
Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities

Scheduling Techniques for GPU Architectures

with Processing-In-Memory Capabilities

Ashutosh Pattnaik

Xulong Tang, Adwait Jog, Onur Kayıran, Asit Mishra, 

Mahmut Kandemir, Onur Mutlu, Chita Das

PACT ‘16



Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities

Era of Energy-Efficient Architectures

2

2010:

Tianhe-1A

4.7 PFlop/s, 4 MW

~1.175 TFlops/W

2013:

Tianhe-2

54.9 PFlop/s, 17.8 MW

~3.084 TFlops/W

2016:

Sunway TaihuLight

125.4 PFlop/s, 15.4 MW

~8.143 TFlops/W

Peak Performance 

increased by ~27x in 

past 6 years

Energy Efficiency 

increased by ~7x in 

past 6 years

Future: 1 ExaFlops/s at 20 MW Peak power

• Greatly need to improve energy efficiency

as well as performance!



Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities

• Continuous energy-efficiency and performance scaling is 

not easy.

• Energy consumed by a floating-point operation is scaling 

down with technology scaling.

• Energy consumption due to data transfer overhead is not 

scaling down!

Bottleneck

3



Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities 4

Bottleneck

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti

o
n

Off-Chip Transactions Off-Chip Energy

Data movement and system energy consumption caused 

by off-chip memory accesses.

Across these 25 GPGPU applications:

• 49% of all transactions are off-chip.

• This is responsible for 41% of total energy 

consumption of the system.



Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities 5

Bottleneck

0

0.2

0.4

0.6

0.8

1

N
o

rm
a
li
z
e
d

 P
e
rf

o
rm

a
n

c
e

Performance normalized to a hypothetical GPU where all 

the off-chip accesses hit in the last-level cache.

Main memory accesses lead to 45% performance 

degradation!



Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities

Outline

• Introduction and Motivation

• Background and Challenges

• Design of Kernel Offloading Mechanism

• Design of Concurrent Kernel Management

• Simulation Setup and Evaluation

• Conclusions

6



Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities

• It’s a promising approach to minimize data movement.

• The concept dates back to the late 1960s

• Technological limitations of integrating fast computational 

units in memory was a challenge

• Significant advances in adoption of 3D-stacked memory has

– enabled tight integration of memory dies and logic layer 

– brought computational units into the memory stack

Revisiting Processing-In-Memory (PIM)

7



Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities

• We integrate PIM units to a GPU based system and we call this as 

“PIM-Assisted GPU architecture”.

• At least one 3D-stacked memory is integrated with PIM units and is 

placed adjacent to a traditional GPU design.

PIM-Assisted GPU architecture

8



Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities

• Traditional GPU architecture*

PIM-Assisted GPU architecture

9

Memory

GPU Memory Link

* Only a single DRAM partition is shown for illustration purposes



Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities

• GPU architecture with 3D-stacked memory on a silicon interposer

PIM-Assisted GPU architecture

10

GPU Memory Link

on Interposer

Silicon Interposer

Memory Dice



Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities

• Now we add a logic layer to the 3D-stacked memory and we call this 

logic layer as GPU-PIM.

• The traditional GPU logic is now called GPU-PIC.

PIM-Assisted GPU architecture

11

3D Stacked

Memory and 

Logic

Memory Dice

GPU-PIM

GPU-PIC Memory Link

on Interposer

Silicon Interposer



Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities

• Application can now be run on both GPU-PIC and GPU-PIM

• Challenge: Where to execute the application on?

PIM-Assisted GPU architecture

12

3D Stacked

Memory and 

Logic

Memory Dice

GPU-PIM

GPU-PIC Memory Link

on Interposer

Silicon Interposer



Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities

• We evaluate application execution on either GPU-PIC or GPU-PIM 

Application Offloading

13

0.5

0.7

0.9

1.1

1.3

1.5

N
o

rm
a

li
z
e

d
 I
P

C

GPU-PIC GPU-PIM Best Application Offloading

0.5

0.7

0.9

1.1

1.3

1.5

N
o

rm
a

li
z
e

d
 E

n
e
rg

y
 

E
ff

ic
ie

n
c

y
 

(I
n

s
t.

/J
o

u
le

)

GPU-PIC GPU-PIM Best Application Offloading

Optimal application offloading scheme provides 16% and 

28% improvements in performance and energy efficiency, 

respectively.

2.64 2.46

2.51 2.64 5.95 2.50 2.60 2.1



Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities

• Limitation 1: Lack of Fine-Grained Offloading

Limitations of Application Offloading

14

F
D

T
D



Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities

• Limitation 1: Lack of Fine-Grained Offloading

Limitations of Application Offloading

15

Running K1 on GPU-PIM, and K2 and K3 on GPU-PIC 

provides the optimal kernel placement for improved 

performance.



Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities

• Limitation 1: Lack of Fine-Grained Offloading

• Limitation 2: Lack of Concurrent Utilization of GPU-PIM and GPU-

PIC

• From the application we find that kernel K1 and K2 are independent 

from each other.

Limitations of Application Offloading

16

GPU-PIC is idle!



Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities

• Limitation 1: Lack of Fine-Grained Offloading

• Limitation 2: Lack of Concurrent Utilization of GPU-PIM and GPU-

PIC

Limitations of Application Offloading

17

0 0.2 0.4 0.6 0.8 1 1.2

GPU-PIC

GPU-PIM

GPU-PIC

GPU-PIM

GPU-PIC

GPU-PIM

GPU-PIC

GPU-PIM
C

o
n

c
u

rr
e

n
t

K
e

rn
e

l
M

a
n

a
g

e
m

e
n

t

C
o

n
c
u

rr
e

n
t

K
e

rn
e

l
M

a
n

a
g

e
m

e
n

t
K

e
rn

e
l

O
ff

lo
a

d
in

g
A

p
p

li
c
a

ti
o

n
O

ff
lo

a
d

in
g

F
D

T
D

Normalized Execution Time

K1 K2 K3

A

C

I

II

III

IV

V

B

K1 -> GPU-PIC

K2 -> GPU-PIM

K1 -> GPU-PIM

K2 -> GPU-PIC

Scheduling kernels based on their affinity is very 

important to achieve higher performance.



Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities

To develop runtime mechanisms for

• automatically identifying architecture affinity of each 

kernel in an application

• scheduling kernels on GPU-PIC and GPU-PIM to 

maximize for performance and utilization

Our Goal

18



Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities

Outline

• Introduction and Motivation

• Background and Challenges

• Design of Kernel Offloading Mechanism

• Design of Concurrent Kernel Management

• Simulation Setup and Evaluation

• Conclusions

19



Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities

Design of Kernel Offloading Mechanism

• Goal: Offload kernels to either GPU-PIC or GPU-PIM to maximize 

performance

• Challenge: Need to know the architecture affinity of the kernels

• We build an architecture affinity prediction model

20



Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities

Design of Kernel Offloading Mechanism

• Metrics used to predict compute engine affinity and GPU-PIC and 

GPU-PIM execution time.

Category Predictive Metric Static/Dynamic

I: Memory Intensity of 

Kernel

Memory to Compute Ratio Static

Number of Compute Inst. Static

Number of Memory Inst. Static

II: Available Parallelism

in the Kernel

Number of CTAs Dynamic

Total Number of Threads Dynamic

Number of Thread Inst. Dynamic

III: Shared Memory 

Intensity of Kernel

Total Number of Shared 

Memory Inst.
Static

21



Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities

Design of Kernel Offloading Mechanism

• Logistic Regression Model for Affinity Prediction

where:

𝜎(𝑡) = model output (𝜎(𝑡) < 0.5 => GPU-PIC, 𝜎(𝑡) ≥ 0.5 => GPU-PIM)

𝑡 = 𝛼0 + 𝛼1𝑥1 + 𝛼2𝑥2 + 𝛼3𝑥3 + 𝛼4𝑥4 + 𝛼5𝑥5 + 𝛼6𝑥6 + 𝛼7𝑥7

𝛼𝑖 = Coefficients of the Regression Model

𝑥𝑖 = Predictive Metrics

𝜎(𝑡) =
𝑒𝑡

𝑒𝑡 + 1

22



Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities

Design of Kernel Offloading Mechanism

• Training Set: we randomly sample 60% (15) of the 25 GPGPU 

applications considered in the paper.

• These 15 applications consists of 82 unique kernels that are used 

for training the affinity prediction model.

• Test Set: the remaining 40% (10) of the applications are used as the 

test set for the model

• Accuracy of the model on the test set: 83%

23



Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities

Outline

• Introduction and Motivation

• Background and Challenges

• Design of Kernel Offloading Mechanism

• Design of Concurrent Kernel Management

• Simulation Setup and Evaluation

• Conclusions

24



Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities

Design of Concurrent Kernel Management

• Goal: Efficiently manage the scheduling of concurrent kernels to 

improve performance and utilization of the PIM-Assisted GPU 

architecture

• For efficiently managing kernel execution on both GPU-PIM and 

GPU-PIC, we need

– Kernel-level Dependence Information

– Architecture Affinity Information

– Execution Time Information

25



Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities

Design of Concurrent Kernel Management

• For efficiently managing kernel execution on both GPU-PIM and 

GPU-PIC, we need

– Kernel-level Dependence Information

• Obtained through exhaustive analysis to find RAW 

dependence for all considered applications and input pairs

– Architecture Affinity Information

– Execution Time Information

26



Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities

Design of Concurrent Kernel Management

• For efficiently managing kernel execution on both GPU-PIM and 

GPU-PIC, we need

– Kernel-level Dependence Information

• Obtained through exhaustive analysis to find RAW 

dependence for all considered applications and input pairs

– Architecture Affinity Information

• Utilizes the affinity prediction model built for kernel offloading 

mechanism

– Execution Time Information

27



Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities

Design of Concurrent Kernel Management

• For efficiently managing kernel execution on both GPU-PIM and 

GPU-PIC, we need

– Kernel-level Dependence Information

• Obtained through exhaustive analysis to find RAW 

dependence for all considered applications and input pairs

– Architecture Affinity Information

• Utilizes the affinity prediction model built for kernel offloading 

mechanism

– Execution Time Information

• We build linear regression models for execution time 

prediction on GPU-PIC and GPU-PIM

• We use the same “Predictive metrics” and training set used 

for affinity prediction model

28



Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities

• Linear Regression Model for Execution Time Prediction Model

where:

𝑦 = model output (predicted execution time)

𝛽𝑖 = Coefficients of the Regression Model

𝑥𝑖 = Predictive Metrics

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 + 𝛽5𝑥5 + 𝛽6𝑥6 + 𝛽7𝑥7

Design of Concurrent Kernel Management

29



Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities

• Lets run through an example

Design of Concurrent Kernel Management

GPU-PIC Queue GPU-PIM Queue

K4 idle

GPU-PIC is currently

executing kernel K4

GPU-PIM is 

currently idle

K5

K6

K7
GPU-PIM has no

more kernels in its 

work queue to

schedule

30



Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities

• We can potentially pick any kernel (assuming no data dependence 

among themselves and K4) from GPU-PIC Queue and schedule them 

onto GPU-PIM

• But which one to pick?

Design of Concurrent Kernel Management

GPU-PIC Queue GPU-PIM Queue

K4 idle

GPU-PIC is currently

executing kernel K4

GPU-PIM is 

currently idle

K5

K6

K7

31



Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities

• We steal the first kernel that satisfies a given condition and schedule it 

on to GPU-PIM Queue.

• Pseudocode:

• time(kernel, compute_engine) returns the estimated execution time of 

“kernel” when executed on ”compute_engine”

Design of Concurrent Kernel Management

for X in GPU-PIC’s Queue
𝑖𝑓 (𝑡𝑖𝑚𝑒 𝑋, 𝐺𝑃𝑈 − 𝑃𝐼𝑀 ≤ { 𝑡𝑖𝑚𝑒 𝐾4, 𝐺𝑃𝑈 − 𝑃𝐼𝐶

− 𝑡𝑖𝑚𝑒𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝐾4
+ 𝑡𝑖𝑚𝑒 𝑋, 𝐺𝑃𝑈 − 𝑃𝐼𝐶 }

𝑠𝑡𝑒𝑎𝑙 𝑎𝑛𝑑 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑋 𝑡𝑜 𝐺𝑃𝑈 − 𝑃𝐼𝑀;
𝑏𝑟𝑒𝑎𝑘;

Estimated execution time of 

currently executing

kernel K4 on GPU-PIC

32



Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities

Outline

• Introduction and Motivation

• Background and Challenges

• Design of Kernel Offloading Mechanism

• Design of Concurrent Kernel Management

• Simulation Setup and Evaluation

• Conclusions

33



Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities

Simulation Setup

• Evaluated on GPGPU-Sim, a cycle accurate GPU simulator

• Baseline configuration

– 40 SMs, 32-SIMT lanes, 32-threads/warp 

– 768 kB L2 cache

• GPU-PIM configuration

– 8 SMs, 32-SIMT lanes, 32-threads/warp 

– No L2 cache

• GPU-PIC configuration

– 32 SMs, 32-SIMT lanes, 32-threads/warp 

– 768 kB L2 cache

• 25 GPGPU Applications classified into 2 exclusive sets

– Training Set: The kernels are used as input to build the regression models

– Test Set: The regression models are only tested on these kernels

34



Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities

Performance (Normalized to Baseline)

• Performance improvement for Test Set applications

35

Training Set Test Set

0

0.5

1

1.5

2

2.5

3

Kernel Offloading (Dynamic) Kernel Offloading (Oracle)

Concurrent Kernel Management (Dynamic) Concurrent Kernel Management (Oracle)

 Kernel Offloading = 25%

 Concurrent Kernel Management = 42%



Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities

Energy-Efficiency (Normalized to Baseline)

• Energy-Efficiency improvement for Test Set applications

36

 Kernel Offloading = 28%

 Concurrent Kernel Management = 27%

Training Set Test Set

0

0.5

1

1.5

2

2.5

3

Kernel Offloading (Dynamic) Kernel Offloading (Oracle)

Concurrent Kernel Management (Dynamic) Concurrent Kernel Management (Oracle)

More results and detailed description 

of our runtime mechanisms are in the paper.



Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities

Conclusions

• Processing-In-Memory is a key direction in achieving high performance with 

lower power budget.

• Simply offloading applications completely onto PIM units is not optimal.

• For effective utilization of PIM-Assisted GPU architecture, we need to

– Identify code segments for offloading onto GPU-PIM

– Efficiently distribute work between GPU-PIC and GPU-PIM

• Our kernel-level scheduling mechanisms can be an effective runtime solution 

for exploiting processing-in-memory in modern GPU-based architectures.

37



Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities

Scheduling Techniques for GPU Architectures

with Processing-In-Memory Capabilities

Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayıran, 

Asit Mishra, Mahmut Kandemir, Onur Mutlu, Chita Das. 

PACT ‘16


