
TRRespass: Exploiting the Many Sides of
Target Row Refresh

Pietro Frigo1 Emanuele Vannacci1 Hasan Hassan2 Victor Van der Veen3

Onur Mutlu2 Herbert Bos1 Cristiano Giuffrida1 Kaveh Razavi1

1Vrije Universiteit Amsterdam 2ETH Zürich 3Qualcomm Technologies Inc.

1

Teaser
• Memory vendors advertise RowHammer-free devices

• What is Target Row Refresh (TRR)? Not a single mitigation!

• Reverse-engineering of in-DRAM mitigations

• The Many-sided RowHammer

• Hammering up to 20 aggressor rows

• 3 major vendors all vulnerable: Samsung, Micron, SK Hynix

• Currently representing over 95% of the DRAM market

2

CPU

Memory request flow

Memory
Controller

DRAM commands

DIMMs

DRAM

3

DRAM Refresh

• DRAM is dynamic because data must be refresh periodically

• Retention time (i.e., 64ms)

• The MC issues a REFRESH command every 7.8µs

• Only a small portion of memory is refreshed with a command

• 8192 refreshes within a 64ms interval

4

1 1 1 1

1 1 1 1

0 1 0

Row buffer

1

0 1 1 0 Row 1

Row 2

Row 3

Row 0

Memory array

5

ACTIVATE Row 1

Read operation: Row 1

1 1 1 1

1 1 1 1

0 1 0 1

- - - - Row 1

Row 2

Row 3

Row 0

0 1 1 0

6

PRECHARGE Row 1

Read operation: Row 3

1 1 1 1

1 1 1 1

0 1 0 1

0 1 1 0 Row 1

Row 2

Row 3

Row 0

- - - -

7

ACTIVATE Row 3

Read operation: Row 3

1 1 1 1

1 1 1 1

- - - -

0 1 1 0 Row 1

Row 2

Row 3

Row 0

0 1 0 1

8

Bit flip!

RowHammer

1 1 1 1

1 0 1 1

0 1 0 1

0 1 1 0 Row 1

Row 2

Row 3

Row 0

- - - -

9

Bit flip!

Double-sided RowHammer

1 1 1 1

1 0 1 1

0 1 0 1

0 1 1 0 Row 1

Row 2

Row 3

Row 0

- - - -

Aggressor row

1 1 1 1

Aggressor row

Victim row

10

Hardware mitigations

• Error-correcting code (ECC) [1]

Refreshing a row restores the cells electric charge: it prevents flips.

• Double refresh

• Target Row Refresh (TRR)

[1] L. Cojocaret al., “Exploiting Correcting Codes: On the Effectiveness of ECC Memory Against Rowhammer Attacks,” in S&P, 2019.
11

Target Row Refresh

• TRR-like mitigations track rows activations and refresh victim rows

• Many possible implementations in practice

• Security through obscurity

• Pseudo TRR (pTRR)

• Memory controller implementation

• In-DRAM TRR

• Embedded in the DRAM circuitry

12

Timeline

'12 '14 '15'13 '16 '18'17 '19

pTRR DDR3
Intel reports pTRR on
DDR3 server systems

pTRR DDR4
First DDR4 generation is

pTRR protected

In-DRAM TRR
Earliest manufacturing date
of RH-free DRAM modules

Last generation DIMMs we focus on

13

Goals

• Reverse engineer TRR to demystify in-DRAM mitigations

• Memory device assessment

• A Novel hammering pattern: The Many-sided RowHammer

• Hammering up to 20 aggressor rows allows to bypass TRR

• Automatically test memory devices: TRRespass

• Automate hammering patterns generation

14

Challenges

• Analysis from the CPU side not possible

• No timing side-channels

• FPGA-based memory controller [1,2]

[1] H. Hassan et al., “SoftMC: A Flexible and Practical Open-Source Infrastructure for Enabling Experimental DRAM Studies,” in HPCA, 2017
[2] SAFARI Research Group, “SoftMC — GitHub Repository,” https:// github.com/CMU-SAFARI/SoftMC.

15

Building blocks

Abstractions:

• Sampler
• Track aggressor rows activations

• Keep a set of rows

• Inhibitor
• Prevent bit flips

• Refresh victims

16

Case study: Vendor C

How big is the sampler?

• Pick N aggressor rows

• Perform a series of hammers (activations of aggressors)
• 8K activations

• After each series of hammers, issue R refreshes

• 10 Rounds

Activations Refreshes Activations Refreshes

Round

17

#Corruptions

Case study: Vendor C

18

#Corruptions

Case study: Vendor C

19

#Corruptions

Case study: Vendor C

20

Case study: Observations

• The TRR mitigation acts on every refresh command

21

#Corruptions

Case study: Vendor C

22

Case study: Vendor C

#Corruptions

23

Case study: Observations

• The TRR mitigation acts on every refresh command

• The mitigation can sample more than one aggressor per refresh interval

• The mitigation can refresh only a single victim within a refresh operation

24

#Corruptions

Case study: Vendor C

25

#Corruptions

Case study: Vendor C

26

Case study: Observations

• The TRR mitigation acts on every refresh command

• The mitigation can sample more than one aggressor per refresh interval

• The mitigation can refresh only a single victim within a refresh operation

• Sweeping the number of refresh operations and aggressor rows while

hammering reveals the sampler size

27

with tREFi == 7.8μs

Case study: Vendor C

28

Case study: Observations

• The TRR mitigation acts on every refresh command

• The mitigation can sample more than one aggressor per refresh interval

• The mitigation can refresh only a single victim within a refresh operation

• Sweeping the number of refresh operations and aggressor rows while

hammering reveals the sampler size

• The sampling mechanism is affected by the addresses of aggressor rows

29

TRRespass: The RowFuzzer

• Black-box fuzzing for RowHammer
• Ignore the MC optimizations

• Scalable approach for testing

• The sampler can track a limited number of aggressor rows
• # Aggressors

• The sampler design may be row address dependent
• Aggressor Location

30

TRRespass: Results

• 42 DIMMS from 3 of the major vendors: Samsung, Micron, SK Hynix

• 95% of the market

• Testing 256MB of contiguous memory against the best pattern

• 13 DIMMs with bit flips

• Multiple effective patterns for each of them

• Bit flips with double refresh

• Fuzzing is effective.

• How to Improve? Parameter selection.

31

Exploitation

• Memory templating

• Find the right hammering pattern

• Locations of aggressors not always fundamental

• Bit flips are repeatable

• Spurious flips

• We demonstrate the feasibility of 3 example attacks:

• Privilege escalation [1]

• Access to co-hosted VM via RSA key corruption [2]

• Sudo exploit: opcode flipping [3]

[1] M. Seaborn and T. Dullien, “Exploiting the DRAM Rowhammer Bug to Gain Kernel Privileges,” in Black Hat USA, 2015
[2] K. Razavi et al., “Flip Feng Shui: Hammering a Needle in the Software Stack,” in USENIX Sec., 2016
[3] D. Gruss et al., “Another Flip in the Wall of Rowhammer Defenses,” in S&P, 2018.

32

Conclusion

• Bit flips with more than 20 aggressor rows!

• DDR4 devices are much more vulnerable than DDR3

• Bit flips with less than 50K activations

• Fuzzing can help in memory testing

• Reverse engineering to find meaningful parameters

• RowHammer is still a serious problem

• No prompt mitigations available

33

Questions!

34

