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Era of Energy-Efficient Architectures
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2010:

Tianhe-1A

4.7 PFlop/s, 4 MW

~1.175 TFlops/W

2013:

Tianhe-2

54.9 PFlop/s, 17.8 MW

~3.084 TFlops/W

2016:

Sunway TaihuLight

125.4 PFlop/s, 15.4 MW

~8.143 TFlops/W

Peak Performance 

increased by ~27x in 

past 6 years

Energy Efficiency 

increased by ~7x in 

past 6 years

Future: 1 ExaFlops/s at 20 MW Peak power

• Greatly need to improve energy efficiency

as well as performance!



Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities

• Continuous energy-efficiency and performance scaling is 

not easy.

• Energy consumed by a floating-point operation is scaling 

down with technology scaling.

• Energy consumption due to data transfer overhead is not 

scaling down!

Bottleneck
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Bottleneck

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti

o
n

Off-Chip Transactions Off-Chip Energy

Data movement and system energy consumption caused 

by off-chip memory accesses.

Across these 25 GPGPU applications:

• 49% of all transactions are off-chip.

• This is responsible for 41% of total energy 

consumption of the system.
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Bottleneck
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Performance normalized to a hypothetical GPU where all 

the off-chip accesses hit in the last-level cache.

Main memory accesses lead to 45% performance 

degradation!
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Outline

• Introduction and Motivation

• Background and Challenges

• Design of Kernel Offloading Mechanism

• Design of Concurrent Kernel Management

• Simulation Setup and Evaluation

• Conclusions
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• It’s a promising approach to minimize data movement.

• The concept dates back to the late 1960s

• Technological limitations of integrating fast computational 

units in memory was a challenge

• Significant advances in adoption of 3D-stacked memory has

– enabled tight integration of memory dies and logic layer 

– brought computational units into the memory stack

Revisiting Processing-In-Memory (PIM)
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• We integrate PIM units to a GPU based system and we call this as 

“PIM-Assisted GPU architecture”.

• At least one 3D-stacked memory is integrated with PIM units and is 

placed adjacent to a traditional GPU design.

PIM-Assisted GPU architecture
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• Traditional GPU architecture*

PIM-Assisted GPU architecture
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Memory

GPU Memory Link

* Only a single DRAM partition is shown for illustration purposes
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• GPU architecture with 3D-stacked memory on a silicon interposer

PIM-Assisted GPU architecture
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GPU Memory Link

on Interposer

Silicon Interposer

Memory Dice
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• Now we add a logic layer to the 3D-stacked memory and we call this 

logic layer as GPU-PIM.

• The traditional GPU logic is now called GPU-PIC.

PIM-Assisted GPU architecture
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3D Stacked

Memory and 

Logic

Memory Dice

GPU-PIM

GPU-PIC Memory Link

on Interposer

Silicon Interposer
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• Application can now be run on both GPU-PIC and GPU-PIM

• Challenge: Where to execute the application on?

PIM-Assisted GPU architecture
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3D Stacked

Memory and 

Logic

Memory Dice

GPU-PIM
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• We evaluate application execution on either GPU-PIC or GPU-PIM 

Application Offloading
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Optimal application offloading scheme provides 16% and 

28% improvements in performance and energy efficiency, 

respectively.

2.64 2.46

2.51 2.64 5.95 2.50 2.60 2.1
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• Limitation 1: Lack of Fine-Grained Offloading

Limitations of Application Offloading
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• Limitation 1: Lack of Fine-Grained Offloading

Limitations of Application Offloading

15

Running K1 on GPU-PIM, and K2 and K3 on GPU-PIC 

provides the optimal kernel placement for improved 

performance.



Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities

• Limitation 1: Lack of Fine-Grained Offloading

• Limitation 2: Lack of Concurrent Utilization of GPU-PIM and GPU-

PIC

• From the application we find that kernel K1 and K2 are independent 

from each other.

Limitations of Application Offloading

16

GPU-PIC is idle!
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• Limitation 1: Lack of Fine-Grained Offloading

• Limitation 2: Lack of Concurrent Utilization of GPU-PIM and GPU-

PIC

Limitations of Application Offloading
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Normalized Execution Time
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A

C

I
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III

IV

V

B

K1 -> GPU-PIC

K2 -> GPU-PIM

K1 -> GPU-PIM

K2 -> GPU-PIC

Scheduling kernels based on their affinity is very 

important to achieve higher performance.
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To develop runtime mechanisms for

• automatically identifying architecture affinity of each 

kernel in an application

• scheduling kernels on GPU-PIC and GPU-PIM to 

maximize for performance and utilization

Our Goal
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Outline

• Introduction and Motivation

• Background and Challenges

• Design of Kernel Offloading Mechanism

• Design of Concurrent Kernel Management

• Simulation Setup and Evaluation

• Conclusions
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Design of Kernel Offloading Mechanism

• Goal: Offload kernels to either GPU-PIC or GPU-PIM to maximize 

performance

• Challenge: Need to know the architecture affinity of the kernels

• We build an architecture affinity prediction model

20
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Design of Kernel Offloading Mechanism

• Metrics used to predict compute engine affinity and GPU-PIC and 

GPU-PIM execution time.

Category Predictive Metric Static/Dynamic

I: Memory Intensity of 

Kernel

Memory to Compute Ratio Static

Number of Compute Inst. Static

Number of Memory Inst. Static

II: Available Parallelism

in the Kernel

Number of CTAs Dynamic

Total Number of Threads Dynamic

Number of Thread Inst. Dynamic

III: Shared Memory 

Intensity of Kernel

Total Number of Shared 

Memory Inst.
Static

21
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Design of Kernel Offloading Mechanism

• Logistic Regression Model for Affinity Prediction

where:

𝜎(𝑡) = model output (𝜎(𝑡) < 0.5 => GPU-PIC, 𝜎(𝑡) ≥ 0.5 => GPU-PIM)

𝑡 = 𝛼0 + 𝛼1𝑥1 + 𝛼2𝑥2 + 𝛼3𝑥3 + 𝛼4𝑥4 + 𝛼5𝑥5 + 𝛼6𝑥6 + 𝛼7𝑥7

𝛼𝑖 = Coefficients of the Regression Model

𝑥𝑖 = Predictive Metrics

𝜎(𝑡) =
𝑒𝑡

𝑒𝑡 + 1

22
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Design of Kernel Offloading Mechanism

• Training Set: we randomly sample 60% (15) of the 25 GPGPU 

applications considered in the paper.

• These 15 applications consists of 82 unique kernels that are used 

for training the affinity prediction model.

• Test Set: the remaining 40% (10) of the applications are used as the 

test set for the model

• Accuracy of the model on the test set: 83%

23



Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities

Outline

• Introduction and Motivation

• Background and Challenges

• Design of Kernel Offloading Mechanism

• Design of Concurrent Kernel Management

• Simulation Setup and Evaluation

• Conclusions
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Design of Concurrent Kernel Management

• Goal: Efficiently manage the scheduling of concurrent kernels to 

improve performance and utilization of the PIM-Assisted GPU 

architecture

• For efficiently managing kernel execution on both GPU-PIM and 

GPU-PIC, we need

– Kernel-level Dependence Information

– Architecture Affinity Information

– Execution Time Information

25
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Design of Concurrent Kernel Management

• For efficiently managing kernel execution on both GPU-PIM and 

GPU-PIC, we need

– Kernel-level Dependence Information

• Obtained through exhaustive analysis to find RAW 

dependence for all considered applications and input pairs

– Architecture Affinity Information

– Execution Time Information
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Design of Concurrent Kernel Management

• For efficiently managing kernel execution on both GPU-PIM and 

GPU-PIC, we need

– Kernel-level Dependence Information

• Obtained through exhaustive analysis to find RAW 

dependence for all considered applications and input pairs

– Architecture Affinity Information

• Utilizes the affinity prediction model built for kernel offloading 

mechanism

– Execution Time Information
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Design of Concurrent Kernel Management

• For efficiently managing kernel execution on both GPU-PIM and 

GPU-PIC, we need

– Kernel-level Dependence Information

• Obtained through exhaustive analysis to find RAW 

dependence for all considered applications and input pairs

– Architecture Affinity Information

• Utilizes the affinity prediction model built for kernel offloading 

mechanism

– Execution Time Information

• We build linear regression models for execution time 

prediction on GPU-PIC and GPU-PIM

• We use the same “Predictive metrics” and training set used 

for affinity prediction model
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• Linear Regression Model for Execution Time Prediction Model

where:

𝑦 = model output (predicted execution time)

𝛽𝑖 = Coefficients of the Regression Model

𝑥𝑖 = Predictive Metrics

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 + 𝛽5𝑥5 + 𝛽6𝑥6 + 𝛽7𝑥7

Design of Concurrent Kernel Management

29
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• Lets run through an example

Design of Concurrent Kernel Management

GPU-PIC Queue GPU-PIM Queue

K4 idle

GPU-PIC is currently

executing kernel K4

GPU-PIM is 

currently idle

K5

K6

K7
GPU-PIM has no

more kernels in its 

work queue to

schedule

30
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• We can potentially pick any kernel (assuming no data dependence 

among themselves and K4) from GPU-PIC Queue and schedule them 

onto GPU-PIM

• But which one to pick?

Design of Concurrent Kernel Management

GPU-PIC Queue GPU-PIM Queue

K4 idle

GPU-PIC is currently

executing kernel K4

GPU-PIM is 

currently idle

K5

K6

K7

31
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• We steal the first kernel that satisfies a given condition and schedule it 

on to GPU-PIM Queue.

• Pseudocode:

• time(kernel, compute_engine) returns the estimated execution time of 

“kernel” when executed on ”compute_engine”

Design of Concurrent Kernel Management

for X in GPU-PIC’s Queue
𝑖𝑓 (𝑡𝑖𝑚𝑒 𝑋, 𝐺𝑃𝑈 − 𝑃𝐼𝑀 ≤ { 𝑡𝑖𝑚𝑒 𝐾4, 𝐺𝑃𝑈 − 𝑃𝐼𝐶

− 𝑡𝑖𝑚𝑒𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝐾4
+ 𝑡𝑖𝑚𝑒 𝑋, 𝐺𝑃𝑈 − 𝑃𝐼𝐶 }

𝑠𝑡𝑒𝑎𝑙 𝑎𝑛𝑑 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑋 𝑡𝑜 𝐺𝑃𝑈 − 𝑃𝐼𝑀;
𝑏𝑟𝑒𝑎𝑘;

Estimated execution time of 

currently executing

kernel K4 on GPU-PIC

32
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Outline

• Introduction and Motivation

• Background and Challenges

• Design of Kernel Offloading Mechanism

• Design of Concurrent Kernel Management

• Simulation Setup and Evaluation

• Conclusions
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Simulation Setup

• Evaluated on GPGPU-Sim, a cycle accurate GPU simulator

• Baseline configuration

– 40 SMs, 32-SIMT lanes, 32-threads/warp 

– 768 kB L2 cache

• GPU-PIM configuration

– 8 SMs, 32-SIMT lanes, 32-threads/warp 

– No L2 cache

• GPU-PIC configuration

– 32 SMs, 32-SIMT lanes, 32-threads/warp 

– 768 kB L2 cache

• 25 GPGPU Applications classified into 2 exclusive sets

– Training Set: The kernels are used as input to build the regression models

– Test Set: The regression models are only tested on these kernels
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Performance (Normalized to Baseline)

• Performance improvement for Test Set applications

35
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 Kernel Offloading = 25%

 Concurrent Kernel Management = 42%
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Energy-Efficiency (Normalized to Baseline)

• Energy-Efficiency improvement for Test Set applications
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 Kernel Offloading = 28%

 Concurrent Kernel Management = 27%
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More results and detailed description 

of our runtime mechanisms are in the paper.
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Conclusions

• Processing-In-Memory is a key direction in achieving high performance with 

lower power budget.

• Simply offloading applications completely onto PIM units is not optimal.

• For effective utilization of PIM-Assisted GPU architecture, we need to

– Identify code segments for offloading onto GPU-PIM

– Efficiently distribute work between GPU-PIC and GPU-PIM

• Our kernel-level scheduling mechanisms can be an effective runtime solution 

for exploiting processing-in-memory in modern GPU-based architectures.
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