Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities

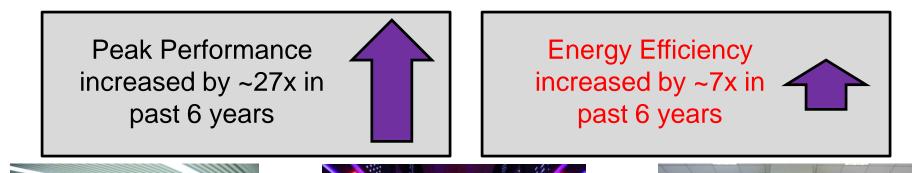
Ashutosh Pattnaik

Xulong Tang, Adwait Jog, Onur Kayıran, Asit Mishra, Mahmut Kandemir, Onur Mutlu, Chita Das

PACT '16

PennState WILLIAM & MARY AMD, ETHzürich

Era of Energy-Efficient Architectures



Future: 1 ExaFlops/s at 20 MW Peak power

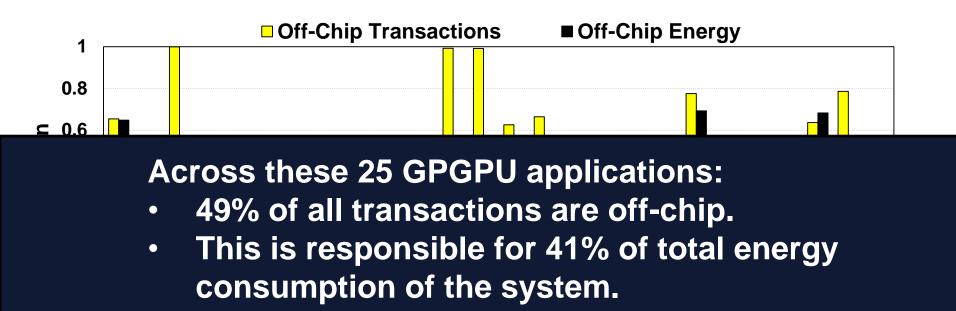
 Greatly need to improve energy efficiency as well as performance!

2010:	2013:	2016:
Tianhe-1A	Tianhe-2	Sunway TaihuLight
4.7 PFlop/s, 4 MW	54.9 PFlop/s, 17.8 MW	125.4 PFlop/s, 15.4 MW
~1.175 TFlops/W	~3.084 TFlops/W	~8.143 TFlops/W

Bottleneck

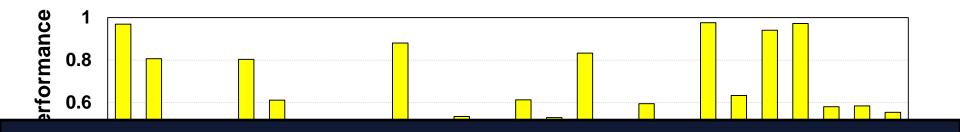
- Continuous energy-efficiency and performance scaling is not easy.
- Energy consumed by a floating-point operation is scaling down with technology scaling.
- Energy consumption due to data transfer overhead is not scaling down!

Bottleneck



Data movement and system energy consumption caused by off-chip memory accesses.

Bottleneck



Main memory accesses lead to 45% performance degradation!

Performance normalized to a hypothetical GPU where all the off-chip accesses hit in the last-level cache.

Outline

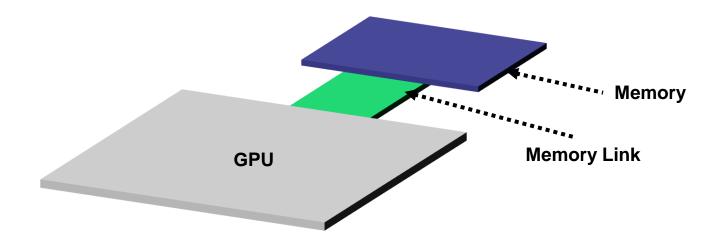
- Introduction and Motivation
- Background and Challenges
- Design of Kernel Offloading Mechanism
- Design of Concurrent Kernel Management
- Simulation Setup and Evaluation
- Conclusions

Revisiting Processing-In-Memory (PIM)

- It's a promising approach to minimize data movement.
- The concept dates back to the late 1960s
- Technological limitations of integrating fast computational units in memory was a challenge
- Significant advances in adoption of 3D-stacked memory has
 - enabled tight integration of memory dies and logic layer
 - brought computational units into the memory stack

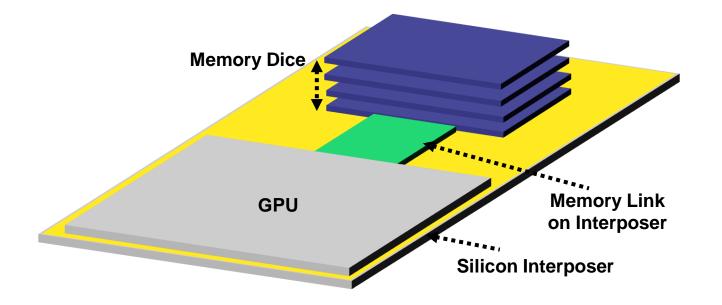
- We integrate PIM units to a GPU based system and we call this as "PIM-Assisted GPU architecture".
- At least one 3D-stacked memory is integrated with PIM units and is placed adjacent to a traditional GPU design.

• Traditional GPU architecture*

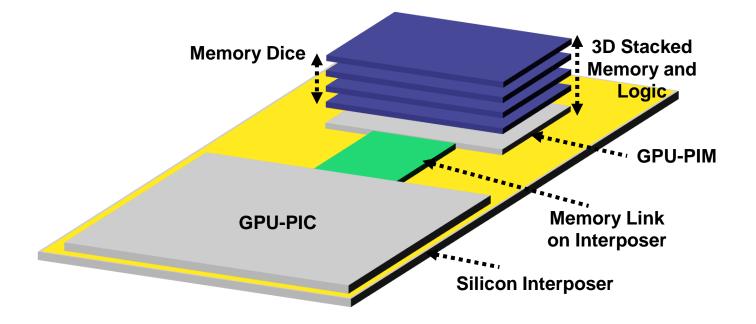


* Only a single DRAM partition is shown for illustration purposes

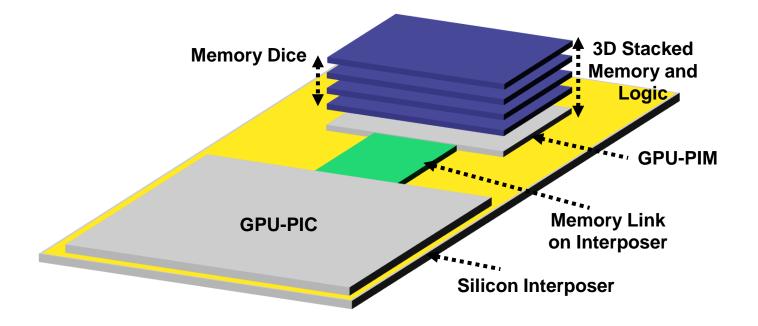
• GPU architecture with 3D-stacked memory on a silicon interposer



- Now we add a logic layer to the 3D-stacked memory and we call this logic layer as GPU-PIM.
- The traditional GPU logic is now called GPU-PIC.

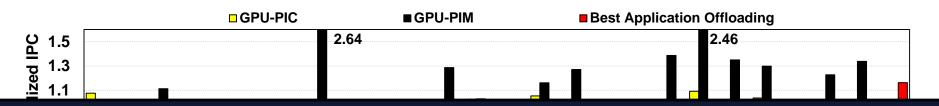


- Application can now be run on both GPU-PIC and GPU-PIM
- Challenge: Where to execute the application on?

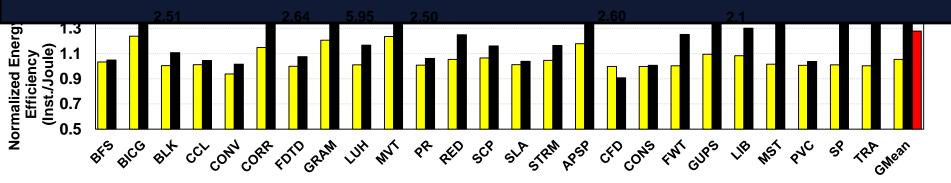


Application Offloading

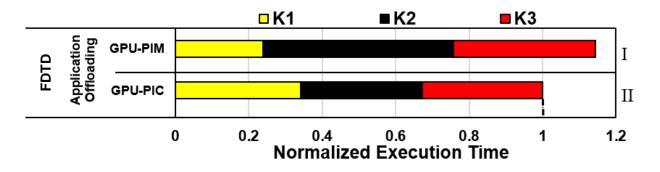
• We evaluate application execution on either GPU-PIC or GPU-PIM



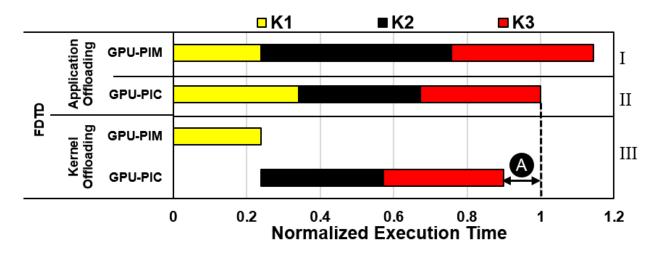
Optimal application offloading scheme provides 16% and 28% improvements in performance and energy efficiency, respectively.



• Limitation 1: Lack of Fine-Grained Offloading

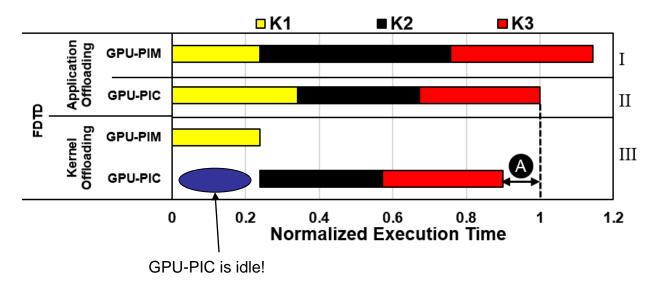


• Limitation 1: Lack of Fine-Grained Offloading



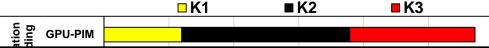
Running K1 on GPU-PIM, and K2 and K3 on GPU-PIC provides the optimal kernel placement for improved performance.

- Limitation 1: Lack of Fine-Grained Offloading
- Limitation 2: Lack of Concurrent Utilization of GPU-PIM and GPU-PIC

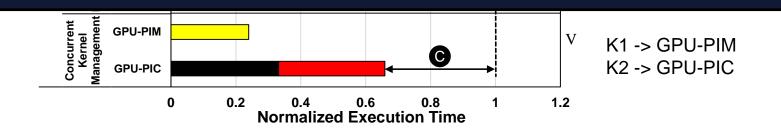


• From the application we find that kernel K1 and K2 are independent from each other.

- Limitation 1: Lack of Fine-Grained Offloading
- Limitation 2: Lack of Concurrent Utilization of GPU-PIM and GPU-PIC



Scheduling kernels based on their affinity is very important to achieve higher performance.



Our Goal

To develop runtime mechanisms for

- automatically identifying architecture affinity of each kernel in an application
- scheduling kernels on GPU-PIC and GPU-PIM to maximize for performance and utilization

Outline

- Introduction and Motivation
- Background and Challenges
- Design of Kernel Offloading Mechanism
- Design of Concurrent Kernel Management
- Simulation Setup and Evaluation
- Conclusions

- Goal: Offload kernels to either GPU-PIC or GPU-PIM to maximize performance
- Challenge: Need to know the architecture affinity of the kernels
- We build an architecture affinity prediction model

• Metrics used to predict compute engine affinity and GPU-PIC and GPU-PIM execution time.

Category	Predictive Metric	Static/Dynamic
I: Memory Intensity of Kernel	Memory to Compute Ratio	Static
	Number of Compute Inst.	Static
	Number of Memory Inst.	Static
II: Available Parallelism in the Kernel	Number of CTAs	Dynamic
	Total Number of Threads	Dynamic
	Number of Thread Inst.	Dynamic
III: Shared Memory Intensity of Kernel	Total Number of Shared Memory Inst.	Static

• Logistic Regression Model for Affinity Prediction

$$\sigma(t) = \frac{e^t}{e^t + 1}$$

where:

 $\sigma(t)$ = model output ($\sigma(t)$ < 0.5 => GPU-PIC, $\sigma(t) \ge 0.5$ => GPU-PIM)

- $t = \alpha_0 + \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \alpha_4 x_4 + \alpha_5 x_5 + \alpha_6 x_6 + \alpha_7 x_7$
- α_i = Coefficients of the Regression Model
- x_i = Predictive Metrics

- Training Set: we randomly sample 60% (15) of the 25 GPGPU applications considered in the paper.
- These 15 applications consists of 82 unique kernels that are used for training the affinity prediction model.
- Test Set: the remaining 40% (10) of the applications are used as the test set for the model
- Accuracy of the model on the test set: 83%

Outline

- Introduction and Motivation
- Background and Challenges
- Design of Kernel Offloading Mechanism
- Design of Concurrent Kernel Management
- Simulation Setup and Evaluation
- Conclusions

- Goal: Efficiently manage the scheduling of concurrent kernels to improve performance and utilization of the PIM-Assisted GPU architecture
- For efficiently managing kernel execution on both GPU-PIM and GPU-PIC, we need
 - Kernel-level Dependence Information
 - Architecture Affinity Information
 - Execution Time Information

- For efficiently managing kernel execution on both GPU-PIM and GPU-PIC, we need
 - Kernel-level Dependence Information
 - Obtained through exhaustive analysis to find RAW dependence for all considered applications and input pairs
 - Architecture Affinity Information
 - Execution Time Information

- For efficiently managing kernel execution on both GPU-PIM and GPU-PIC, we need
 - Kernel-level Dependence Information
 - Obtained through exhaustive analysis to find RAW dependence for all considered applications and input pairs
 - Architecture Affinity Information
 - Utilizes the affinity prediction model built for kernel offloading mechanism
 - Execution Time Information

- For efficiently managing kernel execution on both GPU-PIM and GPU-PIC, we need
 - Kernel-level Dependence Information
 - Obtained through exhaustive analysis to find RAW dependence for all considered applications and input pairs
 - Architecture Affinity Information
 - Utilizes the affinity prediction model built for kernel offloading mechanism
 - Execution Time Information
 - We build linear regression models for execution time prediction on GPU-PIC and GPU-PIM
 - We use the same "Predictive metrics" and training set used for affinity prediction model

Linear Regression Model for Execution Time Prediction Model

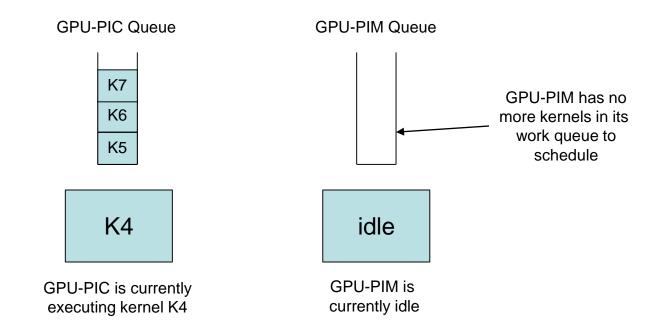
 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5 + \beta_6 x_6 + \beta_7 x_7$

where:

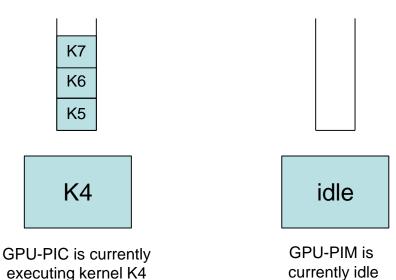
y = model output (predicted execution time)

- β_i = Coefficients of the Regression Model
- x_i = Predictive Metrics

• Lets run through an example



 We can potentially pick any kernel (assuming no data dependence among themselves and K4) from GPU-PIC Queue and schedule them onto GPU-PIM GPU-PIC Queue GPU-PIM Queue



• But which one to pick?

- We steal the first kernel that satisfies a given condition and schedule it on to GPU-PIM Queue.
- Pseudocode:
- time(kernel, compute_engine) returns the estimated execution time of "kernel" when executed on "compute_engine"
 Estimated execution time of

for X in GPU-PIC's Queue if (time (X, GPU - PIM) \leq { time(K4, GPU - PIC) $- time_{executed}(K4)$ + time(X, GPU - PIC)} steal and schedule X to GPU - PIM; break;

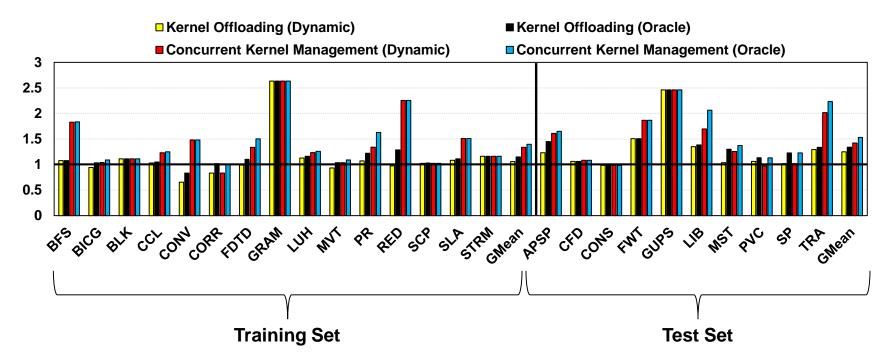
Outline

- Introduction and Motivation
- Background and Challenges
- Design of Kernel Offloading Mechanism
- Design of Concurrent Kernel Management
- Simulation Setup and Evaluation
- Conclusions

Simulation Setup

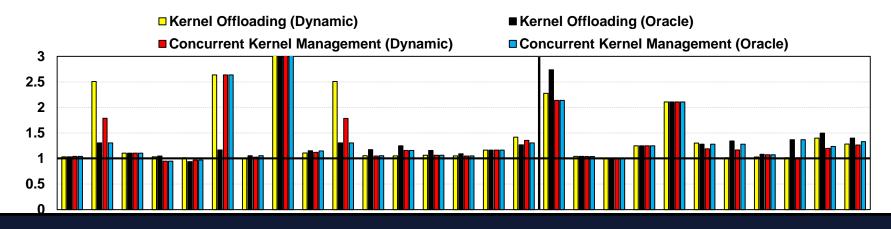
- Evaluated on GPGPU-Sim, a cycle accurate GPU simulator
- Baseline configuration
 - 40 SMs, 32-SIMT lanes, 32-threads/warp
 - 768 kB L2 cache
- GPU-PIM configuration
 - 8 SMs, 32-SIMT lanes, 32-threads/warp
 - No L2 cache
- GPU-PIC configuration
 - 32 SMs, 32-SIMT lanes, 32-threads/warp
 - 768 kB L2 cache
- 25 GPGPU Applications classified into 2 exclusive sets
 - Training Set: The kernels are used as input to build the regression models
 - Test Set: The regression models are only tested on these kernels

Performance (Normalized to Baseline)



- Performance improvement for Test Set applications
 - Kernel Offloading = 25%
 - Concurrent Kernel Management = 42%

Energy-Efficiency (Normalized to Baseline)



More results and detailed description of our runtime mechanisms are in the paper.

- Energy-Efficiency improvement for Test Set applications
 - Kernel Offloading = 28%
 - Concurrent Kernel Management = 27%

Conclusions

- Processing-In-Memory is a key direction in achieving high performance with lower power budget.
- Simply offloading applications completely onto PIM units is not optimal.
- For effective utilization of PIM-Assisted GPU architecture, we need to
 - Identify code segments for offloading onto GPU-PIM
 - Efficiently distribute work between GPU-PIC and GPU-PIM
- Our kernel-level scheduling mechanisms can be an effective runtime solution for exploiting processing-in-memory in modern GPU-based architectures.

Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities

Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayıran, Asit Mishra, Mahmut Kandemir, Onur Mutlu, Chita Das.

PACT '16

PennState WILLIAM & MARY AMDI ETH zürich

