RowCone

Fast and Energy-Efficient In-DRAM **Bulk Data Copy and Initialization**

Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Phillip B. Gibbons*, Michael A. Kozuch*, Todd C. Mowry Carnegie Mellon University *Intel Pittsburgh

Memory Bandwidth Bottleneck

Bulk Copy and Initialization

> Triggered frequently by many applications

- > Consume high latency, bandwidth, and energy
- > Do not require any computation

Our Approach: Perform them in DRAM

DRAM Chip Organization and Operation

Row of DRAM cells (8Kb)

Even a single cell (orange) access transfers an entire row of data from the cells to the row buffer.

RowClone – Fast Parallel Mode (FPM)

+ 11.6X latency reduction, 74.4X energy reduction src and dst in same subarray, only full row copy

Pipelined Serial Mode (PSM)

> Bank-to-bank cacheline copy > Overlap read/write using shared bus > 1.9X latency, 3.2X energy reduction **Overall DRAM area cost = 0.01%**

System Design

> ISA: memcpy and meminit »µArch: manage coherence > **OS**: smart page mapping

Primitives and Applications Accelerated by RowClone

Copy/Zero Intensive Apps

Single Core Results

IPC Improvement Memory Energy Reduction

Multi-Core Results

System Performance Memory Energy Efficiency

