalid, M. Hanif, S. Rehman, T. Theocharides,
A. Artussi, M. Shafique, and S. Garg, “INVITED: Building Robust
Machine Learning Systems: Current Progress, Research Challenges,
and Opportunities,” in Design Automation Conference, 06 2019, pp.
1–4.

[111] J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “Revisiting memory errors
in large-scale production data centers: Analysis and modeling of new
trends from the field,” in 2015 45th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks. IEEE, 2015, pp.
415–426.

[112] W. Wu and N. Seifert, “MBU-Calc: A compact model for multi-bit
upset (MBU) SER estimation,” in International Reliability Physics
Symposium. IEEE, 2015, pp. SE–2.

[113] M. Shafique, S. Garg, J. Henkel, and D. Marculescu, “The EDA chal-
lenges in the dark silicon era: Temperature, reliability, and variability
perspectives,” in Design Automation Conference. ACM, 2014, pp.
1–6.

[114] A. Tiwari and J. Torrellas, “Facelift: Hiding and slowing down aging in
multicores,” in International Symposium on Microarchitecture. IEEE
Computer Society, 2008, pp. 129–140.

[115] K. Kang, S. Gangwal, S. P. Park, and K. Roy, “NBTI induced
performance degradation in logic and memory circuits: How effectively
can we approach a reliability solution?” in Asia and South Pacific
Design Automation Conference. IEEE Computer Society Press, 2008,
pp. 726–731.

[116] M. Shafique, F. Khalid, and S. Rehman, “Intelligent security measures
for smart cyber physical systems,” in Euromicro Conference on Digital
System Design (DSD). IEEE, 2018, pp. 280–287.

[117] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing
them: An experimental study of dram disturbance errors,” in Pro-
ceeding of the 41st Annual International Symposium on Computer
Architecuture, ser. ISCA ’14, 2014, pp. 361–372.

[118] O. Mutlu and J. S. Kim, “Rowhammer: A retrospective,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
2019.

[119] S. Khan, D. Lee, Y. Kim, A. R. Alameldeen, C. Wilkerson, and
O. Mutlu, “The efficacy of error mitigation techniques for DRAM
retention failures: A comparative experimental study,” in ACM SIG-
METRICS Performance Evaluation Review, vol. 42, no. 1. ACM,
2014, pp. 519–532.

[120] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu, “An exper-
imental study of data retention behavior in modern DRAM devices:
Implications for retention time profiling mechanisms,” in Proceedings
of the 40th Annual International Symposium on Computer Architecture,
ser. ISCA ’13. New York, NY, USA: ACM, 2013, pp. 60–71.

[121] M. K. Qureshi, D.-H. Kim, S. Khan, P. J. Nair, and O. Mutlu,
“AVATAR: A variable-retention-time (VRT) aware refresh for DRAM
systems,” in 2015 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks. IEEE, 2015, pp. 427–437.

[122] S. Khan, C. Wilkerson, Z. Wang, A. R. Alameldeen, D. Lee, and
O. Mutlu, “Detecting and mitigating data-dependent dram failures by
exploiting current memory content,” in Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture. ACM,
2017, pp. 27–40.

[123] J. Blandford, A. Waskiewicz, and J. Pickel, “Cosmic ray induced
permanent damage in MNOS EAROMs,” Transactions on Nuclear
Science, vol. 31, no. 6, pp. 1568–1570, 1984.

[124] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in
the physical world,” in International Conference on Learning Repre-
sentations, ICLR, 2017, pp. 1–14.

[125] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao,
A. Prakash, T. Kohno, and D. Song, “Robust physical-world attacks
on deep learning visual classification,” in Conference on Computer
Vision and Pattern Recognition, 2018, pp. 1625–1634.

[126] J. Lu, H. Sibai, E. Fabry, and D. Forsyth, “No need to worry about
adversarial examples in object detection in autonomous vehicles,” arXiv
preprint arXiv:1707.03501, 2017.

[127] “Self-Driving Uber Car Kills Pedestrian in Arizona, Where
Robots Roam,” https://www.nytimes.com/2018/03/19/technology/
uber-driverless-fatality.html.

[128] P. Reviriego, J. A. Maestro, S. Baeg, S. Wen, and R. Wong, “Protection
of memories suffering MCUs through the selection of the optimal
interleaving distance,” Transactions on Nuclear Science, vol. 57, no. 4,
pp. 2124–2128, 2010.

[129] F. Vargas and M. Nicolaidis, “SEU-tolerant SRAM design based on
current monitoring,” in International Symposium on Fault-Tolerant
Computing. IEEE, 1994, pp. 106–115.

[130] G.-C. Yang, “Reliability of semiconductor RAMs with soft-error scrub-
bing techniques,” IEE Proceedings-Computers and Digital Techniques,
vol. 142, no. 5, pp. 337–344, 1995.

[131] R. E. Lyons and W. Vanderkulk, “The use of triple-modular redun-
dancy to improve computer reliability,” IBM journal of research and
development, vol. 6, no. 2, pp. 200–209, 1962.

[132] R. W. Hamming, “Error detecting and error correcting codes,” The Bell
system technical journal, vol. 29, no. 2, pp. 147–160, 1950.

[133] M.-Y. Hsiao, “A class of optimal minimum odd-weight-column SEC-
DED codes,” IBM Journal of Research and Development, vol. 14, no. 4,
pp. 395–401, 1970.

[134] M. Patel, J. S. Kim, H. Hassan, and O. Mutlu, “Understanding and
modeling on-die error correction in modern DRAM: An experimental
study using real devices,” in 2019 49th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). IEEE, 2019,
pp. 13–25.

18

https://www.nytimes.com/2018/03/19/technology/uber-driverless-fatality.html
https://www.nytimes.com/2018/03/19/technology/uber-driverless-fatality.html


[135] “Meet Tesla’s self-driving car computer and
its two AI brains,” https://www.cnet.com/news/
meet-tesla-self-driving-car-computer-and-its-two-ai-brains/.

[136] M. A. Hanif, F. Khalid, R. V. W. Putra, S. Rehman, and M. Shafique,
“Robust machine learning systems: Reliability and security for deep
neural networks,” in International Symposium on On-Line Testing And
Robust System Design (IOLTS). IEEE, 2018, pp. 257–260.

[137] H. Lee, M. Shafique, and M. A. Al Faruque, “Aging-aware workload
management on embedded GPU under process variation,” Transactions
on Computers, vol. 67, no. 7, pp. 920–933, 2018.

[138] M. Patel, J. S. Kim, and O. Mutlu, “The reach profiler (REAPER):
Enabling the mitigation of dram retention failures via profiling at
aggressive conditions,” in 2017 ACM/IEEE 44th Annual International
Symposium on Computer Architecture (ISCA), June 2017, pp. 255–268.

[139] D. Lee, S. Khan, L. Subramanian, S. Ghose, R. Ausavarungnirun,
G. Pekhimenko, V. Seshadri, and O. Mutlu, “Design-induced latency
variation in modern DRAM chips: Characterization, analysis, and
latency reduction mechanisms,” Proceedings of the ACM on Measure-
ment and Analysis of Computing Systems, vol. 1, no. 1, p. 26, 2017.

[140] S. Khan, D. Lee, and O. Mutlu, “PARBOR: An efficient system-level
technique to detect data-dependent failures in DRAM,” in 2016 46th
Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN). IEEE, 2016, pp. 239–250.

[141] J. Zhang, K. Rangineni, Z. Ghodsi, and S. Garg, “Thundervolt: enabling
aggressive voltage underscaling and timing error resilience for energy
efficient deep learning accelerators,” in Design Automation Conference.
ACM, 2018, p. 19.

[142] P. N. Whatmough, S. K. Lee, D. Brooks, and G.-Y. Wei, “DNN engine:
A 28-nm timing-error tolerant sparse deep neural network processor for
IoT applications,” Journal of Solid-State Circuits, vol. 53, no. 9, pp.
2722–2731, 2018.

[143] E. Karl, D. Sylvester, and D. Blaauw, “Timing error correction
techniques for voltage-scalable on-chip memories,” in International
Symposium on Circuits and Systems. IEEE, 2005, pp. 3563–3566.

[144] S. Campos, E. Clarke, W. Marrero, and M. Minea, “Timing analysis of
industrial real-time systems,” in Proceedings of 1995 IEEE Workshop
on Industrial-Strength Formal Specification Techniques. IEEE, 1995,
pp. 97–107.

[145] M. A. Pena, J. Cortadella, A. Kondratyev, and E. Pastor, “Formal
verification of safety properties in timed circuits,” in Proceedings
Sixth International Symposium on Advanced Research in Asynchronous
Circuits and Systems (ASYNC 2000)(Cat. No. PR00586). IEEE, 2000,
pp. 2–11.

[146] S. Schechter, G. H. Loh, K. Strauss, and D. Burger, “Use ECP,
Not ECC, for Hard Failures in Resistive Memories,” in International
Symposium on Computer Architecture. ACM, 2010, pp. 141–152.

[147] J. Wang, X. Dong, and Y. Xie, “Point and Discard: A Hard-error-
tolerant Architecture for Non-volatile Last Level Caches,” in Proceed-
ings of the 49th Annual Design Automation Conference. ACM, 2012,
pp. 253–258.

[148] J. J. Zhang et al., “Analyzing and mitigating the impact of permanent
faults on a systolic array based neural network accelerator,” in VTS.
IEEE, 2018, pp. 1–6.

[149] S. Koppula, L. Orosa, A. G. Yağlıkçı, R. Azizi, T. Shahroodi,
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APPENDIX

Neural Network (NN) Description Pictorial Representation of the Network

Feed-Forward Neural Net-
work

These are the neural networks with neurons
in every layer impacting only the decision
of neurons in the successive layers. Hence,
the networks are cycle/loop - free. The
feed-forward networks are also called fully-
connected when every neuron in the preced-
ing layer is connected to every neuron in the
successive layer.

Recurrent Neural Network
(RNN)

RNNs comprise of feedback loop(s); hence,
neurons in one layer can impact the val-
ues of neurons in successive as well as
preceding layers. This provides temporal
characteristics to the RNNs, i.e., the values
of the neurons (or the internal memory of
the network) varies temporally.

Hidden LayersInput Layer Output Layer

Convolutional Neural Net-
work (CNN)

Unlike the earlier fully-connected networks,
CNNs share network weights via convo-
lution operation. This improves the local
spatial correlation of the input, and ensures
that only the most prominent input features
of the input are carried to the successive
network layers.

Convolution

Max Pooling

Fu
lly

 C
on

ne
ct

ed
 L

ay
er

s

Generative Adversarial
Network (GAN)

GANs involve an interplay between a gener-
ator and a discriminator for the training of
the network. The generator produces syn-
thetic inputs in the same latent space as
the training dataset, while the discrimina-
tor learns to distinguish the original data
from the synthetic data. Hence, the objective
of the generator is to maximize the error
(i.e., generate more realistic synthetic in-
puts) while the discriminator minimizes the
error by learning to differentiate between
real and synthetic input.

Generator

Discriminator

Training Inputs

Random 
Noise

Error Function

Capsule Network (Cap-
sNet)

CapsNets are build up of layers that operate
on vectors, where each element of the vector
represents the instantiation parameter that
deduces whether the feature represented in
the vector is actually present in the input.
The length of the vector, on other hand,
represents the instantiation probability. The
connections between two consecutive cap-
sule layers are learned dynamically during
inference through the routing-by-agreement
algorithm, which iteratively updates the
coupling coefficients of the CapsNet. In this
way, capsules learn to interpret high level
features in a hierarchical manner.

Spiking Neural Network

All the NNs discussed above assume a
normalized firing frequency for the neurons.
This neglects the dynamic behavior of the
inputs like speech. SNNs make use of spike
trains to depict the spatio-temporal charac-
teristics of the input. Hence, SNNs are an
important class of NNs particularly for time-
dependent applications.

1

Data Encoding Network Data Decodinginput output

Conversion of data 
to spikes based on a 

spike coding

q Synaptic weights learning
q Neuron membrane potential
q Spikes generation 

Interpretation of  
spikes into data based 

on a spike coding

Synaptic model Network architecture Learning rule
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