
Bioinformatics, YYYY, 0–0
doi: 10.1093/bioinformatics/xxxxx

Advance Access Publication Date: DD Month YYYY
Original Paper

Sequence Alignment
Shouji: A Fast and Efficient Pre-Alignment Filter
for Sequence Alignment
Mohammed Alser1,2,3,*, Hasan Hassan1, Akash Kumar2,
Onur Mutlu1,3,*, and Can Alkan3,*
1Computer Science Department, ETH Zürich, 8092 Zürich, Switzerland,
2Institute for Computer Engineering, CfAED, Technische Universität Dresden, Germany,
3Computer Engineering Department, Bilkent University, 06800 Bilkent, Ankara, Turkey

*To whom correspondence should be addressed.

Associate Editor: XXXXXXX
Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract
Motivation: The ability to generate massive amounts of sequencing data continues to overwhelm the
processing capability of existing algorithms and compute infrastructures. In this work, we explore the
use of hardware/software co-design and hardware acceleration to significantly reduce the execution
time of short sequence alignment, a crucial step in analyzing sequenced genomes. We introduce
Shouji, a highly-parallel and accurate pre-alignment filter that remarkably reduces the need for compu-
tationally-costly dynamic programming algorithms. The first key idea of our proposed pre-alignment
filter is to provide high filtering accuracy by correctly detecting all common subsequences shared be-
tween two given sequences. The second key idea is to design a hardware accelerator that adopts
modern FPGA (Field-Programmable Gate Array) architectures to further boost the performance of our
algorithm.
Results: Shouji significantly improves the accuracy of pre-alignment filtering by up to two orders of
magnitude compared to the state-of-the-art pre-alignment filters, GateKeeper and SHD. Our FPGA-
based accelerator is up to three orders of magnitude faster than the equivalent CPU implementation of
Shouji. Using a single FPGA chip, we benchmark the benefits of integrating Shouji with five state-of-
the-art sequence aligners, designed for different computing platforms. The addition of Shouji as a pre-
alignment step reduces the execution time of the five state-of-the-art sequence aligners by up to 18.8x.
Shouji can be adapted for any bioinformatics pipeline that performs sequence alignment for verification.
Unlike most existing methods that aim to accelerate sequence alignment, Shouji does not sacrifice any
of the aligner capabilities, as it does not modify or replace the alignment step.
Availability: https://github.com/CMU-SAFARI/Shouji
Contact: mohammed.alser@inf.ethz.ch, onur.mutlu@inf.ethz.ch, calkan@cs.bilkent.edu.tr
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
One of the most fundamental computational steps in most bioinformatics
analyses is the detection of the differences/similarities between two ge-
nomic sequences. Edit distance and pairwise alignment are two ap-
proaches to achieve this step, formulated as approximate string matching
(Navarro, 2001). Edit distance approach is a measure of how much two
sequences differ. It calculates the minimum number of edits needed to
convert a sequence into the other. The higher the edit distance, the more

different the sequences from one another. Commonly-allowed edit opera-
tions include deletion, insertion, and substitution of characters in one or
both sequences. Pairwise alignment is a measure of how much the se-
quences are alike. It calculates the alignment that is an ordered list of char-
acters representing possible edit operations and matches required to
change one of the two given sequences into the other. As any two se-
quences can have several different arrangements of the edit operations and
matches (and hence different alignments), the alignment algorithm usually
involves a backtracking step. This step finds the alignment that has the
highest alignment score (called optimal alignment). The alignment score

M. Alser et al.

is the sum of the scores of all edits and matches along the alignment im-
plied by a user-defined scoring function. The edit distance and pairwise
alignment approaches are non-additive measures (Calude et al., 2002).
This means that if we divide the sequence pair into two consecutive sub-
sequence pairs, the edit distance of the entire sequence pair is not neces-
sarily equivalent to the sum of the edit distances of the shorter pairs. In-
stead, we need to examine all possible prefixes of the two input sequences
and keep track of the pairs of prefixes that provide an optimal solution.
Enumerating all possible prefixes is necessary for tolerating edits that re-
sult from both sequencing errors (Fox et al., 2014) and genetic variations
(McKernan et al., 2009). Therefore, the edit distance and pairwise align-
ment approaches are typically implemented as dynamic programming al-
gorithms to avoid re-examining the same prefixes many times. These im-
plementations, such as Levenshtein distance (Levenshtein, 1966), Smith-
Waterman (Smith and Waterman, 1981), and Needleman-Wunsch
(Needleman and Wunsch, 1970), are inefficient as they have quadratic
time and space complexity (i.e., O(m2) for a sequence length of m). Many
attempts were made to boost the performance of existing sequence align-
ers. Despite more than three decades of attempts, the fastest known edit
distance algorithm (Masek and Paterson, 1980) has a running time of
O(m2/log2m) for sequences of length m, which is still nearly quadratic
(Backurs and Indyk, 2017). Therefore, more recent works tend to follow
one of two key new directions to boost the performance of sequence align-
ment and edit distance implementations: (1) Accelerating the dynamic
programming algorithms using hardware accelerators. (2) Developing fil-
tering heuristics that reduce the need for the dynamic programming algo-
rithms, given an edit distance threshold.

Hardware accelerators are becoming increasingly popular for
speeding up the computationally-expensive alignment and edit dis-
tance algorithms (Al Kawam et al., 2017; Aluru and Jammula, 2014;
Ng et al., 2017; Sandes et al., 2016). Hardware accelerators include
multi-core and SIMD (single instruction multiple data) capable central
processing units (CPUs), graphics processing units (GPUs), and field-pro-
grammable gate arrays (FPGAs). The classical dynamic programming al-
gorithms are typically accelerated by computing only the necessary re-
gions (i.e., diagonal vectors) of the dynamic programming matrix rather
than the entire matrix, as proposed in Ukkonen’s banded algorithm
(Ukkonen, 1985). The number of the diagonal bands required for compu-
ting the dynamic programming matrix is 2E+1, where E is a user-defined
edit distance threshold. The banded algorithm is still beneficial even with
its recent sequential implementations as in Edlib (Šošić and Šikić, 2017).
The Edlib algorithm is implemented in C for standard CPUs and it calcu-
lates the banded Levenshtein distance. Parasail (Daily, 2016) exploits both
Ukkonen’s banded algorithm and SIMD-capable CPUs to compute a
banded alignment for a sequence pair with a user-defined scoring func-
tion. SIMD instructions offer significant parallelism to the matrix compu-
tation by executing the same vector operation on multiple operands at
once. The multi-core architecture of CPUs and GPUs provides the ability
to compute alignments of many sequence pairs independently and concur-
rently (Georganas et al., 2015; Liu and Schmidt, 2015). GSWABE (Liu
and Schmidt, 2015) exploits GPUs (Tesla K40) for highly-parallel com-
putation of global alignment with a user-defined scoring function.
CUDASW++ 3.0 (Liu et al., 2013) exploits the SIMD capability of both
CPUs and GPUs (GTX690) to accelerate the computation of the Smith-
Waterman algorithm with a user-defined scoring function. CUDASW++
3.0 provides only the optimal score, not the optimal alignment (i.e., no
backtracking step). Other designs, for instance FPGASW (Fei et al.,

2018), exploit the very large number of hardware execution units in
FPGAs (Xilinx VC707) to form a linear systolic array (Kung, 1982). Each
execution unit in the systolic array is responsible for computing the value
of a single entry of the dynamic programming matrix. The systolic array
computes a single vector of the matrix at a time. The data dependencies
between the entries restrict the systolic array to computing the vectors se-
quentially (e.g., top-to-bottom, left-to-right, or in an anti-diagonal man-
ner). FPGA accelerators seem to yield the highest performance gain com-
pared to the other hardware accelerators (Banerjee et al., 2018; Chen et
al., 2016; Fei et al., 2018; Waidyasooriya and Hariyama, 2015). However,
many of these efforts either simplify the scoring function, or only take into
account accelerating the computation of the dynamic programming matrix
without providing the optimal alignment as in (Chen et al., 2014; Liu et
al., 2013; Nishimura et al., 2017). Different and more sophisticated scor-
ing functions are typically needed to better quantify the similarity between
two sequences (Henikoff and Henikoff, 1992; Wang et al., 2011). The
backtracking step required for the optimal alignment computation in-
volves unpredictable and irregular memory access patterns, which poses a
difficult challenge for efficient hardware implementation.

Pre-alignment filtering heuristics aim to quickly eliminate some of
the dissimilar sequences before using the computationally-expensive
optimal alignment algorithms. There are a few existing filtering tech-
niques such as the Adjacency Filter (Xin et al., 2013), which is imple-
mented for standard CPUs as part of FastHASH (Xin et al., 2013). SHD
(Xin et al., 2015) is a SIMD-friendly bit-vector filter that provides higher
filtering accuracy compared to the Adjacency Filter. GRIM-Filter (Kim et
al., 2018) exploits the high memory bandwidth and the logic layer of 3D-
stacked memory to perform highly-parallel filtering in the DRAM chip
itself. GateKeeper (Alser et al., 2017) is designed to utilize the large
amounts of parallelism offered by FPGA architectures. MAGNET (Alser
et al., July 2017) shows a low number of falsely-accepted sequence pairs
but its current implementation is much slower than that of SHD or Gate-
Keeper. GateKeeper (Alser et al., 2017) provides a high filtering speed but
suffers from relatively high number of falsely-accepted sequence pairs.

Our goal in this work is to significantly reduce the time spent on cal-
culating the optimal alignment of short sequences and maintain high fil-
tering accuracy. To this end, we introduce Shouji1, a new, fast, and very
accurate pre-alignment filter. Shouji is based on two key ideas: (1) A new
filtering algorithm that remarkably reduces the need for computationally-
expensive banded optimal alignment by rapidly excluding dissimilar se-
quences from the optimal alignment calculation. (2) Judicious use of the
parallelism-friendly architecture of modern FPGAs to greatly speed up
this new filtering algorithm.

The contributions of this paper are as follows:

• We introduce Shouji, a highly-parallel and highly-accurate pre-
alignment filter, which uses a sliding search window approach to
quickly identify dissimilar sequences without the need for computa-
tionally-expensive alignment algorithms. We overcome the imple-
mentation limitations of MAGNET (Alser et al., July 2017). We
build two hardware accelerator designs that adopt modern FPGA ar-
chitectures to boost the performance of both Shouji and MAGNET.

• We provide a comprehensive analysis of the run time and space
complexity of Shouji and MAGNET algorithms. Shouji and
MAGNET are asymptomatically inexpensive and run in linear time
with respect to the sequence length and the edit distance threshold.

1 Named after a traditional Japanese door that is designed to slide open
http://www.aisf.or.jp/~jaanus/deta/s/shouji.htm.

Shouji: A Fast and Efficient Pre-Alignment Filter for Sequence Alignment

• We demonstrate that Shouji and MAGNET significantly improve
the accuracy of pre-alignment filtering by up to two and four orders
of magnitude, respectively, compared to GateKeeper and SHD.

• We demonstrate that our FPGA implementations of Shouji and
MAGNET are two to three orders of magnitude faster than their
CPU implementations. We demonstrate that integrating Shouji with
five state-of-the-art aligners reduces the execution time of the se-
quence aligner by up to 18.8x.

2 METHODS

2.1 Overview
Our goal is to quickly reject dissimilar sequences with high accuracy such
that we reduce the need for the computationally-costly alignment step. To
this end, we propose the Shouji algorithm to achieve highly-accurate fil-
tering. Then, we accelerate Shouji by taking advantage of the parallelism
of FPGAs to achieve fast filtering operations. The key filtering strategy of
Shouji is inspired by the pigeonhole principle, which states that if E items
are distributed into E+1 boxes, then one or more boxes would remain
empty. In the context of pre-alignment filtering, this principle provides the
following key observation: if two sequences differ by E edits, then the two
sequences should share at least a single common subsequence (i.e., free
of edits) and at most E+1 non-overlapping common subsequences, where
E is the edit distance threshold. With the existence of at most E edits, the
total length of these non-overlapping common subsequences should not
be less than m-E, where m is the sequence length. Shouji employs the pi-
geonhole principle to decide whether or not two sequences are potentially
similar. Shouji finds all the non-overlapping subsequences that exist in
both sequences. If the total length of these common subsequences is less
than m-E, then there exist more edits than the allowed edit distance thresh-
old, and hence Shouji rejects the two given sequences. Otherwise, Shouji
accepts the two sequences. Next, we discuss the details of Shouji.

2.2 Shouji Pre-alignment Filter
Shouji identifies the dissimilar sequences, without calculating the optimal
alignment, in three main steps. (1) The first step is to construct what we
call a neighborhood map that visualizes the pairwise matches and mis-
matches between two sequences given an edit distance threshold of E char-
acters. (2) The second step is to find all the non-overlapping common sub-
sequences in the neighborhood map using a sliding search window ap-
proach. (3) The last step is to accept or reject the given sequence pairs
based on the length of the found matches. If the length of the found
matches is small, then Shouji rejects the input sequence pair.

2.2.1 Building the Neighborhood Map

The neighborhood map, N, is a binary m by m matrix, where m is the se-
quence length. Given a text sequence T[1…m], a pattern sequence
P[1…m], and an edit distance threshold E, the neighborhood map repre-
sents the comparison result of the ith character of P with the jth character
of T, where i and j satisfy 1 ≤ i ≤ m and i-E ≤ j ≤ i+E. The entry N[i, j] of
the neighborhood map can be calculated as follows:

𝑁[𝑖, 𝑗] = (0,										if	𝑃
[𝑖] = 𝑇[𝑗]

1,										if	𝑃[𝑖] ≠ 𝑇[𝑗] (1)

We present in Fig. 1 an example of a neighborhood map for two se-
quences, where a pattern P differs from a text T by three edits.

Fig. 1: Neighborhood map (N) and the Shouji bit-vector, for text T =
GGTGCAGAGCTC, and pattern P = GGTGAGAGTTGT for E=3. The three com-
mon subsequences (i.e., GGTG, AGAG, and T) are highlighted in yellow. We use a
search window of size 4 columns (two examples of which are highlighted in red) with
a step size of a single column. Shouji searches diagonally within each search window
for the 4-bit vector that has the largest number of zeros. Once found, Shouji examines
if the found 4-bit vector maximizes the number of zeros at the corresponding location
of the 4-bit vector in the Shouji bit-vector. If so, then Shouji stores this 4-bit vector in
the Shouji bit-vector at its corresponding location.

The entry N[i, j] is set to zero if the ith character of the pattern matches
the jth character of the text. Otherwise, it is set to one. The way we build
our neighborhood map ensures that computing each of its entries is inde-
pendent of every other, and thus the entire map can be computed all at
once in a parallel fashion. Hence, our neighborhood map is well suited for
highly-parallel computing platforms (Alser et al., 2017; Seshadri et al.,
2017). Note that in sequence alignment algorithms, computing each entry
of the dynamic programming matrix depends on the values of the imme-
diate left, upper left, and upper entries of its own. Different from "dot plot"
or "dot matrix" (visual representation of the similarities between two
closely similar genomic sequences) that is used in FASTA/FASTP
(Lipman and Pearson, 1985), our neighborhood map computes only nec-
essary diagonals near the main diagonal of the matrix (e.g., seven diago-
nals shown in Fig. 1).

2.2.2 Identifying the Diagonally-Consecutive Matches

The key goal of this step is to accurately find all the non-overlapping com-
mon subsequences shared between a pair of sequences. The accuracy of
finding these subsequences is crucial for the overall filtering accuracy, as
the filtering decision is made solely based on total subsequence length.
With the existence of E edits, there are at most E+1 non-overlapping com-
mon subsequences (based on the pigeonhole principle) shared between a
pair of sequences. Each non-overlapping common subsequence is repre-
sented as a streak of diagonally-consecutive zeros in the neighborhood
map (as highlighted in yellow in Fig. 1). These streaks of diagonally-con-
secutive zeros are distributed along the diagonals of the neighborhood map
without any prior information about their length or number. One way of
finding these common subsequences is to use a brute-force approach,

j 1 2 3 4 5 6 7 8 9 10 11 12

G G T G C A G A G C T C

G
G
T
G
A
G
A
G
T
T
G
T

i
1
2
3
4
5
6
7
8
9

10
11
12

Neighborhood map:

 0 0 1 0

 0 0 1 0 1

 1 1 0 1 1 1

 0 0 1 0 1 1 0

 1 1 1 1 0 1 0

 1 0 1 1 0 1 0

 1 1 0 1 0 1 1

 1 1 0 1 0 1 1

 1 1 1 1 1 0 1

 1 1 1 1 0 1

 1 0 1 1 1

 1 1 0 1

Three common
subsequences

Search
Window # 7

Search
Window # 1

0 0 0 0 1 0 0 0 0 1 0 1

Last bottom
right entry

Search window # 1

Search window # 2

Search window # 3

Search window # 4

Search window # 5

Search window # 6

Search window # 7

Search window # 8
Shouji bit-vector:

. . . .

M. Alser et al.

which examines all the streaks of diagonally-consecutive zeros that start
at the first column and selects the streak that has the largest number of
zeros as the first common subsequences. It then iterates over the remaining
part of the neighborhood map to find the other common subsequences.
However, this brute-force approach is infeasible for highly-optimized
hardware implementation as the search space is unknown at design time.
Shouji overcomes this issue by dividing the neighborhood map into equal-
size parts. We call each part a search window. Limiting the size of the
search space from the entire neighborhood map to a search window has
three key benefits. (1) It helps to provide a scalable architecture that can
be implemented for any sequence length and edit distance threshold. (2)
Downsizing the search space into a reasonably small sub-matrix with a
known dimension at design time limits the number of all possible permu-
tations of each bit-vector to 2n, where n is the search window size. This
reduces the size of the look-up tables (LUTs) required for an FPGA im-
plementation and simplifies the overall design. (3) Each search window is
considered as a smaller sub-problem that can be solved independently and
rapidly with high parallelism. Shouji uses a search window of 4 columns
wide, as we illustrate in Fig. 1. We need m search windows for processing
two sequences, each of which is of length m characters. Each search win-
dow overlaps with its next neighboring search window by 3 columns. This
ensures covering the entire neighborhood map and finding all the common
subsequences regardless of their starting location. We select the width of
each search window to be 4 columns to guarantee finding the shortest pos-
sible common subsequence, which is a single match located between two
mismatches (i.e., ‘101’). However, we observe that the bit pattern ‘101’ is
not always necessarily a part of the correct alignment (or the common sub-
sequences). For example, the bit pattern ‘101’ exists once as a part of the
correct alignment in Fig.1, but it also appears five times in other different
locations that are not included in the correct alignment. To improve the
accuracy of finding the diagonally-consecutive matches, we increase the
length of the diagonal vector to be examined to four bits. We also experi-
mentally evaluate different search window sizes in Supplementary Mate-
rials, Section 6.1. We find that a search window size of 4 columns provides
the highest filtering accuracy without falsely-rejecting similar sequences.

Shouji finds the diagonally-consecutive matches that are part of the
common subsequences in the neighborhood map in two main steps. Step
1: For each search window, Shouji finds a 4-bit diagonal vector that has
the largest number of zeros. Shouji greedily considers this vector as a part
of the common subsequence as it has the least possible number of edits
(i.e., 1’s). Finding always the maximum number of matches is necessary
to avoid overestimating the actual number of edits and eventually preserv-
ing all similar sequences. Shouji achieves this step by comparing the 4 bits
of each of the 2E+1 diagonal vectors within a search window and selects
the 4-bit vector that has the largest number of zeros. In the case where two
4-bit subsequences have the same number of zeros, Shouji breaks the ties
by selecting the first one that has a leading zero. Then, Shouji slides the
search window by a single column (i.e., step size = 1 column) towards the
last bottom right entry of the neighborhood map and repeats the previous
computations. Thus, Shouji performs “Step 1” m times using m search
windows, where m is the sequence length. Step 2: The last step is to gather
the results found for each search window (i.e., 4-bit vector that has the
largest number of zeros) and construct back all the diagonally-consecutive
matches. For this purpose, Shouji maintains a Shouji bit-vector of length
m that stores all the zeros found in the neighborhood map as we illustrate
in Fig. 1. For each sliding search window, Shouji examines if the selected
4-bit vector maximizes the number of zeros in the Shouji bit-vector at the
same corresponding location. If so, Shouji stores the selected 4-bit vector
in the Shouji bit-vector at the same corresponding location. This is neces-

sary to avoid overestimating the number of edits between two given se-
quences. The common subsequences are represented as streaks of consec-
utive zeros in the Shouji bit-vector.

2.2.3 Filtering out Dissimilar Sequences

The last step of Shouji is to calculate the total number of edits (i.e., ones)
in the Shouji bit-vector. Shouji examines if the total number of ones in the
Shouji bit-vector is greater than E. If so, Shouji excludes the two se-
quences from the optimal alignment calculation. Otherwise, Shouji con-
siders the two sequences similar within the allowed edit distance threshold
and allows their optimal alignment to be computed using optimal align-
ment algorithms. The Shouji bit-vector represents the differences between
two sequences along the entire length of the sequence, m. However, Shouji
is not limited to end-to-end edit distance calculation. Shouji is also able to
provide edit distance calculation in local and glocal (semi-global) fashion.
For example, achieving local edit distance calculation requires ignoring
the ones that are located at the two ends of the Shouji bit-vector. We pre-
sent an example of local edit distance between two sequences of different
length in Supplementary Materials, Section 8. Achieving glocal edit dis-
tance calculation requires excluding the ones that are located at one of the
two ends of the Shouji bit-vector from the total count of the ones in the
Shouji bit-vector. This is important for correct pre-alignment filtering for
global, local, and glocal alignment algorithms. We provide the pseudo-
code of Shouji and discuss its computational complexity in Supplementary
Materials, Section 6.2. We also present two examples of applying the
Shouji filtering algorithm in Supplementary Materials, Section 8.

2.3 Accelerator Architecture
Our second aim is to substantially accelerate Shouji, by leveraging the
parallelism of FPGAs. In this section, we present our hardware accelerator
that is designed to exploit the large amounts of parallelism offered by
modern FPGA architectures (Aluru and Jammula, 2014; Herbordt et al.,
2007; Trimberger, 2015). We then outline the implementation of Shouji
to be used in our accelerator design. Fig. 2 shows the hardware architec-
ture of the accelerator. It contains a user-configurable number of filtering
units. Each filtering unit provides pre-alignment filtering independently
from other units. The workflow of the accelerator starts with transmitting
the sequence pair to the FPGA through the fastest communication medium
available on the FPGA board (i.e., PCIe). The sequence controller man-
ages and provides the necessary input signals for each filtering unit in the
accelerator. Each filtering unit requires two sequences of the same length
and an edit distance threshold. The result controller gathers the output re-
sult (i.e., a single bit of value ‘1’ for similar sequences and ‘0’ for dissim-
ilar sequences) of each filtering unit and transmits them back to the host
side in the same order as their sequences are transmitted to the FPGAs.

The host-FPGA communication is achieved using RIFFA 2.2 (Jacobsen
et al., 2015). To make the best use of the available resources in the FPGA
chip, our algorithm utilizes the operations that are easily supported on an
FPGA, such as bitwise operations, bit shifts, and bit count. To build the
neighborhood map on the FPGA, we use the observation that the main
diagonal can be implemented using a bitwise XOR operation between the
two given sequences. The upper E diagonals can be implemented by grad-
ually shifting the pattern (P) to the right-hand direction and then perform-
ing bitwise XOR with the text (T). This allows each character of P to be
compared with the right-hand neighbor characters (up to E characters) of
its corresponding character of T. The lower E diagonals can be imple-
mented in a way similar to the upper E diagonals, but here the shift oper-

Shouji: A Fast and Efficient Pre-Alignment Filter for Sequence Alignment

ation is performed in the left-hand direction. This ensures that each char-
acter of P is compared with the left-hand neighbor characters (up to E
characters) of its corresponding character of T.

We also build an efficient hardware architecture for each search win-
dow of the Shouji algorithm. It quickly finds the number of zeros in each
4-bit vector using a hardware look-up table that stores the 16 possible per-
mutations of a 4-bit vector along with the number of zeros for each per-
mutation. We present the block diagram of the search window architecture
in Supplementary Materials, Section 6.3. Our hardware implementation of
the Shouji filtering unit is independent of the specific FPGA-platform as
it does not rely on any vendor-specific computing elements (e.g., intellec-
tual property cores). However, each FPGA board has different resources
and hardware capabilities that can directly or indirectly affect the perfor-
mance and the data throughput of the design. The maximum data through-
put of the design and the available FPGA resources determine the number
of filtering units in the accelerator. Thus, if, for example, the memory
bandwidth is saturated, then increasing the number of filtering units would
not improve performance.

Fig. 2: Overview of our hardware accelerator architecture. The filtering units can be
replicated as many times as possible based on the resources available on the FPGA.

3 RESULTS
In this section, we evaluate (1) the filtering accuracy, (2) the FPGA re-
source utilization, (3) the execution time of Shouji, our hardware imple-
mentation of MAGNET (Alser et al., July 2017), GateKeeper (Alser et al.,
2017), and SHD (Xin et al., 2015), (4) the benefits of the pre-alignment
filters together with state-of-the-art aligners, and (5) the benefits of Shouji
together with state-of-the-art read mappers. As we mention in Section 1,
MAGNET leads to a small number of falsely-accepted sequence pairs but
suffers from poor performance. We comprehensively explore this algo-
rithm and provide an efficient and fast hardware implementation of
MAGNET in Supplementary Materials, Section 7. We run all experiments
using a 3.6 GHz Intel i7-3820 CPU with 8 GB RAM. We use a Xilinx
Virtex 7 VC709 board (Xilinx, 2014) to implement our accelerator archi-
tecture (for both Shouji and MAGNET). We build the FPGA design using
Vivado 2015.4 in synthesizable Verilog.

3.1 Dataset Description
Our experimental evaluation uses 12 different real datasets. Each dataset
contains 30 million real sequence pairs. We obtain three different read sets
(ERR240727_1, SRR826460_1, and SRR826471_1) of the whole human
genome that include three different read lengths (100 bp, 150 bp, and 250
bp). We download these three read sets from EMBL-ENA

(www.ebi.ac.uk/ena). We map each read set to the human reference ge-
nome (GRCh37) using the mrFAST (Alkan et al., 2009) mapper. We ob-
tain the human reference genome from the 1000 Genomes Project
(Consortium, 2012). For each read set, we use four different maximum
numbers of allowed edits using the -e parameter of mrFAST to generate
four real datasets. Each dataset contains the sequence pairs that are gener-
ated by the mrFAST mapper before the read alignment step. This enables
us to measure the effectiveness of the filters using both aligned and una-
ligned sequences over a wide range of edit distance thresholds. We sum-
marize the details of these 12 datasets in Supplementary Materials, Section
9. For the reader’s convenience, when referring to these datasets, we num-
ber them from 1 to 12 (e.g., set_1 to set_12). We use Edlib (Šošić and
Šikić, 2017) to generate the ground truth edit distance value for each se-
quence pair.

3.2 Filtering Accuracy
We evaluate the accuracy of a pre-alignment filter by computing its false
accept rate and false reject rate. We first assess the false accept rate of
Shouji, MAGNET (Alser et al., July 2017), SHD (Xin et al., 2015), and
GateKeeper (Alser et al., 2017) across different edit distance thresholds
and datasets. The false accept rate is the ratio of the number of dissimilar
sequences that are falsely-accepted by the filter and the number of dissim-
ilar sequences that are rejected by the optimal sequence alignment algo-
rithm. We aim to minimize the false accept rate to maximize that number
of dissimilar sequences that are eliminated. In Fig. 3, we provide the false
accept rate of the four filters across our 12 datasets and edit distance
thresholds of 0% to 10% of the sequence length (we provide the exact
values in Section 10 in Supplementary Materials).

Based on Fig. 3, we make four key observations. (1) We observe that
Shouji, MAGNET, SHD, and GateKeeper are less accurate in examining
the low-edit sequences (i.e., datasets 1, 2, 5, 6, 9, and 10) than the high-
edit sequences (i.e., datasets 3, 4, 7, 8, 11, and 12).

(a) Sequence length = 100

(b) Sequence length =150

(c) Sequence length = 250

Fig. 3: The false accept rate of Shouji, MAGNET, SHD and GateKeeper across 12 real
datasets. We use a wide range of edit distance thresholds (0%-10% of the sequence
length) for sequence lengths of (a) 100, (b) 150, and (c) 250.

Se
qu

en
ce

 R
ep

os
ito

ry

FPGA Board

PC
Ie

Host

. . .

Filtering
Unit #1

Result Controller

R
IF

FA
 R

X
En

gi
ne

R
IF

FA
 T

X
En

gi
ne

R
IF

FA
 D

riv
er

FIFOFIFO

Sequence Controller

Filtering
Unit #2

FIFO

Filtering
Unit #3

FIFO

Filtering
Unit #N

. . .

. . .

. . .

FIFO FIFO FIFOFIFO

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Set_1 Set_2 Set_3 Set_4

Fa
ls

e
Ac

ce
pt

 R
at

e

Edit distance threshold (characters) and dataset number

GateKeeper
Shouji
MAGNET
SHD

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0 1 3 4 6 7 9 10 12 13 15 0 1 3 4 6 7 9 10 12 13 15 0 1 3 4 6 7 9 10 12 13 15 0 1 3 4 6 7 9 10 12 13 15
Set_5 Set_6 Set_7 Set_8

Fa
ls

e
Ac

ce
pt

 R
at

e

Edit distance threshold (characters) and dataset number

GateKeeper
Shouji
MAGNET
SHD

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0 2 5 7 10 12 15 17 20 22 25 0 2 5 7 10 12 15 17 20 22 25 0 2 5 7 10 12 15 17 20 22 25 0 2 5 7 10 12 15 17 20 22 25
Set_9 Set_10 Set_11 Set_12

Fa
ls

e
Ac

ce
pt

 R
at

e

Edit distance threshold (characters) and dataset number

GateKeeper
Shouji
MAGNET
SHD

M. Alser et al.

(2) SHD (Xin et al., 2015) and GateKeeper (Alser et al., 2017) become
ineffective for edit distance thresholds of greater than 8% (E=8), 5%
(E=7), and 3% (E=7) for sequence lengths of 100, 150, and 250 characters,
respectively. This causes them to examine each sequence pair unneces-
sarily twice (i.e., once by GateKeeper or SHD and once by the alignment
algorithm). (3) For high-edit datasets, Shouji provides up to 17.2x, 73x,
and 467x (2.4x, 2.7x, and 38x for low-edit datasets) smaller false accept
rate compared to GateKeeper and SHD for sequence lengths of 100, 150,
and 250 characters, respectively. (4) MAGNET shows up to 1577x,
3550x, and 25552x lower false accept rates for high-edit datasets (3.5x,
14.7x, and 135x for low-edit datasets) compared to GateKeeper and SHD
for sequence lengths of 100, 150, and 250 characters, respectively.
MAGNET also shows up to 205x, 951x, and 16760x lower false accept
rates for high-edit datasets (2.7x, 10x, and 88x for low-edit datasets) over
Shouji for sequence lengths of 100, 150, and 250 characters, respectively.

We conclude that Shouji and MAGNET 1) maintain a very low rate of
falsely-accepted dissimilar sequences and 2) significantly improve the ac-
curacy of pre-alignment filtering by up to two and four orders of magni-
tude, respectively, compared to GateKeeper and SHD.

Second, we assess the false reject rates of pre-alignment filters in Sup-
plementary Materials, Section 10. We demonstrate that Shouji, SHD (Xin
et al., 2015) and GateKeeper (Alser et al., 2017) all have a 0% false reject
rate. We also observe that MAGNET falsely-rejects correct sequence
pairs, which is unacceptable for a reliable filter. Hence, we conclude that
Shouji is the most effective pre-alignment filter, with a low false accept
rate and a zero false reject rate.

3.3 Data Throughput and Resource Analysis
The operating frequency of our FPGA accelerator is 250 MHz. At this
frequency, we observe a data throughput of nearly 3.3 GB/s, which corre-
sponds to ~13.3 billion bases per second. This nearly reaches the peak
throughput of 3.64 GB/s provided by the RIFFA (Jacobsen et al., 2015)
communication channel that feeds data into the FPGA using Gen3 4-lane
PCIe. We examine the FPGA resource utilization of Shouji, MAGNET,
and GateKeeper (Alser et al., 2017) filters. SHD (Xin et al., 2015) is im-
plemented in C with Intel SSE instructions and cannot be directly imple-
mented on an FPGA. We examine the FPGA resource utilization for two
commonly used edit distance thresholds, 2% and 5% of the sequence
length, as reported in (Ahmadi et al., 2012; Alser et al., 2017; Hatem et
al., 2013; Xin et al., 2015). The VC709 FPGA chip contains 433,200 slice
LUTs (look-up tables) and 866,400 slice registers (flip-flops). Table 1 lists
the FPGA resource utilization for a single filtering unit. We make three
main observations. (1) The design for a single MAGNET filtering unit
requires about 10.5% and 37.8% of the available LUTs for edit distance
thresholds of 2 and 5, respectively. Hence, MAGNET can process 8 and 2
sequence pairs concurrently for edit distance thresholds of 2 and 5, respec-
tively, without violating the timing constraints of our accelerator. (2) The
design for a single Shouji filtering unit requires about 15x-21.9x fewer
LUTs compared to MAGNET. This enables Shouji to achieve more par-
allelism over the MAGNET design as it can have 16 filtering units within
the same FPGA chip. (3) GateKeeper requires about 26.9x-53x and 1.7x-
2.4x fewer LUTs compared to MAGNET and Shouji, respectively. Gate-
Keeper can also examine 16 sequence pairs at the same time.

We conclude that the FPGA resource usage is correlated with the filter-
ing accuracy. For example, the least accurate filter, GateKeeper, occupies
the least FPGA resources. Yet, Shouji has very low FPGA resource usage.

Table 1: FPGA resource usage for a single filtering unit of Shouji,
MAGNET, and GateKeeper, for a sequence length of 100 and under
different edit distance thresholds. We highlight the best value in each
column.

Filter E
Single Filtering Unit Max. No. of

Filtering Units Slice LUT Slice Register

Shouji
2 0.69% 0.01% 16
5 1.72% 0.01% 16

MAGNET
2 10.50% 0.8% 8
5 37.80% 2.30% 2

GateKeeper
2 0.39% 0.01% 16
5 0.71% 0.01% 16

3.4 Filtering Speed
We analyze the execution time of MAGNET and Shouji compared to SHD
(Xin et al., 2015) and GateKeeper (Alser et al., 2017). We evaluate Gate-
Keeper, MAGNET, and Shouji using a single FPGA chip and run SHD
using a single CPU core. SHD supports a sequence length of up to only
128 characters (due to the SIMD register size). To ensure as fair a com-
parison as possible, we allow SHD to divide the long sequences into
batches of 128 characters, examine each batch individually, and then sum
up the results. In Table 2, we provide the execution time of the four pre-
alignment filters using 120 million sequence pairs under sequence lengths
of 100 and 250 characters.

Table 2: Execution time (in seconds) of FPGA-based GateKeeper,
MAGNET, Shouji, and CPU-based SHD under different edit distance
thresholds and sequence lengths. We use set_1 to set_4 for a sequence
length of 100 and set_9 to set_12 for a sequence length of 250. We
provide the performance results for both a single filtering unit and
the maximum number of filtering units (in parentheses).

E GateKeeper MAGNET Shouji SHD

Sequence Length = 100
2 2.89a (0.18b, 16c) 2.89 (0.36, 8) 2.89 (0.18, 16) 60.33
5 2.89 (0.18, 16) 2.89 (1.45, 2) 2.89 (0.18, 16) 67.92

Sequence Length = 250
5 5.78 (0.72, 8) 5.78 (2.89d, 2) 5.78 (0.72d, 8) 141.09
15 5.78 (0.72, 8) 5.78 (5.78d, 1) 5.78 (0.72d, 8) 163.82
a Execution time, in seconds, for a single filtering unit.
b Execution time, in seconds, for maximum filtering units.
c The number of filtering units.
d Theoretical results based on the resource utilization and data throughput.

We make four key observations. (1) Shouji’s execution time is as low

as that of GateKeeper (Alser et al., 2017), and 2x-8x lower than that of
MAGNET. This observation is in accord with our expectation and can be
explained by the fact that MAGNET has more resource overhead that lim-
its the number of filtering units on an FPGA. Yet Shouji is up to two orders
of magnitude more accurate than GateKeeper (as we show earlier in Sec-
tion 3.2). (2) Shouji is up to 28x and 335x faster than SHD using one and
16 filtering units, respectively. (3) MAGNET is up to 28x and 167.5x
faster than SHD using one and 8 filtering units, respectively. As we pre-
sent in Supplementary Materials, Section 12, the hardware-accelerated
versions of Shouji and MAGNET provide up to three orders of magnitude
of speedup over their functionally-equivalent CPU implementations.

Shouji: A Fast and Efficient Pre-Alignment Filter for Sequence Alignment

We conclude that Shouji is extremely fast and accurate. Shouji’s per-
formance also scales very well over a wide range of both edit distance
thresholds and sequence lengths.

3.5 Effects of Pre-Alignment Filtering on Sequence
Alignment

We analyze the benefits of integrating our proposed pre-alignment filter
(and other filters) with state-of-the-art aligners. Table 3 presents the effect
of different pre-alignment filters on the overall alignment time. We select
five best-performing aligners, each of which is designed for a different
type of computing platform. We use a total of 120 million real sequence
pairs from our previously-described four datasets (set_1 to set_4) in this
analysis. We evaluate the actual execution time of Edlib (Šošić and Šikić,
2017) and Parasail (Daily, 2016) on our machine. However, FPGASW
(Fei et al., 2018), CUDASW++ 3.0 (Liu et al., 2013), and GSWABE (Liu
and Schmidt, 2015) are not open-source and not available to us. Therefore,
we scale the reported number of computed entries of the dynamic pro-
gramming matrix in a second (i.e., GCUPS) as follows: 120,000,000 /
(GCUPS / 1002). We make three key observations. (1) The execution time
of Edlib (Šošić and Šikić, 2017) reduces by up to 18.8x, 16.5x, 13.9x, and
5.2x after the addition of Shouji, MAGNET, GateKeeper, and SHD, re-
spectively, as a pre-alignment filtering step. We also observe a very simi-
lar trend for Parasail (Daily, 2016) combined with each of the four pre-
alignment filters. (2) Aligners designed for FPGAs and GPUs follow a
different trend than that we observe in the CPU aligners. We observe that
FPGASW (Fei et al., 2018), CUDASW++ 3.0 (Liu et al., 2013), and
GSWABE (Liu and Schmidt, 2015) are faster alone than with SHD (Xin
et al., 2015) incorporated as the pre-alignment filtering step. Shouji,
MAGNET, and GateKeeper (Alser et al., 2017) still significantly reduce
the overall execution time of both FPGA and GPU based aligners. Shouji
reduces the overall alignment time of FPGASW (Fei et al., 2018),
CUDASW++ 3.0 (Liu et al., 2013), and GSWABE (Liu and Schmidt,
2015) by factors of up to 14.5x, 14.2x, and 17.9x, respectively. This is up
to 1.35x, 1.4x, and 85x more than the effect of MAGNET, GateKeeper,
and SHD on the end-to-end alignment time.

Table 3: End-to-end execution time (in seconds) for several state-of-
the-art sequence alignment algorithms, with and without pre-align-
ment filters (Shouji, MAGNET, GateKeeper, and SHD) and across
different edit distance thresholds.

E Edlib w/ Shouji w/ MAGNET w/ GateKeeper w/ SHD
2 506.66 26.86 30.69 36.39 96.54
5 632.95 147.20 106.80 208.77 276.51
E Parasail w/ Shouji w/ MAGNET w/ GateKeeper w/ SHD
2 1310.96 69.21 78.83 93.87 154.02
5 2044.58 475.08 341.77 673.99 741.73
E FPGASW w/ Shouji w/ MAGNET w/ GateKeeper w/ SHD
2 11.33 0.78 1.04 0.99 61.14
5 11.33 2.81 3.34 3.91 71.65
E CUDASW++ 3.0 w/ Shouji w/ MAGNET w/ GateKeeper w/ SHD
2 10.08 0.71 0.96 0.90 61.05
5 10.08 2.52 3.13 3.50 71.24
E GSWABE w/ Shouji w/ MAGNET w/ GateKeeper w/ SHD
2 61.86 3.44 4.06 4.60 64.75
5 61.86 14.55 11.75 20.57 88.31

(3) We observe that if the execution time of the aligner is much larger
than that of the pre-alignment filter (which is the case for Edlib, Parasail,
and GSWABE for E=5 characters), then MAGNET provides up to 1.3x
more end-to-end speedup over Shouji. This is expected as MAGNET pro-
duces a smaller false accept rate compared to Shouji. However, unlike
MAGNET, Shouji provides a 0% false reject rate. We conclude that
among the four pre-alignment filters, Shouji is the best-performing pre-
alignment filter in terms of both speed and accuracy. Integrating Shouji
with an aligner leads to strongly positive benefits and reduces the aligner’s
total execution time by up to 18.8x.

3.6 Effects of Pre-Alignment Filtering on the Read
Mapper

After confirming the benefits of integrating Shouji with sequence align-
ment algorithms, we now evaluate the overall benefits of integrating
Shouji with the mrFAST (v. 2.6.1) mapper (Alkan et al., 2009) and BWA-
MEM (Li, 2013). Table 4 summarizes the effect of Shouji on the overall
mapping time, when all reads from ERR240727_1 (100 bp) are mapped to
GRCh37 with an edit distance threshold of 2% and 5%. We also provide
the total execution time breakdown in Table 15 in the Supplementary Ma-
terials. We make two observations. (1) The mapping time of mrFAST re-
duces by a factor of up to 5 after adding Shouji as the pre-alignment step.
(2) Integrating Shouji with BWA-MEM, without optimizing the mapper,
shows less benefit than integrating Shouji with mrFAST (up to 1.07x re-
duction in the overall mapping time). This is due to the fact that BWA-
MEM generates a low number of pairs that require verification using the
read aligner. We believe by changing the mapper to work better with
Shouji, we can achieve larger speedups. We leave this for future work.

Table 4: Overall mrFAST and BWA-MEM mapping time (in sec-
onds) with and without Shouji, for an edit distance threshold of 2%
and 5%.

 E # pairs to be
verified

pairs rejected
by Shouji

map. time
w/o Shouji

mapping time
w/ Shouji

m
rF

A
ST

2 40,859,970 30,679,795 242.1s 195.4s (1.2x)
5 874,403,170 764,688,027 2532s 504.6s (5.0x)

B
W

A
-M

EM
 2 653,543 585,036 668.1s 626.9s (1.07x)

2* 8,209,193 7,847,125 670.1s 625.8s (1.07x)
5 660,901 593,247 695.1s 655.8s (1.06x)
5* 8,542,937 8,186,550 696.1s 652.7s (1.07x)

* We configure BWA-MEM to report all secondary alignments using -a.

4 DISCUSSION AND FUTURE WORK
We demonstrate that the concept of pre-alignment filtering provides sub-
stantial benefits to the existing and future sequence alignment algorithms.
Accelerated sequence aligners that offer different strengths and features
are frequently introduced. Many of these efforts either simplify the scoring
function, or only take into account accelerating the computation of the dy-
namic programming matrix without supporting the backtracking step.
Shouji offers the ability to make the best use of existing aligners without
sacrificing any of their capabilities, as it does not modify or replace the
alignment step. As such, we hope that it catalyzes the adoption of special-
ized pre-alignment accelerators in genome sequence analysis. However,

M. Alser et al.

the use of specialized hardware chips may discourage users who are not
necessarily fluent in FPGAs. This concern can be alleviated in at least two
ways. First, the Shouji accelerator can be integrated more closely inside
the sequencing machines to perform real-time pre-alignment filtering con-
currently with sequencing (Lindner et al., 2016). This allows a significant
reduction in total genome analysis time. Second, cloud computing offers
access to a large number of advanced FPGA chips that can be used con-
currently via a simple user-friendly interface. However, such a scenario
requires the development of privacy-preserving pre-alignment filters due
to privacy and legal concerns (Salinas and Li, 2017). Our next efforts will
focus on exploring privacy-preserving real-time pre-alignment filtering.

Another potential target of our research is to explore the possibility of
accelerating optimal alignment calculations for longer sequences (few tens
of thousands of characters) (Senol et al., 2018) using pre-alignment filter-
ing. Longer sequences pose two challenges. First, we need to transfer more
data to the FPGA chip to be able process a single pair of sequences which
is mainly limited by the data transfer rate of the communication link (i.e.,
PCIe). Second, typical edit distance threshold used for sequence alignment
is 5% of the sequence length. For considerably long sequences, edit dis-
tance threshold is around few hundreds of characters. For a large edit dis-
tance threshold, each character of a given sequence is compared to a large
number of neighboring characters of the other given sequence. This makes
the short matches (e.g., a single zero or two consecutive zeros) to occur
more frequently in the diagonal vectors, which would negatively affect the
accuracy of Shouji. We will investigate this effect and explore new pre-
alignment filtering approaches for the sequencing data produced by third-
generation sequence machines.

5 CONCLUSION
In this work, we propose Shouji, a highly-parallel and accurate pre-align-
ment filtering algorithm accelerated on a specialized hardware platform.
The key idea of Shouji is to rapidly and accurately eliminate dissimilar
sequences without calculating banded optimal alignment. Our hardware-
accelerated version of Shouji provides, on average, three orders of magni-
tude speedup over its functionally-equivalent CPU implementation.
Shouji improves the accuracy of pre-alignment filtering by up to two or-
ders of magnitude compared to the best-performing existing pre-alignment
filter, GateKeeper. The addition of Shouji as a pre-alignment step signifi-
cantly reduces the alignment time of state-of-the-art aligners by up to
18.8x, leading to the fastest alignment mechanism that we know of.

Acknowledgments
We thank Tuan Duy Anh Nguyen for his valuable comments on the hardware design.

Funding
This work is supported in part by the NIH Grant (HG006004 to O. Mutlu and C.
Alkan) and the EMBO Installation Grant (IG-2521) to C. Alkan. M. Alser is sup-
ported in part by the HiPEAC collaboration grant and TUBITAK-2215 graduate fel-
lowship from the Scientific and Technological Research Council of Turkey.
	
Conflict	of	Interest:	none	declared.	

References
Ahmadi, A., Behm, A., Honnalli, N., Li, C., Weng, L. and Xie, X. (2012) Hobbes:

optimized gram-based methods for efficient read alignment, Nucleic acids

research, 40, e41-e41.

Al Kawam, A., Khatri, S. and Datta, A. (2017) A Survey of Software and Hardware

Approaches to Performing Read Alignment in Next Generation Sequencing,

IEEE/ACM Transactions on Computational Biology and Bioinformatics

(TCBB), 14, 1202-1213.

Alkan, C., Kidd, J. M., Marques-Bonet, T., Aksay, G., Antonacci, F., Hormozdiari,

F., Kitzman, J. O., Baker, C., Malig, M. and Mutlu, O. (2009) Personalized copy

number and segmental duplication maps using next-generation sequencing,

Nature genetics, 41, 1061-1067.

Alser, M., Hassan, H., Xin, H., Ergin, O., Mutlu, O. and Alkan, C. (2017)

GateKeeper: a new hardware architecture for accelerating pre-alignment in

DNA short read mapping, Bioinformatics, 33, 3355-3363.

Alser, M., Mutlu, O. and Alkan, C. (July 2017) Magnet: Understanding and

improving the accuracy of genome pre-alignment filtering, Transactions on

Internet Research 13.

Aluru, S. and Jammula, N. (2014) A review of hardware acceleration for

computational genomics, Design & Test, IEEE, 31, 19-30.

Backurs, A. and Indyk, P. (2017) Edit Distance Cannot Be Computed in Strongly

Subquadratic Time (unless SETH is false), arXiv preprint arXiv:1412.0348v4

Banerjee, S. S., El-Hadedy, M., Lim, J. B., Kalbarczyk, Z. T., Chen, D., Lumetta, S.

and Iyer, R. K. (2018) ASAP: Accelerated Short-Read Alignment on

Programmable Hardware, arXiv preprint arXiv:1803.02657.

Calude, C., Salomaa, K. and Yu, S. (2002) Additive distances and quasi-distances

between words, Journal of Universal Computer Science, 8, 141-152.

Chen, P., Wang, C., Li, X. and Zhou, X. (2014) Accelerating the next generation

long read mapping with the FPGA-based system, IEEE/ACM Transactions on

Computational Biology and Bioinformatics (TCBB), 11, 840-852.

Chen, Y.-T., Cong, J., Fang, Z., Lei, J. and Wei, P. (2016) When spark meets FPGAs:

a case study for next-generation DNA sequencing acceleration. Field-

Programmable Custom Computing Machines (FCCM), 2016 IEEE 24th Annual

International Symposium on. IEEE, pp. 29-29.

Consortium, G. P. (2012) An integrated map of genetic variation from 1,092 human

genomes, Nature, 491, 56-65.

Daily, J. (2016) Parasail: SIMD C library for global, semi-global, and local pairwise

sequence alignments, BMC bioinformatics, 17, 81.

Fei, X., Dan, Z., Lina, L., Xin, M. and Chunlei, Z. (2018) FPGASW: Accelerating

Large-Scale Smith–Waterman Sequence Alignment Application with

Backtracking on FPGA Linear Systolic Array, Interdisciplinary Sciences:

Computational Life Sciences, 10, 176-188.

Fox, E. J., Reid-Bayliss, K. S., Emond, M. J. and Loeb, L. A. (2014) Accuracy of

next generation sequencing platforms, Next generation, sequencing &

applications, 1.

Georganas, E., Buluç, A., Chapman, J., Oliker, L., Rokhsar, D. and Yelick, K. (2015)

meraligner: A fully parallel sequence aligner. Parallel and Distributed

Processing Symposium (IPDPS), 2015 IEEE International. IEEE, pp. 561-570.

Hatem, A., Bozdağ, D., Toland, A. E. and Çatalyürek, Ü. V. (2013) Benchmarking

short sequence mapping tools, BMC bioinformatics, 14, 184.

Henikoff, S. and Henikoff, J. G. (1992) Amino acid substitution matrices from

protein blocks, Proceedings of the National Academy of Sciences, 89, 10915-

10919.

Herbordt, M. C., VanCourt, T., Gu, Y., Sukhwani, B., Conti, A., Model, J. and

DiSabello, D. (2007) Achieving high performance with FPGA-based

computing, Computer, 40, 50.

Jacobsen, M., Richmond, D., Hogains, M. and Kastner, R. (2015) RIFFA 2.1: A

Reusable Integration Framework for FPGA Accelerators, ACM Trans.

Reconfigurable Technol. Syst., 8, 1-23.

Shouji: A Fast and Efficient Pre-Alignment Filter for Sequence Alignment

Kim, J. S., Cali, D. S., Xin, H., Lee, D., Ghose, S., Alser, M., Hassan, H., Ergin, O.,

Alkan, C. and Mutlu, O. (2018) GRIM-Filter: Fast seed location filtering in

DNA read mapping using processing-in-memory technologies, BMC genomics,

19, 89.

Kung, H.-T. (1982) Why systolic architectures?, IEEE computer, 15, 37-46.

Levenshtein, V. I. (1966) Binary codes capable of correcting deletions, insertions,

and reversals, Soviet physics doklady, 10.

Li, H. (2013) Aligning sequence reads, clone sequences and assembly contigs with

BWA-MEM, arXiv preprint arXiv:1303.3997.

Lindner, M. S., Strauch, B., Schulze, J. M., Tausch, S., Dabrowski, P. W., Nitsche,

A. and Renard, B. Y. (2016) HiLive–Real-Time Mapping of Illumina Reads

while Sequencing, Bioinformatics, btw659.

Lipman, D. J. and Pearson, W. R. (1985) Rapid and sensitive protein similarity

searches, Science, 227, 1435-1441.

Liu, Y. and Schmidt, B. (2015) GSWABE: faster GPU-accelerated sequence

alignment with optimal alignment retrieval for short DNA sequences,

Concurrency and Computation: Practice and Experience, 27, 958-972.

Liu, Y., Wirawan, A. and Schmidt, B. (2013) CUDASW++ 3.0: accelerating Smith-

Waterman protein database search by coupling CPU and GPU SIMD

instructions, BMC bioinformatics, 14, 117.

Masek, W. J. and Paterson, M. S. (1980) A faster algorithm computing string edit

distances, Journal of Computer and System Sciences, 20, 18-31.

McKernan, K. J., Peckham, H. E., Costa, G. L., McLaughlin, S. F., Fu, Y., Tsung, E.

F., Clouser, C. R., Duncan, C., Ichikawa, J. K. and Lee, C. C. (2009) Sequence

and structural variation in a human genome uncovered by short-read, massively

parallel ligation sequencing using two-base encoding, Genome research, 19,

1527-1541.

Navarro, G. (2001) A guided tour to approximate string matching, ACM computing

surveys (CSUR), 33, 31-88.

Needleman, S. B. and Wunsch, C. D. (1970) A general method applicable to the

search for similarities in the amino acid sequence of two proteins, Journal of

molecular biology, 48, 443-453.

Ng, H.-C., Liu, S. and Luk, W. (2017) Reconfigurable acceleration of genetic

sequence alignment: A survey of two decades of efforts. Field Programmable

Logic and Applications (FPL), 2017 27th International Conference on. IEEE,

pp. 1-8.

Nishimura, T., Bordim, J. L., Ito, Y. and Nakano, K. (2017) Accelerating the Smith-

Waterman Algorithm Using Bitwise Parallel Bulk Computation Technique on

GPU. Parallel and Distributed Processing Symposium Workshops (IPDPSW),

2017 IEEE International. IEEE, pp. 932-941.

Salinas, S. and Li, P. (2017) Secure Cloud Computing for Pairwise Sequence

Alignment. Proceedings of the 8th ACM International Conference on

Bioinformatics, Computational Biology, and Health Informatics. ACM, pp.

178-183.

Sandes, E. F. D. O., Boukerche, A. and Melo, A. C. M. A. D. (2016) Parallel optimal

pairwise biological sequence comparison: Algorithms, platforms, and

classification, ACM Computing Surveys (CSUR), 48, 63.

Senol, C. D., Kim, J., Ghose, S., Alkan, C. and Mutlu, O. (2018) Nanopore

sequencing technology and tools for genome assembly: computational analysis

of the current state, bottlenecks and future directions, Briefings in

bioinformatics.

Seshadri, V., Lee, D., Mullins, T., Hassan, H., Boroumand, A., Kim, J., Kozuch, M.

A., Mutlu, O., Gibbons, P. B. and Mowry, T. C. (2017) Ambit: In-memory

accelerator for bulk bitwise operations using commodity DRAM technology.

Proceedings of the 50th Annual IEEE/ACM International Symposium on

Microarchitecture. ACM, pp. 273-287.

Smith, T. F. and Waterman, M. S. (1981) Identification of common molecular

subsequences, Journal of molecular biology, 147, 195-197.

Šošić, M. and Šikić, M. (2017) Edlib: a C/C++ library for fast, exact sequence

alignment using edit distance, Bioinformatics, 33, 1394-1395.

Trimberger, S. M. (2015) Three ages of FPGAs: a retrospective on the first thirty

years of FPGA technology, Proceedings of the IEEE, 103, 318-331.

Ukkonen, E. (1985) Algorithms for approximate string matching, Information and

control, 64, 100-118.

Waidyasooriya, H. and Hariyama, M. (2015) Hardware-Acceleration of Short-read

Alignment Based on the Burrows-Wheeler Transform, Parallel and Distributed

Systems, IEEE Transactions on, PP, 1-1.

Wang, C., Yan, R.-X., Wang, X.-F., Si, J.-N. and Zhang, Z. (2011) Comparison of

linear gap penalties and profile-based variable gap penalties in profile–profile

alignments, Computational biology and chemistry, 35, 308-318.

Xilinx (2014) Virtex-7 XT VC709 Connectivity Kit, Getting Started Guide, UG966

(v3.0.1) June 30, 2014.

Xin, H., Greth, J., Emmons, J., Pekhimenko, G., Kingsford, C., Alkan, C. and Mutlu,

O. (2015) Shifted Hamming Distance: A Fast and Accurate SIMD-Friendly

Filter to Accelerate Alignment Verification in Read Mapping, Bioinformatics,

31, 1553-1560.

Xin, H., Lee, D., Hormozdiari, F., Yedkar, S., Mutlu, O. and Alkan, C. (2013)

Accelerating read mapping with FastHASH, BMC genomics, 14, S13.

1

Supplementary Materials

6 Shouji Filter

6.1 Examining the Effect of Different Window Sizes on the Accuracy of the Shouji Algorithm.
In Fig. 4, we experimentally evaluate the effect of different window sizes on the false accept rate of Shouji. We observe that as we increase the window
size, the rate of dissimilar sequences that are accepted by Shouji decreases. This is because individual matches (i.e., single zeros) are usually useless and
they are not necessarily part of the common subsequences. As we increase the search window size, we are ignoring these individual matches and instead
we only look for longer streaks of consecutive zeros. We also observe that a window size of 4 columns provides the lowest false accept rate (i.e., the
highest accuracy).

Fig. 4: The effect of the window size on the rate of the falsely-accepted sequences (i.e., dissimilar sequences that are considered as similar ones by Shouji filter). We observe
that a window width of 4 columns provides the highest accuracy. We also observe that as window size increases beyond 4 columns, more similar sequences are rejected by
Shouji, which should be avoided.

6.2 The Shouji Algorithm and Its Analysis
We provide the Shouji algorithm along with analysis of its computational complexity (asymptotic run time and space complexity). Shouji divides the
problem of finding the common subsequences into at most m subproblems, as described in Algorithm 1 (line 9). Each subproblem examines each of the
2E+1 bit-vectors and finds the 4-bit subsequence that has the largest number of zeros within the sliding window (line 13 to line 23). Once found, Shouji
also compares the found subsequence with its corresponding subsequence in the Shouji bit-vector and stores the subsequence that has more zeros in the
Shouji bit-vector (line 24). Now, let c be a constant representing the run time of examining a subsequence of 4 bits long. Then, the time complexity of the
Shouji algorithm is as follows:

TShouji(m) = c.m .(2E+2) (2)
This demonstrates that the Shouji algorithm runs in linear time with respect to the sequence length and edit distance threshold. The Shouji algorithm
maintains 2E+1 diagonal bit-vectors and an additional auxiliary bit-vector (i.e., the Shouji bit-vector) for each two given sequences. The space complexity
of the Shouji algorithm is as follows:

DShouji(m) = m .(2E+2) (3)
Hence, the Shouji algorithm requires linear space with respect to the sequence length and edit distance threshold. Next, we describe the hardware
implementation details of the Shouji filter.

6.3 Hardware Implementation
We present the FPGA chip layout for our hardware accelerator in Fig. 5. As we illustrated in the main manuscript, Section 2.3, we implement the first
step of our Shouji algorithm, building neighborhood map, using shift registers and bitwise XOR operations. The second step of the Shouji algorithm is
identifying the diagonally-consecutive matches. This key step involves finding the 4-bit vector that has the largest number of zeros. For each search
window, there are 2E+1 diagonal bit-vectors and an additional Shouji bit-vector. To enable the computation to be performed in a parallel fashion, we
build 2E+2 counters. As presented in Fig. 5, each counter counts the number of zeros in a single bit-vector. The counter takes four bits as input and
generates three bits that represent the number of zeros within the window. Each counter requires three 4-input LUTs, as each LUT has a single output
signal. In total, we need 6E+6 4-input LUTs to build a single search window. All bits of the counter output are generated at the same time, as the
propagation delay through an FPGA look-up table is independent of the implemented function (Xilinx, November 17, 2014). The comparator is
responsible for selecting the 4-bit subsequence that maximizes the number of consecutive matches based on the output of each counter and the Shouji bit-
vector. Finally, the selected 4-bit subsequence is then stored in the Shouji bit-vector at the same corresponding location.

53%

17%

4% 1%

0%

15%

30%

45%

60%

1 2 3 4

Fa
lse

 A
cc

ep
t R

at
e

Window Size (columns)

2

Algorithm 1: Shouji Comments

Input: text (T), pattern (P), edit distance threshold (E).
Output: 1 (Similar/Alignment is needed) / 0 (Dissimilar/Alignment is not needed).

 1: m ← length(T);
 2: for i ← 1 to m do
 3: for j ← i-E to i+E do
 4: if T[i] == P[j] then
 5: N[i,j] ← 0;
 6: else N[i,j]← 1;

Step 1: Building
neighborhood map (N)

Output: 2E+1 diagonal

bit-vectors

 7: for i ← 1 to m do Shouji[i] ← 1; //initializing Shouji bit-vector to 1’s
 8: Z ← [0000]; // Z is 4-bit vector that stores the longest streak of diagonally-consecutive zeros
 9: for i ← 1 to m do // slide the search window by a single step
10: for j ← 1 to E do // iterate over the diagonals
11: // function CZ(D) counts the occurrence of zeros in its input bit-vector D
12: // Compare jth lower diagonal with jth upper diagonal
13: if CZ(N[i+j:i+3+j,i:i+3]) > CZ(N[i:i+3,i+j:i+3+j]) then
14: Z ← N[i+j:i+3+j,i:i+3];
15: // If jth lower and jth upper diagonals have the same number of
16: // zeros then selects the diagonal that starts with zeros
17: else if CZ(N[i+j:i+3+j,i:i+3]) == CZ(N[i:i+3,i+j:i+3+j]) then
18: if N[i+j,i]==0 then Z ← N[i+j:i+3+j,i:i+3];
19: else if N[i,i+j]==0 then Z ← N[i:i+3,i+j:i+3+j];
20: // Compare Z with the jth upper diagonal
21: else Z ← N[i:i+3,i+j:i+3+j];
22: // Compare Z with main diagonal and Shouji bit-vector
23: if CZ(N[i:i+3,i:i+3]) > CZ(Z) then Z ← N[i:i+3,i:i+3];
24: if CZ(Z) > CZ(Shouji[i:i+3]) then Shouji[i:i+3] ← Z;

Step 2: Identifying the

Diagonally-Consecutive
Matches

25: if CZ(Shouji) ≥ m-E then return 1;
26: else return 0;

Step 3: Filtering out
Dissimilar Sequences

Algorithm 2: CZ (count zeros) function

Function: CZ() counts the number of occurrences of zeros.
Input: bit-vector D.
Output: number of occurrences of zeros.
 1: count ← 0;
 2: for i ← 1 to length(D) do
 3: if D[i] == 0 then
 4: count ← count + 1;
 5: return count;

3

Fig. 5: FPGA chip layout for Shouji and block diagram of the search window scheme implemented in a Xilinx VC709 FPGA for a single filtering unit.

7 MAGNET Filter
First, we provide the MAGNET (Alser et al., July 2017) algorithm and describe its main filtering mechanism. Second, we analyze the computational
complexity of the MAGNET algorithm. Third, we provide details about the hardware implementation of the MAGNET algorithm.

7.1 Overview
MAGNET (Alser et al., July 2017) is another filter that uses a divide-and-conquer technique to find all the E+1 common subsequences, if any, and sum
up their length. By calculating their total length, we can estimate the total number of edits between the two given sequences. If the total length of the E+1
common subsequences is less than m-E, then there exist more common subsequences than E+1 that are associated with more edits than allowed. If so,
then MAGNET excludes the two given sequences from optimal alignment calculation. We present the algorithm of MAGNET in Algorithm 3.

Algorithm 3: MAGNET Comments

Input: text (T), pattern (P), edit distance threshold (E).
Output: 1 (Similar/Alignment is needed) / 0 (Dissimilar/Alignment is not needed).

 1: m ← length(T);
 2: for i ← 1 to m do
 3: for j ← i-E to i+E do
 4: if T[i] == P[j] then
 5: N[i,j] ← 0;
 6: else N[i,j]← 1;

Step 1: Building
neighborhood map (N)

Output: 2E+1 diagonal

bit-vectors

 7: for i ← 1 to m do
 8: MAGNET[i] ← 1; // Initializing MAGNET bit-vector
 9: [MAGNET, calls] ← EXEN(N, 1, m, E, MAGNET, 1);

Step 2 - Step 4

10: // Function CZ() returns number of zeros
11: if CZ(MAGNET) ≥ m-E then return 1; else return 0;

Step 5: Filtering out
Dissimilar Sequences

Finding the common subsequences involves four main steps. (1) Building the neighborhood map. Similar to Shouji, MAGNET starts with building

the 2E+1 diagonal bit-vectors of the neighborhood map for the two given sequences (Algorithm 3, lines 2-6). (2) Extraction. Each diagonal bit-vector
nominates its local longest subsequence of consecutive zeros. Among all nominated subsequences, a single subsequence is selected as a global longest

m

m

m

Text

0's
Counter

Shōji
bit-vector

m search windows for processing
sequences of length m characters

Pattern

Edit
distance
threshold

42
.5

m
m

42.5mm

 Shouji logic slices
 PCIe controller

Filtering Unit

4 4
Search

Window m

2E+1 diagonals
4 . . .

. . .

4
4

Search
Window m-1

2E+1 diagonals
4 . . .

. . .

44
2E+1

diagonals

4. . .

. . .

B
ui

ld
in

g
N

ei
gh

bo
rh

oo
d

M
ap

(2
E

+1
 d

ia
go

na
l b

it-
ve

ct
or

s)

. . .

Z1

Zm-1

Zm

4

4

4

. . .

3

3

3
. . .

0's
Counter

0's
Counter

0's
Counter se

le
ct

 th
e

ve
ct

or
 th

at

ha
s

th
e

hi
gh

es
t #

 o
f 0

's

Search Window 1

2E+1

≥ m-E?

1: similar
0: dissimilar

Step 1 Step 2 Step 3

4

subsequence based on its length (Algorithm 4, lines 2-11). MAGNET evaluates if the length of the global longest subsequence is less
than	⌈(𝑚 − 𝐸)/(𝐸 + 1)⌉, then the two sequences contain more edits than allowed, which cause the common subsequences to be shorter (i.e., each edit
results in dividing the sequence pair into more common subsequences). If so, then the two sequences are rejected (Algorithm 4, lines 12-13). Otherwise,
MAGNET stores the length of the global longest subsequence to be used towards calculating the total length of all E+1 common subsequences. The lower
bound equality occurs when all edits are equispaced and all E+1 subsequences are of the same length. (3) Encapsulation. The next step is essential to
preserve the original edit (or edits) that causes a single common sequence to be divided into smaller subsequences. MAGNET penalizes the found
subsequence by two edits (one for each side). This is achieved by excluding from the search space of all bit-vectors the indices of the found subsequence
in addition to the index of the surrounding single bit from both left and right sides (Algorithm 4, lines 14-17). (4) Divide-and-Conquer Recursion. In
order to locate the other E non-overlapping subsequences, MAGNET applies a divide-and-conquer technique where we decompose the problem of finding
the non-overlapping common subsequences into two subproblems. While the first subproblem focuses on finding the next long subsequence that is located
on the right-hand side of the previously found subsequence in the first extraction step (Algorithm 4, line 15), the second subproblem focuses on the other
side of the found subsequence (Algorithm 4, line 17). Each subproblem is solved by recursively repeating all the three steps mentioned above, but without
evaluating again the length of the longest subsequence. MAGNET applies two early termination methods that aim to reduce the execution time of the
filter. The first method is evaluating the length of the longest subsequence in the first recursion call (Algorithm 4, lines 12-13). The second method is
limiting the number of the subsequences to be found to at most E+1, regardless of their actual number for the given sequence pair (Algorithm 4, line 1).
(5) Filtering out Dissimilar Sequences. Once after the termination, if the total length of all found common subsequences is less than m-E, then the two
sequences are rejected. Otherwise, they are considered to be similar and the alignment can be measured using sophisticated alignment algorithms.

Algorithm 4: EXEN function Comments

Function: EXEN() extracts the longest subsequence of consecutive zeros and generate two
subproblems.
Input: Neighborhood map (N), start index (SI), end index (EI), E, MAGNET bit-vector, number of
recursion calls.
Output: updated MAGNET bit-vector, updated number of calls.

 1: if (SI ≤ EI and calls ≤ E+1) then // Early termination condition
 2: // Function CCZ() returns number and indices of longest
 3: // subsequence of diagonally consecutive zeros
 4: for j ← 1 to E do //Extraction
 5: [X,s1,e1] ← CCZ(N[SI+j,SI],EI); // Lower diagonal
 6: [Y,s2,e2]	← CCZ(N[SI,SI+j],EI); // Upper diagonal
 7: if X > Y then s ← s1; e ← e1;
 8: else s ← s2; e ← e2;
 9: [X,s1,e1]	← CCZ(N[SI,SI],EI);
10: if X > (e-s+1) then
11: s ← s1; e ← e1;

Step 2: Extracting the
longest subsequence of

consecutive zeros

12: if (calls=1 and (e-s+1)<⌈(𝑚 − 𝐸)/(𝐸 + 1)⌉) then
13: return [MAGNET, 0];

Early termination condition
(only in first call)

14: // Right subproblem with encapsulation
15: [MAGNET, calls] ← EXEN(N,e+2,EI, E,MAGNET, calls+1);
16: // Left subproblem with encapsulation
17: [MAGNET, calls] ← EXEN(N,SI, s-2, E, MAGNET, calls+1);

Step 3: Encapsulating the
found longest subsequence

and Step 4: Divide-and-
Conquer Recursion

18: return [MAGNET, calls];
19: else return [MAGNET, calls-1];

7.2 Analysis of the MAGNET Algorithm
We analyze the asymptotic run time and space complexity of the MAGNET algorithm. MAGNET applies a divide-and-conquer technique that divides
the problem of finding the common subsequences into two subproblems in each recursion call. In the first recursion call, the extracted common
subsequence is of length at least	𝑎 = ⌈(𝑚 − 𝐸) (𝐸 + 1)⁄ ⌉ bases. This reduces the problem of finding the common subsequences from m to at most m-a,
which is further divided into two subproblems: a left subproblem and a right subproblem. For the sake of simplicity, we assume that the size of the left
and the right subproblems decreases by a factor of b and c, respectively, as follows:

m = 𝑎 + 2 +𝑚/𝑏 +𝑚/𝑐 (4)
The addition of 2 bases is for the encapsulation bits added at each recursion call. Now, let TMAGNET(m) be the time complexity of MAGNET algorithm, for
identifying non-overlapping subsequences. If it takes O(km) time to find the global longest subsequence and divide the problem into two subproblems,
where k = 2E+1 is the number of bit-vectors, we get the following recurrence equation:

TMAGNET(m) = TMAGNET(m/b) + TMAGNET(m/c) + O(km) (5)
Given that the early termination condition of MAGNET algorithm restricts the recursion depth as follows:

Recursion tree depth = ⌈𝑙𝑜𝑔6(𝐸 + 1)⌉ − 1 (6)
Solving the recurrence in (5) using (4) and (6) by applying the recursion-tree method provides a loose upper-bound to the time complexity as follows:

TMAGNET(m) = 𝑂(𝑘𝑚)	. ∑ ;<
=
+ <

>
?
@⌈ABCD(EF<)⌉G<

@HI
≈ 𝑂(𝑓𝑘𝑚) (7)

5

where f is a fractional number satisfies the following range: 1≤f<2. This in turn demonstrates that the MAGNET algorithm runs in linear time with respect
to the sequence length and edit distance threshold and hence it is computationally inexpensive. The space complexity of the MAGNET algorithm is as
follows:

DMAGNET(m) = DMAGNET(m/b) + DMAGNET(m/c) + (km+m)
≈ 𝑂(𝑓𝑘𝑚 + 𝑓𝑚) (8)

Hence, MAGNET algorithm requires linear space with respect to the read length and edit distance threshold. Next, we describe the hardware
implementation details of MAGNET filter.

7.3 Hardware Implementation
We outline the challenges that are encountered in implementing the MAGNET filter to be used in our accelerator design. Implementing the MAGNET
algorithm on an FPGA is more challenging than implementing the Shouji algorithm due to the random location and variable length of each of the E+1
common subsequences. Verilog-2011 imposes two challenges on our architecture as it does not support variable-size partial selection and indexing of a
group of bits from a vector (McNamara, 2001). In particular, the first challenge lies in excluding the extracted common subsequence along with its
encapsulation bits from the search space of the next recursion call. The second challenge lies in dividing the problem into two subproblems, each of which
has an unknown size at design time. To address these limitations and tackle the two design challenges, we keep the problem size fixed at each recursion
call. We exclude the longest found subsequence from the search space by amending all bits of all 2E+1 bit-vectors that are located within the indices
(locations) of the encapsulation bits to ‘1’s. This ensures that we exclude the longest found subsequence and its corresponding location in all other bit-
vectors during the subsequent recursion calls. We build the MAGNET accelerator using the same FPGA board as that used for Shouji for a fair comparison.

8 Examples of Applying the Shouji and MAGNET algorithms
In this section, we provide three examples of applying the Shouji and MAGNET filtering algorithms to different sequence pairs. In Fig. 6, we set the edit
distance threshold to 4 in these examples. The diagonal vectors of the neighborhood map are horizontally presented in the same order of the diagonal
vectors for a better illustration. In the first two examples (Fig. 6(a) and Fig. 6(b)), we observe that MAGNET is highly accurate in providing the exact
location of the edits in the MAGNET bit-vector. This is due to two main reasons. First, MAGNET finds the exact length of each common subsequence
by performing multiple individual iteration for each common subsequence. Second, it manually encapsulates each found longest subsequence of
consecutive zeros by ones, which ensures to maintain the edits in the MAGNET bit-vector. On the contrary, Shouji uses overlapping search windows to
detect segments of consecutive zeros. If two segments of consecutive zeros are overlapped within a single search window, then the edit between the two
segments is sometimes eliminated by the overlapping zeros of the two segments as shown in Fig. 6(a).

Pairwise alignment can be performed as a global alignment, where two sequences of the same length are aligned end-to-end, or a local alignment,
where subsequences of the two given sequences are aligned. It can also be performed as a semi-global alignment (called glocal), where the entirety of one
sequence is aligned towards one of the ends of the other sequence. To ensure correct pre-alignment filtering and avoid rejecting a correct alignment, pre-
alignment filter needs to consider counting the number of edits in a similar way to that of optimal alignment algorithm. This means that if the optimal
alignment algorithm performs local alignment, then the pre-alignment filter should also perform local edit distance calculation. This can be achieved by
not considering the leading and trailing edits in the total count of edits between two given sequences. Fig 6(a) and Fig. 6(b) show examples of global pre-
alignment filtering. Fig 6(c) shows an example of local pre-alignment filtering, where the two given sequences have different lengths. While Shouji is
conceptually able to perform local pre-alignment and glocal pre-alignment filtering, such support is not currently implemented in our public release of
Shouji (https://github.com/CMU-SAFARI/Shouji). The current implementation of Shouji performs only global pre-alignment filtering that requires the
text and reference sequences to be of the same length.

6

(a)

(b)

(c)

Fig. 6: Examples of applying the Shouji and MAGNET filtering algorithms to three different sequence pairs, where the edit distance threshold is set to 4. We present the content
of the neighborhood map along with the Shouji and MAGNET bit-vectors. In (a) and (b), we apply Shouji and MAGNET algorithms starting from the leftmost column towards
the rightmost column (end-to-end) to perform global pre-alignment filtering. In (c), we ignore the ones that are located at the two ends of the final bit-vector to perform local pre-
alignment filtering.

9 Dataset Description
Table 5 provides the configuration used for the -e parameter of mrFAST (Alkan et al., 2009) for each of the 12 datasets. We use Edlib (Šošić and Šikić,
2017) to assess the number of similar (i.e., having edits fewer than or equal to the edit distance threshold) and dissimilar (i.e., having more edits than the
edit distance threshold) pairs for each of the 12 datasets across different user-defined edit distance thresholds. We provide these details for set 1, set 2, set
3, and set 4 in Table 6. We provide the same details for set 5, set 6, set 7, and set 8 in Table 7 and for set 9, set 10, set 11, and set 12 in Table 8.

Table 5: Benchmark illumina-like datasets (read-reference pairs). We map each read set to the human reference genome in order to generate
four datasets using different mappers’ edit distance thresholds (using the -e parameter).

Accession no. ERR240727_1 SRR826460_1 SRR826471_1

Sequence Length 100 150 250

HTS Illumina HiSeq 2000 Illumina HiSeq 2000 Illumina HiSeq 2000

Dataset Set_1 Set_2 Set_3 Set_4 Set_5 Set_6 Set_7 Set_8 Set_9 Set_10 Set_11 Set_12

mrFAST -e 2 3 5 40 4 6 10 70 8 12 15 100

Amount of Edits Low-edit High-edit Low-edit High-edit Low-edit High-edit

Read : TTTTACTGTTCTCCCTTTGAATACAATATATCTATATTTCCCTCTGGCTACATTTAAAATTTCCCCTTTATCTGTAATAATCAGTAATTACGTTTTAAAA
Reference : TTTTACTGTTCTCCCTTTGAAATGACAATATATCTATATTTCCCTCTGGCTACATTTAAAATTTCCCCTTTATCTGTAATAATCAGTAAATTACCGTTTT

Upper Diagonal-4 : ----110111111100111111110101100001010001011010011111101101100110110011010101011101111111101011000000
Upper Diagonal-3 : ---0110110101011111111111110111111111110010011110111111001000100100010011111110110111111000000110001
Upper Diagonal-2 : --001111011001011011101100010111110011
Upper Diagonal-1 : -000111110111001001100011101111111111100100111101111110010001001000100111111101101111110111111110111

Main Diagonal : 0000000000000000000001110110000101000101101001111110110110011011001101010101110111111111101111111111
Lower Diagonal-1 : 000111110111001001101011010111111111011111011111101111111011111101111011111100001011010101101111111-
Lower Diagonal-2 : 00111101100101101111011111100100010101110011100111011011111111111111010101111011010101001100111111--
Lower Diagonal-3 : 0110110101011111111010110101111111011110111111111101101101111110111110111101111111111111110011111---
Lower Diagonal-4 : 110111111100111110110001111100000101110101100111110010100111110011100100111101011011111111000111----

Shouji bit-vector : 0000000000000000000100010001000000
MAGNET bit-vector : 00000000000000000000010100010001000000

Read : CGATCTCCTGACCTCGTGATCCGCCCGCCTCGGCCTCCCAAAGTGCTGGAATTACCGGCGTGAGCCACCGCGCCCGGCCCCAGGATGCTGTTATGTGAGT
Reference : CGATCTCCTGACCTCGTGATCCGCCCGCCTCGGCCTCCCAAAGTGCGGAATTACCGGCGTGAGCCACCGCGCCCGGCCCCGGATGCTGTTATTTGAGTAG

Upper Diagonal-4 : ----011111101111111111110000011111011001111111011101111111110111111110100110000101111110101101111011
Upper Diagonal-3 : ---1111001111101011011100110010110110011111111101111011110110101101011101001001111111111011010101110
Upper Diagonal-2 : --11100111111101101111101010110111110101101101011111011110011111110010110111011011110111111100110011
Upper Diagonal-1 : -111111011110111111110110011011101011001001111111111111111010101110110001011110011010100101001111100

Main Diagonal : 00101010110101111111011011110010100011111111011010010111
Lower Diagonal-1 : 111111011110111111110110011011101011001001111100000000000000000000000000000000001011111110110111111-
Lower Diagonal-2 : 11100111111101101111101010110111110101101101110101011010111111101101111001010001000000000000100000--
Lower Diagonal-3 : 1111001111101011011100110010110110011111111001111111111101010111011000101111001101111111011101111---
Lower Diagonal-4 : 011111101111111111110000011111011001111111110111101111001111111001011011101101111111110110101101----

Shouji bit-vector : 0001000000000000000000000000000000000100000000000010000100
MAGNET bit-vector : 00100000000000000000000000000000000010000000000010000010

Read : ACTGTTCTCCCTTTGAAATCTCAGTATATCTATATTTCCCTCTGGCTACATTTAAAATTTCCCCTTTATCTGTAATAATCAGTAAAAAAATTACCGTTTT
Reference : TTTTACTGTTCTCCCTTTGAATACAATAGATCTATATTTCCCTCTGGCTACATTTAAAATTTCCCCTTTATCTGTAATAATCAGTAATTACGTTTTAAAA

Upper Diagonal-4 : ----00000000000000000110111110010100010110100111111011011001101100110101----------------------------
Upper Diagonal-3 : ---11111011100100110001110111111111110010011110111111001000100100010011-----------------------------
Upper Diagonal-2 : --111101100101101110111001001000------------------------------
Upper Diagonal-1 : -11011010101111111111011111111111111001001111011111100100010010001001-------------------------------

Main Diagonal : 11011111110011111111110110001101000101101001111110110110011011001101--------------------------------
Lower Diagonal-1 : 1010100111101111101111110111111111011111011111101111111011111101111---------------------------------
Lower Diagonal-2 : 010011111010111101110111100110010101110011100111011011111111111111----------------------------------
Lower Diagonal-3 : 10011011001111101010100101111111011110111111111101101101111110111-----------------------------------
Lower Diagonal-4 : 0010101100111111011111111100100101110101100111110010100111110011------------------------------------

Shouji bit-vector : 00000000000000000000000100001000111111111111111111111111111111
MAGNET bit-vector : 00110000000000000000011010001000111111111111111111111111111111

MAGNET finds 4 editsShouji finds 2 edits

7

Table 6: Details of our first four datasets (set 1, set 2, set 3, and set 4). We use Edlib to benchmark the accepted (i.e., aligned) pairs and the
rejected (i.e., unaligned) pairs for edit distance thresholds of E=0 up to E=10 edits.

Dataset Set_1 Set_2 Set_3 Set_4
E Accepted Rejected Accepted Rejected Accepted Rejected Accepted Rejected
0 381,901 29,618,099 124,531 29,875,469 11,989 29,988,011 11 29,999,989
1 1,345,842 28,654,158 441,927 29,558,073 44,565 29,955,435 18 29,999,982
2 3,266,455 26,733,545 1,073,808 28,926,192 108,979 29,891,021 24 29,999,976
3 5,595,596 24,404,404 2,053,181 27,946,819 206,903 29,793,097 27 29,999,973
4 7,825,272 22,174,728 3,235,057 26,764,943 334,712 29,665,288 29 29,999,971
5 9,821,308 20,178,692 4,481,341 25,518,659 490,670 29,509,330 34 29,999,966
6 11,650,490 18,349,510 5,756,432 24,243,568 675,357 29,324,643 83 29,999,917
7 13,407,801 16,592,199 7,091,373 22,908,627 891,447 29,108,553 177 29,999,823
8 15,152,501 14,847,499 8,531,811 21,468,189 1,151,447 28,848,553 333 29,999,667
9 16,894,680 13,105,320 10,102,726 19,897,274 1,469,996 28,530,004 711 29,999,289
10 18,610,897 11,389,103 11,807,488 18,192,512 1,868,827 28,131,173 1,627 29,998,373

Table 7: Details of our second four datasets (set_5, set_6, set_7, and set_8). We report the accepted and the rejected pairs for edit distance
thresholds of E=0 up to E=15 edits.

Dataset Set_5 Set_6 Set_7 Set_8
E Accepted Rejected Accepted Rejected Accepted Rejected Accepted Rejected
0 1,440,497 28,559,503 248,920 29,751,080 444 29,999,556 201 29,999,799
1 1,868,909 28,131,091 324,056 29,675,944 695 29,999,305 327 29,999,673
3 2,734,841 27,265,159 481,724 29,518,276 927 29,999,073 444 29,999,556
4 3,457,975 26,542,025 612,747 29,387,253 994 29,999,006 475 29,999,525
6 5,320,713 24,679,287 991,606 29,008,394 1,097 29,998,903 529 29,999,471
7 6,261,628 23,738,372 1,226,695 28,773,305 1,136 29,998,864 546 29,999,454
9 7,916,882 22,083,118 1,740,067 28,259,933 1,221 29,998,779 587 29,999,413
10 8,658,021 21,341,979 2,009,835 27,990,165 1,274 29,998,726 612 29,999,388
12 10,131,849 19,868,151 2,591,299 27,408,701 1,701 29,998,299 710 29,999,290
13 10,917,472 19,082,528 2,923,699 27,076,301 2,146 29,997,854 796 29,999,204
15 12,646,165 17,353,835 3,730,089 26,269,911 3,921 29,996,079 1,153 29,998,847

Table 8: Details of our third four datasets (set_9, set_10, set_11, and set_12). We report the accepted and the rejected pairs for edit distance
thresholds of E=0 up to E=25 edits.

Dataset Set_9 Set_10 Set_11 Set_12
E Accepted Rejected Accepted Rejected Accepted Rejected Accepted Rejected
0 707,517 29,292,483 43,565 29,956,435 4,389 29,995,611 49 29,999,951
2 1,462,242 28,537,758 88,141 29,911,859 8,970 29,991,030 163 29,999,837
5 1,973,835 28,026,165 119,100 29,880,900 12,420 29,987,580 301 29,999,699
7 2,361,418 27,638,582 145,290 29,854,710 15,405 29,984,595 375 29,999,625
10 3,183,271 26,816,729 205,536 29,794,464 22,014 29,977,986 472 29,999,528
12 3,862,776 26,137,224 257,360 29,742,640 27,817 29,972,183 520 29,999,480
15 4,915,346 25,084,654 346,809 29,653,191 37,710 29,962,290 575 29,999,425
17 5,550,869 24,449,131 409,978 29,590,022 44,225 29,955,775 623 29,999,377
20 6,404,832 23,595,168 507,177 29,492,823 54,650 29,945,350 718 29,999,282
22 6,959,616 23,040,384 572,769 29,427,231 62,255 29,937,745 842 29,999,158
25 7,857,750 22,142,250 673,254 29,326,746 74,761 29,925,239 1,133 29,998,867

8

10 Evaluating the Number of Falsely-Accepted Sequence Pairs and Falsely-Rejected Sequence Pairs
We evaluate the number of falsely-accepted pairs and falsely-rejected pairs for Shouji, MAGNET, SHD (Xin et al., 2015), and GateKeeper (Alser et al.,
2017). We list the number of falsely-accepted and falsely-rejected sequences in Table 9, Table 10, and Table 11 for read lengths of 100 bp, 150 bp, and
250 bp, respectively.

The false reject rate is the ratio of the number of similar sequences that are rejected (falsely-rejected pairs) by the filter and the number of similar
sequences that are accepted by the optimal sequence alignment algorithm. The false reject rate should always be equal to 0%. Using our 12 low-edit and
high-edit datasets for three different sequence lengths, we observe that Shouji, SHD, and GateKeeper do not filter out correct sequence pairs; hence, they
provide a 0% false reject rate. The reason is the way we find the common subsequences. We always look for the subsequences that have the largest
number of zeros, such that we maximize the number of matches and minimize the number of edits that cause the division of one long common sequence
into shorter subsequences. However, this is not the case for MAGNET. We observe that MAGNET provides a very low false reject rate of less than
0.00045% for an edit distance threshold of at least 4% of the sequence length. This is due in large part to the greedy choice of always selecting the longest
common subsequence regardless of its contribution to the total number of edits. On the contrary, Shouji always examines whether or not the selected 4-
bit segment that has the largest number of zeros decreases the number of edits in the Shouji bit-vector before considering the 4-bit segment to be part of
the common subsequences. In Fig. 7, we show an example of where MAGNET falsely considers two given sequences as dissimilar ones, while they differ
by less than the edit distance threshold. This example shows that MAGNET’s greedy approach of finding the common subsequences fails in finding the
two common subsequences that are highlighted in blue. Instead, MAGNET finds another four shorter subsequences that result in increasing the number
of mismatches in the MAGNET bit-vector.

Fig. 7: An example of a falsely-rejected sequence pair using the MAGNET algorithm for an edit distance threshold of 6. The random zeros (highlighted in red) confuse the
MAGNET filter, causing it to select shorter segments of random zeros instead of a longer common subsequences (highlighted in blue).

Pattern : CAAACTGGGTGGAGCCCACCACAGCTCAAAGGAAGCCTGCCTTCCTCTGTAGGCTCCACCTCTGGGGGCAGGGCACAGACAAACAAAAAGACAGCAGTAA
Text : CAAACTGGGTGGAGCCCACAACAGCTCAAGGAGGCCTGCCTGCCTCTATAGGCTCCACCTCTGGGGGCAGGGCACAGACAAACAAAAAGACAGCAGTAAC

Upper Diagonal-6 : ------1111111011111110110111001111111011110110110111001101111111111010001100011101110100111011001101
Upper Diagonal-5 : -----11111101011101110010100111111111111111110011111111111000111111110001111010010101000101011111010
Upper Diagonal-4 : ----011110001111110111111111111011111110111011011111101110110111111110000011011101110001101011011111
Upper Diagonal-3 : ---1111111001011110100110111111010111000000001110110111111011111110110011111100010000010101001111101
Upper Diagonal-2 : --10111101011011010010011101111000111101110100111101111010010111100110111111111101100100101110001011
Upper Diagonal-1 : -100111001101110011111111111011101111111111110010111110110110011000111101100101010101000101011111111

Main Diagonal : 0000000000000000000100000000010111101110111011111110111011011110000111001111111100110000111111111101
Lower Diagonal-1 : 100111001101110011001111111000001000000001000001000-
Lower Diagonal-2 : 10111101011011010111011101101010010111010101111111011101101111000011100111111110011000011111111110--
Lower Diagonal-3 : 1111111001011110000010111111111111111111111001001111011011001100011110110010101010100010101111111---
Lower Diagonal-4 : 011110001111110011111111111101011110111011011111111101001011110011011111111110110010010111000101----
Lower Diagonal-5 : 11111101011101010011100111100011100001000111011111111101111111011001111110001000001010100111110-----
Lower Diagonal-4 : 1111111011111110110111011110111101010101111111110111011011111111000001101110111000110101101111------

MAGNET bit-vector : 0000000000000000000100000000011000101000000001010001

142 3 5 6 7

MAGNET should select this identical segment instead of the one highlighted in red

9

Table 9: Details of evaluating the number of falsely-accepted sequence pairs (FA) and falsely-rejected sequence pairs (FR) of Shouji,
MAGNET, GateKeeper, and SHD using four datasets, set_1, set_2, set_3, and set_4, with a read length of 100 bp.

Accepted Rejected FA FR FA FR FA FR FA FR
0 381,901 29,618,099 10 0 0 0 963,941 0 0 0
1 1,345,842 28,654,158 783,185 0 783,185 0 800,099 0 333,320 0
2 3,266,455 26,733,545 2,704,128 0 2,704,128 0 1,876,518 0 1,283,004 0
3 5,595,596 24,404,404 5,237,529 0 5,237,529 0 2,428,301 0 2,674,876 0
4 7,825,272 22,174,728 8,231,507 0 8,231,507 0 2,662,902 1 4,399,886 0
5 9,821,308 20,178,692 11,195,124 0 11,195,124 0 2,916,838 0 6,452,280 0
6 11,650,490 18,349,510 13,781,651 0 13,781,651 0 3,406,303 4 9,373,309 0
7 13,407,801 16,592,199 14,283,519 0 14,283,519 0 4,026,433 19 11,113,616 0
8 15,152,501 14,847,499 13,814,295 0 13,814,295 0 4,745,672 27 11,990,529 0
9 16,894,680 13,105,320 13,105,305 0 13,048,929 0 5,319,627 41 11,693,396 0

10 18,610,897 11,389,103 11,389,103 0 11,387,137 0 5,673,172 31 10,664,722 0
E Accepted Rejected FA FR FA FR FA FR FA FR
0 124,531 29,875,469 2 0 0 0 317,396 0 0 0
1 441,927 29,558,073 276,271 0 276,271 0 265,663 0 114,225 0
2 1,073,808 28,926,192 1,273,787 0 1,273,787 0 779,683 0 524,886 0
3 2,053,181 27,946,819 3,370,661 0 3,370,661 0 1,257,472 0 1,494,883 0
4 3,235,057 26,764,943 6,695,487 0 6,695,487 0 1,621,885 1 3,085,801 0
5 4,481,341 25,518,659 10,798,431 0 10,798,431 0 1,995,105 0 5,410,196 0
6 5,756,432 24,243,568 15,305,752 0 15,305,752 0 2,574,171 2 9,218,900 0
7 7,091,373 22,908,627 17,347,813 0 17,347,813 0 3,391,117 5 12,401,268 0
8 8,531,811 21,468,189 18,015,876 0 18,015,876 0 4,485,756 19 14,865,877 0
9 10,102,726 19,897,274 19,897,204 0 19,567,250 0 5,639,763 38 15,670,345 0

10 11,807,488 18,192,512 18,192,512 0 18,162,027 0 6,691,920 52 15,222,777 0
E Accepted Rejected FA FR FA FR FA FR FA FR
0 11,989 29,988,011 1 0 0 0 32,576 0 0 0
1 44,565 29,955,435 30,065 0 30,065 0 27,639 0 13,060 0
2 108,979 29,891,021 153,613 0 153,613 0 77,792 0 61,519 0
3 206,903 29,793,097 466,411 0 466,411 0 133,654 0 200,269 0
4 334,712 29,665,288 1,254,259 0 1,254,259 0 193,569 0 521,359 0
5 490,670 29,509,330 2,767,674 0 2,767,674 0 268,750 0 1,206,373 0
6 675,357 29,324,643 6,227,154 0 6,227,154 0 385,154 0 2,983,331 0
7 891,447 29,108,553 9,695,580 0 9,695,580 0 585,853 0 5,431,357 0
8 1,151,447 28,848,553 12,921,874 0 13,921,874 0 931,084 1 8,532,786 0
9 1,469,996 28,530,004 28,529,540 0 28,269,373 0 1,466,018 9 11,228,839 0

10 1,868,827 28,131,173 28,131,173 0 28,130,072 0 2,251,403 6 13,630,704 0
E Accepted Rejected FA FR FA FR FA FR FA FR
0 11 29,999,989 0 0 0 0 7 0 0 0
1 18 29,999,982 14 0 14 0 5 0 2 0
2 24 29,999,976 155 0 155 0 2 0 15 0
3 27 29,999,973 1,196 0 1,196 0 4 0 216 0
4 29 29,999,971 7,436 0 7,436 0 13 0 1,986 0
5 34 29,999,966 32,792 0 32,792 0 82 0 10,551 0
6 83 29,999,917 155,134 0 155,134 0 298 0 57,258 0
7 177 29,999,823 417,444 0 417,444 0 1,030 0 214,005 0
8 333 29,999,667 1,031,480 0 1,031,480 0 3,129 0 675,029 0
9 711 29,999,289 29,997,022 0 29,997,022 0 8,234 0 1,742,476 0

10 1,627 29,998,373 29,998,373 0 29,998,373 0 19,013 0 3,902,535 0

ShoujiEdlib
Read Aligner Pre-alignment Filter

Se
t_

4
Se

t_
3

Se
t_

2
Se

t_
1

E SHD GateKeeper MAGNET

10

Table 10: Details of evaluating the number of falsely-accepted sequence pairs (FA) and falsely-rejected sequence pairs (FR) of Shouji,
MAGNET, GateKeeper, and SHD using four datasets, set_5, set_6, set_7, and set_8, with a read length of 150 bp.

Accepted Rejected FA FR FA FR FA FR FA FR
0 1,440,497 28,559,503 0 0 0 0 428,412 0 0 0
1 1,868,909 28,131,091 173,573 0 173,573 0 156,891 0 113,519 0
3 2,734,841 27,265,159 2,080,279 0 2,080,279 0 725,873 0 1,539,365 0
4 3,457,975 26,542,025 4,023,762 0 4,023,762 0 1,064,344 0 3,042,831 0
6 5,320,713 24,679,287 9,258,602 0 9,258,602 0 1,430,272 0 6,025,592 0
7 6,261,628 23,738,372 12,481,853 0 12,481,853 0 1,532,024 2 8,219,336 0
9 7,916,882 22,083,118 22,076,837 0 22,076,837 0 1,874,734 20 14,568,337 0

10 8,658,021 21,341,979 21,341,979 0 21,341,979 0 2,194,275 10 16,920,389 0
12 10,131,849 19,868,151 19,868,151 0 19,868,151 0 3,294,672 42 18,270,597 0
13 10,917,472 19,082,528 19,082,528 0 19,082,528 0 4,066,617 46 18,095,207 0
15 12,646,165 17,353,835 17,353,835 0 17,353,835 0 5,810,797 62 16,993,568 0
E Accepted Rejected FA FR FA FR FA FR FA FR
0 248,920 29,751,080 0 0 0 0 75,136 0 0 0
1 324,056 29,675,944 31,406 0 31,406 0 28,456 0 20,294 0
3 481,724 29,518,276 440,577 0 440,577 0 131,460 0 309,015 0
4 612,747 29,387,253 1,023,901 0 1,023,901 0 199,248 0 718,847 0
6 991,606 29,008,394 4,165,422 0 4,165,422 0 334,729 0 2,222,934 0
7 1,226,695 28,773,305 7,137,889 0 7,137,889 0 405,052 0 3,762,706 0
9 1,740,067 28,259,933 28,215,257 0 28,215,257 0 600,124 0 10,299,935 0

10 2,009,835 27,990,165 27,990,165 0 27,990,165 0 753,866 2 13,826,393 0
12 2,591,299 27,408,701 27,408,701 0 27,408,701 0 1,336,246 10 17,542,652 0
13 2,923,699 27,076,301 27,076,301 0 27,076,301 0 1,835,774 19 18,371,563 0
15 3,730,089 26,269,911 26,269,911 0 26,269,911 0 3,354,276 33 19,528,254 0
E Accepted Rejected FA FR FA FR FA FR FA FR
0 444 29,999,556 0 0 0 0 251 0 0 0
1 695 29,999,305 104 0 104 0 77 0 94 0
3 927 29,999,073 191 0 191 0 68 0 180 0
4 994 29,999,006 643 0 643 0 53 0 421 0
6 1,097 29,998,903 47,924 0 47,924 0 57 0 19,097 0
7 1,136 29,998,864 175,481 0 175,481 0 74 0 70,540 0
9 1,221 29,998,779 29,595,345 0 29,595,345 0 461 0 857,547 0

10 1,274 29,998,726 29,998,726 0 29,998,726 0 1,017 0 1,829,338 0
12 1,701 29,998,299 29,998,299 0 29,998,299 0 4,218 0 4,893,299 0
13 2,146 29,997,854 29,997,854 0 29,997,854 0 8,620 0 6,955,205 0
15 3,921 29,996,079 29,996,079 0 29,996,079 0 31,783 0 12,854,488 0
E Accepted Rejected FA FR FA FR FA FR FA FR
0 201 29,999,799 0 0 0 0 126 0 0 0
1 327 29,999,673 58 0 58 0 42 0 43 0
3 444 29,999,556 90 0 90 0 35 0 83 0
4 475 29,999,525 267 0 267 0 28 0 137 0
6 529 29,999,471 18,110 0 18,110 0 25 0 6,259 0
7 546 29,999,454 79,418 0 79,418 0 27 0 27,092 0
9 587 29,999,413 29,698,666 0 29,698,666 0 108 0 404,742 0

10 612 29,999,388 29,999,388 0 29,999,388 0 231 0 935,486 0
12 710 29,999,290 29,999,290 0 29,999,290 0 965 0 2,514,950 0
13 796 29,999,204 29,999,204 0 29,999,204 0 2,018 0 3,693,298 0
15 1,153 29,998,847 29,998,847 0 29,998,847 0 8,448 0 8,034,737 0

Pre-alignment Filter
Edlib SHD GateKeeper MAGNET Shouji

Se
t_

8
Se

t_
7

Se
t_

6

E
 Read Aligner

Se
t_

5

11

Table 11: Details of evaluating the number of falsely-accepted sequence pairs (FA) and falsely-rejected sequence pairs (FR) of Shouji,
MAGNET, GateKeeper, and SHD using four datasets, set_9, set_10, set_11, and set_12, with a read length of 250 bp.

Accepted Rejected FA FR FA FR FA FR FA FR
0 707,517 29,292,483 0 0 0 0 479,104 0 0 0
2 1,462,242 28,537,758 238,368 0 238,368 0 143,066 0 174,366 0
5 1,973,835 28,026,165 1,546,126 0 1,546,126 0 226,864 0 1,071,218 0
7 2,361,418 27,638,582 3,933,916 0 3,933,916 0 347,819 1 2,775,419 0

10 3,183,271 26,816,729 26,816,729 0 26,816,729 0 624,927 1 6,669,084 0
12 3,862,776 26,137,224 26,137,224 0 26,137,224 0 825,468 9 11,147,373 0
15 4,915,346 25,084,654 25,084,654 0 25,084,654 0 1,066,633 14 18,406,823 0
17 5,550,869 24,449,131 24,449,131 0 24,449,131 0 1,235,999 23 20,971,826 0
20 6,404,832 23,595,168 23,595,168 0 23,595,168 0 1,695,351 35 22,223,170 0
22 6,959,616 23,040,384 23,040,384 0 23,040,384 0 2,241,984 42 22,271,215 0
25 7,857,750 22,142,250 22,142,250 0 22,142,250 0 3,514,515 54 21,849,454 0
E Accepted Rejected FA FR FA FR FA FR FA FR
0 43,565 29,956,435 0 0 0 0 28,540 0 0 0
2 88,141 29,911,859 13,092 0 13,092 0 8,367 0 11,238 0
5 119,100 29,880,900 113,106 0 113,106 0 14,685 0 77,095 0
7 145,290 29,854,710 364,611 0 364,611 0 24,919 0 227,073 0

10 205,536 29,794,464 29,794,464 0 29,794,464 0 45,768 0 782,844 0
12 257,360 29,742,640 29,742,640 0 29,742,640 0 63,557 2 2,195,021 0
15 346,809 29,653,191 29,653,191 0 29,653,191 0 92,443 1 7,573,911 0
17 409,978 29,590,022 29,590,022 0 29,590,022 0 116,740 1 11,603,069 0
20 507,177 29,492,823 29,492,823 0 29,492,823 0 165,502 2 16,075,487 0
22 572,769 29,427,231 29,427,231 0 29,427,231 0 217,274 6 19,167,498 0
25 673,254 29,326,746 29,326,746 0 29,326,746 0 376,323 7 24,778,497 0
E Accepted Rejected FA FR FA FR FA FR FA FR
0 4,389 29,995,611 0 0 0 0 2,933 0 0 0
2 8,970 29,991,030 1,405 0 1,405 0 890 0 1,173 0
5 12,420 29,987,580 12,185 0 12,185 0 1,704 0 8,489 0
7 15,405 29,984,595 41,555 0 41,555 0 2,644 0 24,946 0

10 22,014 29,977,986 29,977,986 0 29,977,986 0 4,759 0 145,053 0
12 27,817 29,972,183 29,972,183 0 29,972,183 0 6,729 1 833,703 0
15 37,710 29,962,290 29,962,290 0 29,962,290 0 9,498 0 5,088,387 0
17 44,225 29,955,775 29,955,775 0 29,955,775 0 12,134 0 9,832,285 0
20 54,650 29,945,350 29,945,350 0 29,945,350 0 18,366 0 16,815,067 0
22 62,255 29,937,745 29,937,745 0 29,937,745 0 25,411 2 20,798,178 0
25 74,761 29,925,239 29,925,239 0 29,925,239 0 44,377 1 26,094,659 0
E Accepted Rejected FA FR FA FR FA FR FA FR
0 49 29,999,951 0 0 0 0 53 0 0 0
2 163 29,999,837 71 0 71 0 44 0 55 0
5 301 29,999,699 249 0 249 0 49 0 161 0
7 375 29,999,625 698 0 698 0 48 0 212 0

10 472 29,999,528 29,999,528 0 29,999,528 0 42 0 5,627 0
12 520 29,999,480 29,999,480 0 29,999,480 0 45 0 64,225 0
15 575 29,999,425 29,999,425 0 29,999,425 0 82 0 775,314 0
17 623 29,999,377 29,999,377 0 29,999,377 0 175 0 2,052,498 0
20 718 29,999,282 29,999,282 0 29,999,282 0 417 0 5,679,869 0
22 842 29,999,158 29,999,158 0 29,999,158 0 593 0 10,277,297 0
25 1,133 29,998,867 29,998,867 0 29,998,867 0 1,174 0 19,676,652 0

SHD GateKeeper MAGNET ShoujiE
 Read Aligner Pre-alignment Filter

Edlib

Se
t_

12
Se

t_
11

Se
t_

10
Se

t_
9

12

11 Evaluating the Number of Falsely-Accepted and Falsely-Rejected Pairs Using Single End and
Paired End Reads

We assess the accuracy of Shouji using both single end and paired end reads. We first map 3' reads from ERR240727.fastq (i.e., reads from
ERR240727_2.fastq) to the human reference genome (GRCh37) using mrFAST (Alkan et al., 2009) with an edit distance threshold of 2. We then use the
first 30 million read-reference pairs that are produced by mrFAST before performing alignment to examine the filtering accuracy of Shouji. In Table 12,
we show the number of falsely-accepted and falsely-rejected pairs of Shouji using these 30 million pairs over different edit distance thresholds. Generating
the read-reference pairs in this way allows us to examine the filtering accuracy of Shouji using both aligned (i.e., pairs that have edits no more than the
allowed edit distance threshold) and unaligned (i.e., pairs that have edits more than the allowed edit distance threshold) pairs. We use the same method to
generate set_1 from ERR240727_1.fastq, as we describe in Section 3.1 in the main manuscript. We observe that the accuracy of Shouji using 3' reads
from ERR240727.fastq remains almost the same as that of Shouji when we use 5' reads from ERR240727.fastq (which we show in Table 9 when we use
set_1). Next, we map both 5' reads and 3' reads from ERR240727.fastq to the human reference genome using the mrFAST mapper in paired end mode.
We then use the first 30 million read-reference pairs that are produced by mrFAST before performing alignment to examine the filtering accuracy of
Shouji. In Table 13, we show the number of falsely-accepted and falsely-rejected pairs of Shouji using these 30 million pairs. We observe the results are
similar when using paired end reads as when using single end reads. Based on Table 12 and Table 13, we conclude that the evaluation of our pre-alignment
filter does not depend on the paired end sequencing or paired end reads. Similarly with any dynamic programming sequence alignment algorithm, Shouji
always examines a single reference segment with a single read individually and independently from the way this pair is generated. The read mapper is
responsible for generating the read-reference pairs that must be verified using a dynamic programming sequence alignment algorithm. Shouji examines
these pairs (before using the computationally-expensive sequence alignment algorithms) regardless of the algorithm (e.g., single end read mapping or
paired end read mapping) used to generate these pairs.

Table 12: Number of falsely-accepted and falsely-rejected sequence pairs of Shouji using single end reads from ERR240727_2.fastq mapped to
the human reference genome. We use Edlib (Šošić and Šikić, 2017) to generate the ground truth edit distance value for each sequence pair.

Table 13: Number of falsely-accepted and falsely-rejected sequence pairs of Shouji using paired end reads from ERR240727.fastq mapped to
the human reference genome. We use Edlib (Šošić and Šikić, 2017) to generate the ground truth edit distance value for each sequence pair.

Aligned Unaligned Aligned Unaligned Falsely-Accepted Falsely-Rejected
0 206,252 29,793,748 206,252 29,793,748 0 0
1 1,359,165 28,640,835 1,680,722 28,319,278 321,557 0
2 3,308,445 26,691,555 4,562,146 25,437,854 1,253,701 0
3 5,673,028 24,326,972 8,290,885 21,709,115 2,617,857 0
4 7,929,996 22,070,004 12,171,061 17,828,939 4,241,065 0
5 9,920,919 20,079,081 16,051,171 13,948,829 6,130,252 0
6 11,710,868 18,289,132 20,532,091 9,467,909 8,821,223 0
7 13,409,936 16,590,064 23,845,857 6,154,143 10,435,921 0
8 15,078,030 14,921,970 26,405,117 3,594,883 11,327,087 0
9 16,727,424 13,272,576 27,901,872 2,098,128 11,174,448 0
10 18,339,408 11,660,592 28,680,484 1,319,516 10,341,076 0

E
Edlib baseline Shouji

Aligned Unaligned Aligned Unaligned Falsely-Accepted Falsely-Rejected
0 0 30,000,000 0 30,000,000 0 0
1 373,921 29,626,079 453,808 29,546,192 79,887 0
2 1,318,319 28,681,681 1,947,127 28,052,873 628,808 0
3 3,207,952 26,792,048 5,224,261 24,775,739 2,016,309 0
4 5,500,950 24,499,050 9,227,434 20,772,566 3,726,484 0
5 7,709,237 22,290,763 13,305,866 16,694,134 5,596,629 0
6 9,698,512 20,301,488 18,208,145 11,791,855 8,509,633 0
7 11,529,693 18,470,307 22,281,600 7,718,400 10,751,907 0
8 13,293,029 16,706,971 25,736,052 4,263,948 12,443,023 0
9 15,041,936 14,958,064 27,833,759 2,166,241 12,791,823 0
10 16,782,466 13,217,534 28,890,050 1,109,950 12,107,584 0

E
Edlib baseline Shouji

13

12 FPGA Acceleration of Shouji and MAGNET
We analyze the benefits of accelerating the CPU implementation of our pre-alignment filters Shouji and MAGNET using FPGA hardware. As we show
in Table 14, our hardware accelerators are two to three orders of magnitude faster than the equivalent CPU implementations of Shouji and MAGNET.

Table 14: Execution time (in seconds) of the CPU implementations of Shouji and MAGNET filters and that of their hardware-accelerated
versions (using a single filtering unit).

E Shouji-CPU Shouji-FPGA Speedup MAGNET-CPU MAGNET-FPGA Speedup
Sequence Length = 100

2 474.27 2.89 164.11x 632.02 2.89 218.69x
5 1,305.15 2.89 451.61x 1,641.57 2.89 568.02x

Sequence Length = 250
2 1,689.09 2.89* 584.46x 5,567.62 2.89* 1,926.51x
5 6,096.61 2.89* 2,109.55x 14,328.28 2.89* 4,957.88x

 * Estimated based on the resource utilization and data throughput

13 Execution time breakdown of Read Mapping combined with Shouji
We provide the total runtime breakdown of mrFAST (v. 2.6.1) (Alkan et al., 2009) and BWA-MEM (Li, 2013) with Shouji as a pre-alignment filter. We
break down the execution time of read mapping with Shouji into 1) read-reference pair generation time, 2) Shouji filtering time, 3) Shouji pre-processing
time, 4) Shouji transfer time, and 5) dynamic programming alignment time. The sum of these five runtime values provides the total execution time of
read mapping with Shouji as a pre-alignment filter (8th column of Table 15 entitled total execution time). We provide the total execution time breakdown
of mrFAST (v. 2.6.1 that includes FastHASH (Xin et al., 2013)) (Alkan et al., 2009) and BWA-MEM (Li, 2013) with Shouji compared to the baseline
(i.e., the last column of Table 15 represents the runtime of mrFAST and BWA-MEM without Shouji) in Table 15. We map all reads from ERR240727_1
(100 bp) to GRCh37 with an edit distance threshold of 2% and 5%. Based on Table 15, we make the following key observation: the dynamic programming
alignment time drops by a factor of 4-24 (the 7th column of Table 15 compared with the 10th column of Table 15) after integrating Shouji with read
mapping as a pre-alignment step.

We conclude that the ability of Shouji to accelerate read mapping scales very well over a wide range of edit distance threshold values.

Table 15: Total execution time breakdown (in seconds) of mrFAST and BWA-MEM with and without Shouji, for an edit distance threshold of
2% and 5%. The green shaded columns represent the processing time spent by each step of the original read mapper (without Shouji). The
orange and blue shaded columns represent the processing time spent by each step of the accelerated read mapper (with the addition of Shouji as
a pre-alignment step). The orange shaded columns represent the processing time spent by Shouji on the FPGA board and the host CPU.

pre-
processing

Transfer
time

2 175.02 0.0616 3.2239 0.2919 16.6929 195.2902 175.02 67.08 242.1

5 198.02 1.3176 53.9911 6.2457 242.8571 502.4315 198.02 2333.99 2532.01

2 622.1 0.0010 0.0516 0.0050 4.8219 626.9794 622.1 46.02 668.12

2* 623.03 0.0124 0.6477 0.0622 2.0729 625.8252 623.03 47.08 670.11

5 649.02 0.0010 0.0521 0.0050 4.7089 653.7870 649.02 46.12 695.14

5* 650.01 0.0129 0.6740 0.0647 1.9190 652.6806 650.01 46.08 696.09

m
rF

AS
T

BW
A-

M
EM

Read mapping time without Shouji (baseline)

Read-ref pair
generation

time

Alignment
time

Total
execution

time

E

Read mapping time with Shouji

Read-ref pair
generation time

Shouji (FPGA)
filtering time

Shouji (CPU)
Alignment

time

Total
execution

time

14

14 Edlib, Parasail, SHD, mrFAST, and BWA-MEM Configurations
In Table 16, we list the software packages that we cover in our performance evaluation, including their version numbers and function calls used.

Table 16: Read aligners and pre-alignment filters used in our performance evaluations.

Edlib: November 5 2017
Banded Levenshtein Distance:
EdlibAlignResult resultEdlib = edlibAlign(RefSeq, ReadLength, ReadSeq, ReadLength, edlibNewAlignConfig(ErrorThreshold,
EDLIB_MODE_NW, EDLIB_TASK_PATH, NULL, 0));
edlibFreeAlignResult(resultEdlib);
if (resultEdlib.editDistance!= -1)
 Accepted =1;
else Accepted =0;

Banded Levenshtein Distance with backtracking:
EdlibAlignResult resultEdlib = edlibAlign(RefSeq, ReadLength, ReadSeq, ReadLength, edlibNewAlignConfig(ErrorThreshold,
EDLIB_MODE_NW, EDLIB_TASK_PATH, NULL, 0));
char* cigar = edlibAlignmentToCigar(resultEdlib.alignment, resultEdlib.alignmentLength, EDLIB_CIGAR_STANDARD);
free(cigar);
edlibFreeAlignResult(resultEdlib);

Parasail: January 7 2018
function = parasail_lookup_function("nw_banded");
result = function(RefSeq, ReadLength, ReadSeq, ReadLength,10, 1, ErrorThreshold,¶sail_blosum62);
if(parasail_result_is_trace(result)==1){
 parasail_traceback_generic(RefSeq, ReadLength, ReadSeq, ReadLength, "Query:", "Target:", ¶sail_blosum62, result, '|', ':', '.', 50, 14, 0);
 if (result->score != 0) {
 cigar2=parasail_result_get_cigar(result, RefSeq, ReadLength, ReadSeq, ReadLength, ¶sail_blosum62);
 parasail_cigar_free(cigar2);
 }
}

SHD: November 7 2017, compiled using g++-4.9
for (k=1;k<=1+ (ReadLength/128);k++)
 totalEdits= totalEdits + (bit_vec_filter_sse1(read_t, ref_t, length, ErrorThreshold));

mrFAST: November 29 2017
./mrfast-2.6.1.0/mrfast --search human_g1k_v37.fasta --seq ../ERR240727_1_100bp.fastq -e 2

The human reference genome can be downloaded from:
ftp://ftp.ncbi.nlm.nih.gov/1000genomes/ftp/technical/reference/human_g1k_v37.fasta.gz

Extracting read-reference pairs:

1- Add the following to line 1786 of https://github.com/BilkentCompGen/mrfast/blob/master/MrFAST.c
2- Extract reference segment:

for (n = 0; n < 100; n++) printf(“%d”, _msf_refGen[n + genLoc + _msf_refGenOffset - 1 - leftSeqLength]);
3- Extract read sequence:

printf("\t%s\n", _tmpSeq);

BWA-MEM: November 25 2018
./bwa mem -w 3 ../human_g1k_v37.fasta ../../../Desktop/Filters_29_11_2016/ERR240727_1_100bp.fastq

Report all secondary alignments:
./bwa mem -a -w 3 ../human_g1k_v37.fasta ../../../Desktop/Filters_29_11_2016/ERR240727_1_100bp.fastq

Extracting read-reference pairs:

1- Add the following code between line 166 and line 167 of https://github.com/lh3/bwa/blob/master/bwa.c
2- Extract reference segment:

for (i = 0; i < rlen; ++i) putchar("ACGTN"[(int)rseq[i]]); putchar('\t');
3- Extract read sequence:

for (i = 0; i < l_query; ++i) putchar("ACGTN"[(int)query[i]]); putchar('\n');

15

REFERENCES
Alkan, C., Kidd, J. M., Marques-Bonet, T., Aksay, G., Antonacci, F., Hormozdiari, F., Kitzman, J. O., Baker, C., Malig, M. and Mutlu, O. (2009)

Personalized copy number and segmental duplication maps using next-generation sequencing, Nature genetics, 41, 1061-1067.
Alser, M., Hassan, H., Xin, H., Ergin, O., Mutlu, O. and Alkan, C. (2017) GateKeeper: a new hardware architecture for accelerating pre-alignment in

DNA short read mapping, Bioinformatics, 33, 3355-3363.
Alser, M., Mutlu, O. and Alkan, C. (July 2017) Magnet: Understanding and improving the accuracy of genome pre-alignment filtering, Transactions on

Internet Research 13.
Li, H. (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM, arXiv preprint arXiv:1303.3997.
McNamara, M. (2001) IEEE Standard Verilog Hardware Description Language. The Institute of Electrical and Electronics Engineers, Inc. IEEE Std,

1364-2001.
Šošić, M. and Šikić, M. (2017) Edlib: a C/C++ library for fast, exact sequence alignment using edit distance, Bioinformatics, 33, 1394-1395.
Xilinx (November 17, 2014) 7 Series FPGAs Configurable Logic Block User Guide. Xilinx.
Xin, H., Greth, J., Emmons, J., Pekhimenko, G., Kingsford, C., Alkan, C. and Mutlu, O. (2015) Shifted Hamming Distance: A Fast and Accurate SIMD-

Friendly Filter to Accelerate Alignment Verification in Read Mapping, Bioinformatics, 31, 1553-1560.
Xin, H., Lee, D., Hormozdiari, F., Yedkar, S., Mutlu, O. and Alkan, C. (2013) Accelerating read mapping with FastHASH, BMC genomics, 14, S13.

