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Teaser
• Memory vendors advertise RowHammer-free devices

• What is Target Row Refresh (TRR)? Not a single mitigation!

• Reverse-engineering of in-DRAM mitigations

• The Many-sided RowHammer

• Hammering up to 20 aggressor rows

• 3 major vendors all vulnerable: Samsung, Micron, SK Hynix

• Currently representing over 95% of the DRAM market
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DRAM Refresh

• DRAM is dynamic because data must be refresh periodically

• Retention time (i.e., 64ms)

• The MC issues a REFRESH command every 7.8µs

• Only a small portion of memory is refreshed with a command

• 8192 refreshes within a 64ms interval
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ACTIVATE Row 1

Read operation: Row 1
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PRECHARGE Row 1

Read operation: Row 3
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ACTIVATE Row 3

Read operation: Row 3
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Bit flip!

RowHammer
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Bit flip!

Double-sided RowHammer
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Hardware mitigations

• Error-correcting code (ECC) [1]

Refreshing a row restores the cells electric charge: it prevents flips.

• Double refresh

• Target Row Refresh (TRR)

[1] L. Cojocaret al., “Exploiting Correcting Codes: On the Effectiveness of ECC Memory Against Rowhammer Attacks,” in S&P, 2019.
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Target Row Refresh

• TRR-like mitigations track rows activations and refresh victim rows

• Many possible implementations in practice

• Security through obscurity

• Pseudo TRR (pTRR)

• Memory controller implementation

• In-DRAM TRR

• Embedded in the DRAM circuitry
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Timeline

'12 '14 '15'13 '16 '18'17 '19

pTRR DDR3
Intel reports pTRR on 
DDR3 server systems

pTRR DDR4
First DDR4 generation is 

pTRR protected

In-DRAM TRR
Earliest manufacturing date 
of RH-free DRAM modules

Last generation DIMMs we focus on
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Goals

• Reverse engineer TRR to demystify in-DRAM mitigations

• Memory device assessment

• A Novel hammering pattern: The Many-sided RowHammer

• Hammering up to 20 aggressor rows allows to bypass TRR

• Automatically test memory devices: TRRespass

• Automate hammering patterns generation
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Challenges

• Analysis from the CPU side not possible

• No timing side-channels

• FPGA-based memory controller [1,2]

[1] H. Hassan et al., “SoftMC: A Flexible and Practical Open-Source Infrastructure for Enabling Experimental DRAM Studies,” in HPCA, 2017
[2] SAFARI Research Group, “SoftMC — GitHub Repository,” https:// github.com/CMU-SAFARI/SoftMC. 
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Building blocks

Abstractions: 

• Sampler
• Track aggressor rows activations

• Keep a set of rows

• Inhibitor
• Prevent bit flips 

• Refresh victims
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Case study: Vendor C

How big is the sampler?

• Pick N aggressor rows

• Perform a series of hammers (activations of aggressors)
• 8K activations 

• After each series of hammers, issue R refreshes

• 10 Rounds

Activations Refreshes Activations Refreshes

Round
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#Corruptions

Case study: Vendor C
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#Corruptions

Case study: Vendor C
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#Corruptions

Case study: Vendor C
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Case study: Observations

• The TRR mitigation acts on every refresh command

21



#Corruptions
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Case study: Observations

• The TRR mitigation acts on every refresh command

• The mitigation can sample more than one aggressor per refresh interval

• The mitigation can refresh only a single victim within a refresh operation
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#Corruptions

Case study: Vendor C
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#Corruptions

Case study: Vendor C
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Case study: Observations

• The TRR mitigation acts on every refresh command

• The mitigation can sample more than one aggressor per refresh interval

• The mitigation can refresh only a single victim within a refresh operation

• Sweeping the number of refresh operations and aggressor rows while 

hammering reveals the sampler size
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with tREFi == 7.8μs

Case study: Vendor C
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Case study: Observations

• The TRR mitigation acts on every refresh command

• The mitigation can sample more than one aggressor per refresh interval

• The mitigation can refresh only a single victim within a refresh operation

• Sweeping the number of refresh operations and aggressor rows while 

hammering reveals the sampler size

• The sampling mechanism is affected by the addresses of aggressor rows
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TRRespass: The RowFuzzer

• Black-box fuzzing for RowHammer
• Ignore the MC optimizations

• Scalable approach for testing

• The sampler can track a limited number of aggressor rows 
• # Aggressors

• The sampler design may be row address dependent
• Aggressor Location
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TRRespass: Results

• 42 DIMMS from 3 of the major vendors: Samsung, Micron, SK Hynix

• 95% of the market

• Testing 256MB of contiguous memory against the best pattern

• 13 DIMMs with bit flips

• Multiple effective patterns for each of them

• Bit flips with double refresh

• Fuzzing is effective. 

• How to Improve? Parameter selection.
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Exploitation

• Memory templating

• Find the right hammering pattern

• Locations of aggressors not always fundamental 

• Bit flips are repeatable

• Spurious flips

• We demonstrate the feasibility of 3 example attacks:

• Privilege escalation [1]

• Access to co-hosted VM via RSA key corruption [2]

• Sudo exploit: opcode flipping [3]

[1] M. Seaborn and T. Dullien, “Exploiting the DRAM Rowhammer Bug to Gain Kernel Privileges,” in Black Hat USA, 2015
[2] K. Razavi et al., “Flip Feng Shui: Hammering a Needle in the Software Stack,” in USENIX Sec., 2016
[3] D. Gruss et al., “Another Flip in the Wall of Rowhammer Defenses,” in S&P, 2018.
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Conclusion

• Bit flips with more than 20 aggressor rows!

• DDR4 devices are much more vulnerable than DDR3

• Bit flips with less than 50K activations

• Fuzzing can help in memory testing

• Reverse engineering to find meaningful parameters 

• RowHammer is still a serious problem

• No prompt mitigations available
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Questions!
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