
Are We Susceptible to Rowhammer?
An End-to-End Methodology for

Cloud Providers
Lucian Cojocar, Jeremie Kim§†, Minesh Patel§, Lillian Tsai‡,

Stefan Saroiu, Alec Wolman, and Onur Mutlu§†

Microsoft Research, §ETH Zurich, †CMU, ‡MIT

2

Our Work

• Develop an end-to-end methodology to test if
any cloud server is susceptible to Rowhammer

• Must overcome two major technical challenges:
1. Develop instruction sequence to optimally hammer DRAM
2. Develop a strategy to map row adjacency inside DIMMs

• Apply methodology on three generations of Intel servers:
• Broadwell, Skylake, Cascade Lake

3

0

0 0 0 1

1 1 1

0 1 1 0

Row 1

Row 2

Row 3

C
o

l 1

C
o

l 2

C
o

l 3

C
o

l 4

ACT 1

ACT 3

1

loop:
load A // Row 1
load B // Row 3
clflush A
clflush B

“Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors”
Kim et al., ISCA ‘14

Rowhammer Primer

4

PC

PC

CPU DRAM
ACT 1 ACT 3 ACT 1 ACT 3 ACT 1 ACT 3 ACT 1ACT 3 ACT 1 ACT 3 ACT 1 ACT 3 ACT 1 ACT 3

Two Key Requirements for Rowhammer Testing

To be successful, methodology must create
worst-case testing conditions for DIMMs

1. Must generate highest rate of ACTs on a cloud server

2. Must hammer rows whose cells are adjacent inside DRAM

5

Challenges in Generating Highest Rate of ACTs

• How to measure rate of ACTs of instruction sequences?

➢We used a DDR bus analyzer

• Effectiveness of instruction sequence subject to many factors:
• Out of order execution
• Cache hierarchy
• Memory controller’s DRAM scheduling
• Memory traffic interference from OS and processes

6

DIMMCPU

DIMM & Bus Analyzer

ACT 1 ACT 3 ACT 1 ACT 3 ACT 1 ACT 3 ACT 1ACT 3

Typical Rowhammer Instruction Sequence

7

loop:
movzx rax, BYTE PTR [rcx]
movzx rax, BYTE PTR [rdx]
clflush{opt} BYTE PTR [rcx]
clflush{opt} BYTE PTR [rdx]
{m|l|s|no}-fence

Dozens of variations found in dozens of papers:

Rate of ACTs from Previous Instruction Sequences

8

Far from optimal

33%

Our Near-Optimal Instruction Sequence on
Skylake

9

Instruction sequence leverages micro-architectural side-effects

while (1) {
clflushopt A
clflushopt B

}

Two Key Requirements for Rowhammer Testing

To be successful, methodology must create
worst-case testing conditions for DIMMs

1. Must generate highest rate of ACTs on a cloud server

2. Must hammer rows whose cells are adjacent inside DRAM

10

Determining Physically Adjacent Rows

11

DIMM-specific,

Trade secret

UNKNOWNREVERSE-ENGINEERED

Chipset-specific,

Underspecified documentation

KNOWN

Straightforward

KNOWN

12

13

Fault Injector that Masks Refresh Commands

➢Fault the A14 signal to mask refreshes

14

Our Complete Hardware Stack

15

16

Key Takeaways

• Logical rows do not always map linearly inside DRAM devices

• Words in half-rows flip fewer bits than words in whole-rows

• All bits in the whole-rows are equally susceptible

• Some (but not all) bits in half-rows are equally susceptible

• Most, but not all, bits flip from 1 to 0

• Adjacency map differs from one vendor to another

• DIMMs sourced from different vendors have different # of bit flips

17

An end-to-end methodology to test if
any cloud server is susceptible to Rowhammer

• An instruction sequence to optimally hammer DRAM
➢All previous sequences have sub-optimal ACT rates
➢Two clflushopt instructions hammers at near-optimal rate

• A strategy to map row adjacency inside DIMMs
➢A DDR4 fault injector that masks refresh commands
➢Logical rows do not always map linearly

• Applied the methodology to three generations of Intel servers
➢Broadwell, Skylake, Cascade Lake

18

