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ABSTRACT
In a chip multiprocessor (CMP) system, where multiple on-chip
cores share a common memory interface, simultaneous memory
requests from different threads can interfere with each other.
Unfortunately, conventional memory scheduling techniques only
try to optimize for overall data throughput and do not account
for this inter-thread interference. Therefore, different threads
running concurrently on the same chip can experience extremely
different memory system performance: one thread can experi-
ence a severe slowdown or starvation while another is unfairly
prioritized by the memory scheduler.

Our MICRO-40 paper proposes a new memory access sched-
uler, called the Stall-Time Fair Memory scheduler (STFM), that
provides performance fairness to threads sharing the DRAM
memory system. The key idea of the proposed scheduler is to
equalize the DRAM-related slowdown experienced by each thread
due to interference from other threads, without hurting overall
system performance. To do so, STFM estimates at run-time
each thread’s slowdown due to sharing the DRAM system and
prioritizes memory requests of threads that are slowed down the
most. Unlike previous approaches to DRAM scheduling, STFM
comprehensively takes into account inherent memory character-
istics of each thread and therefore does not unfairly penalize
threads that use the DRAM system without interfering with
others. We show how STFM can be configured by the system
software to control unfairness and to enforce thread priorities.

Our results show that STFM significantly reduces the unfair-
ness in the DRAM system while also improving system through-
put on a wide variety of workloads and CMP systems. For exam-
ple, averaged over 32 different workloads running on an 8-core
CMP, the ratio between the highest DRAM-related slowdown
and the lowest DRAM-related slowdown reduces from 5.26X to
1.4X, while system throughput improves by 7.6%. We qualita-
tively and quantitatively compare STFM to one new and three
previously-proposed memory access scheduling algorithms, in-
cluding Network Fair Queueing. Our results show that STFM
provides the best fairness, system throughput, and scalability.

1 Summary
1.1 The Problem
Today’s chip multiprocessors share the DRAM memory system
among different cores. Threads executing on different cores can
interfere with each other while accessing the shared DRAM sys-
tem. If inter-thread interference is not controlled, some threads
could be unfairly prioritized over others while other, perhaps
higher priority, threads could be starved for long time peri-
ods waiting to access the DRAM. Unfortunately, conventional
high-performance DRAM memory controller designs do not take
into account interference between different threads when mak-
ing scheduling decisions. Instead, they try to maximize the data
throughput obtained from the DRAM, usually via the state-of-
the-art first-ready first-come-first-serve (FR-FCFS) policy [7, 6].
FR-FCFS prioritizes memory requests that hit in the row-buffers
of DRAM banks over other requests, including older ones. If no
request is a row-buffer hit, then FR-FCFS prioritizes older re-
quests over younger ones. This scheduling algorithm is thread-
unaware. Therefore, different threads running together on the
same chip can experience extremely different memory system
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performance: one thread (e.g. one with a very low row-buffer
hit rate) can experience a severe slowdown or starvation while
another (e.g. one with a very high row-buffer hit rate) is unfairly
prioritized by the memory scheduler.

In our MICRO-40 paper, we first quantitatively demonstrate
the problem of unfair DRAM scheduling. To do so, we define
a thread’s memory-related slowdown on a CMP as the memory
stall time (i.e. number of cycles in which a thread cannot com-
mit instructions due to a DRAM access) the thread experiences
when running simultaneously with other threads, divided by the
memory stall time it experiences when running alone on the
same CMP. We show that, in a representative desktop work-
load (among 256 evaluated workloads) run on a 4-core CMP
system, one thread (omnetpp) experiences a slowdown of 7.74X
whereas another (libquantum) experiences almost no slowdown
at all (1.04X). The problem becomes even worse in 8-core and
16-core systems where the ratio between the maximum slow-
down and the minimum slowdown significantly increases. In
our previous work, published at USENIX Security 2007 [3], we
demonstrated on a real dual-core CMP that the unfairness in the
DRAM scheduler can be exploited by malicious memory perfor-
mance hog programs to perform denial of service against other
programs sharing the DRAM system: on an existing dual-core
system a malicious memory performance hog causes another pro-
gram to slow down by 2.9X whereas the malicious program itself
slows down by only 18%.

Unfair DRAM scheduling is a significant impediment to build-
ing viable and scalable CMP systems because it can result in 1)
very unpredictable program performance, which makes perfor-
mance analysis and optimization extremely difficult, 2) signifi-
cant discomfort to the end user who naturally expects threads
with higher (equal) priorities to get higher (equal) shares of the
computing system performance, 3) significant productivity and
performance loss due to new denial of service vulnerabilities [3].
Therefore, to enable viable, scalable, and predictable CMP sys-
tems, DRAM scheduling must be made fair.

1.2 The Solution
Our MICRO-40 paper proposes a novel, low-cost, and high per-
formance DRAM scheduler that provides a configurable fairness
substrate for shared DRAM memory. Our scheduler operates
based on a fundamentally new definition of DRAM fairness that
takes into account inherent memory performance of each thread
sharing the DRAM system.

DRAM Fairness: Defining fairness in DRAM systems is
non-trivial. Simply dividing the DRAM bandwidth evenly
across all threads is insufficient because this penalizes threads
with high row-buffer locality, high memory parallelism, or in
general, threads that by virtue of their memory access behavior
are able to achieve better DRAM performance than others (as
we show in Sections 4 and 7 of our paper). Our fundamental
observation is that sustained DRAM bandwidth does not corre-
spond to observed DRAM performance when threads interfere.

The key discovery that enables our solution is that a thread’s
performance degradation due to DRAM interference is primar-
ily characterized by its extra memory-related stall-time caused
due to contention with requests from other threads. This extra
stall-time takes into account all factors that affect the thread’s
performance, including changes to bandwidth, locality, and par-
allelism due to inter-thread interference. Based on this intuition,
we define a DRAM scheduler to be fair if it schedules requests in
such a way that the extra memory-related slowdown (due to in-
terference caused by other threads) is equalized across all threads.

This is a summary of the original paper, entitled "Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors" 
which appears in MICRO 2007.
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Basic idea: To achieve this fairness goal, our stall-time
fair memory scheduler (STFM) estimates two values for each
thread: 1) Tshared: Memory stall time the thread experiences
in the shared DRAM system when running alongside other
threads, 2) Talone: Memory stall time the thread would have
experienced had it been running alone (without any contending
threads on other cores). Based on these estimates, the sched-
uler computes the memory-slowdown S of each thread where
S = Tshared/Talone. If unfairness, i.e. the ratio between the
maximum slowdown value and the minimum slowdown value in
the system, exceeds a threshold α (the threshold of maximum
tolerable unfairness), the scheduler prioritizes memory requests
from threads that are slowed down the most, thereby equalizing
the experienced memory slowdown across all threads. Other-
wise, the scheduler uses the baseline throughput-oriented FR-
FCFS scheduling policy to maximize DRAM data throughput.

1.2.1 How STFM Works
The key design issue in STFM is how to estimate Tshared and
Talone. Accurately estimating Tshared is simple. The processor
increases a counter when it cannot commit instructions due to
an L2-cache miss. This counter is communicated to the memory
scheduler. Accurately estimating Talone is more difficult because
STFM needs to determine how much memory stall-time a thread
would have accrued if it had executed by itself on the CMP
system (even though the thread is not running alone). Our paper
describes in detail how to accurately estimate Talone. Here, we
briefly sketch our estimation technique.

Estimating Talone: Since directly determining Talone is dif-
ficult, we express Talone as Talone = Tshared − TInterference

and estimate TInterference instead.1 Initially, each thread’s
TInterference value is zero. TInterference of each thread is updated
whenever the STFM scheduler schedules a request. When a re-
quest R from thread C is scheduled, STFM updates TInterference

values of all threads: STFM updates TInterference differently for
the request’s own thread C versus for other threads.

1. Other threads: When a command is issued to a DRAM
bank, the extra stall-time TInterference of all other threads that
have a ready request (i.e. a request that can be scheduled by
the controller without violating timing constraints) waiting for
the DRAM bus or the same bank increases. Our technique in-
cludes in its estimate of TInterference all of the following key
characteristics that affect DRAM performance: 1) extra stall
time due to interference in the DRAM bus, 2) extra stall time
due to interference in the DRAM bank, and 3) the memory-level
parallelism [2, 1] of the thread (since the extra stall time will be
amortized across accesses that can proceed in parallel).

2. Own thread: The thread whose own request is being
scheduled may also experience extra stall-time because other
threads could change the state of the row-buffers. To account
for this, STFM keeps track of what the row buffer state would
have been had the thread run alone and estimates extra latency
the scheduled request incurs. STFM uses this estimate and the
memory-level parallelism of the thread to update TInterference.

Fairness-Oriented Scheduling Policy: Every DRAM cy-
cle, STFM determines the slowdown values of all threads and
computes the unfairness in the system. If unfairness in the pre-
vious DRAM cycle is greater than α, rather than using FR-FCFS
based prioritization, the controller prioritizes the ready requests
in the following order: 1) requests from the thread with the high-
est slowdown value, 2) row-hit requests, 3) older requests over
younger requests. This policy allows STFM to improve fairness
while still considering DRAM data throughput.

1.2.2 STFM’s Support for System Software
Any complete solution to DRAM fairness needs to provide sup-
port for system software (OS or VMM) since system software
sometimes might not want 1) fairness to be enforced by the
hardware at all, 2) every thread to be treated equally because
some threads can be (and usually are) more/less important than
others. STFM seamlessly incorporates support for both these re-

1
TInterference is a thread’s extra memory stall time due to inter-

thread interference. It can be positive if there is constructive interfer-
ence due to data sharing. STFM seamlessly takes this into account.

quirements (configurable α and thread weights), as described in
Section 3.3 and evaluated in Section 7.5 of our paper.

1.2.3 Comparisons with Other Paradigms
Our MICRO-40 paper comprehensively compares STFM with
one new and three previously-proposed DRAM scheduling algo-
rithms (baseline FR-FCFS [7], FCFS [7], FR-FCFS+Cap (Sec-
tion 4), and Network Fair Queueing (NFQ) [5, 4]) both quali-
tatively (Section 4) and quantitatively in terms of fairness, sys-
tem throughput, and configurability (Section 7). We provide
an especially detailed comparison to NFQ, a technique suitably
used in network systems to partition bandwidth among different
flows. We show that NFQ-based fairness definitions are suited
primarily for stateless systems that do not have parallelism (such
as a network wire), where a previous scheduling decision does
not affect the latency (or performance impact) of later decisions,
as opposed to shared DRAM memory systems that have state
(row buffers) and parallelism (multiple banks), which affect the
future performance impact of scheduling decisions.

STFM achieves better fairness and system throughput than
all other algorithms because other schemes are prone to unfairly
prioritizing one thread over another as they do not sufficiently
consider the inherent memory performance characteristics of
each thread (as explained in detail in Section 4). For example,
NFQ unfairly prioritizes threads with bursty access patterns and
penalizes threads with poor DRAM bank access balance because
it considers only DRAM bandwidth. In contrast, STFM’s key
idea is to consider the inherent memory performance, including
not only bandwidth but also latency (locality) and parallelism, of
each thread. STFM therefore does not unfairly penalize threads
that use the DRAM system without interfering with others or
have different memory access characteristics.

1.2.4 Implementation and Hardware Cost of STFM
Our paper describes a detailed implementation of STFM and
shows that STFM’s storage cost on an 8-core CMP is only 1808
bits (Section 5). To support system software, STFM requires
minor changes to the instruction set architecture that allow the
system software to convey α and thread weights to the hardware.

1.2.5 Experimental Evaluation
We evaluated STFM on a wide variety and large number of work-
loads consisting of SPEC CPU2006 benchmarks and Windows
desktop applications run on 2-,4-,8-, and 16-core CMPs using
an x86 CMP simulator.2 All our evaluations compare STFM to
four other memory scheduling paradigms on 256, 32, and 3 work-
loads for respectively the 4-,8-, and 16-core systems. We provide
detailed case studies of different types of workloads to provide
insights into the behavior of scheduling algorithms and results
(Sec. 7.2), quantitatively evaluate STFM’s support for system
software and thread weights (Sec. 7.5), and analyze STFM’s
sensitivity to DRAM banks and row buffer size (Sec. 7.6).

Figure 1 summarizes our key results, showing that STFM con-
sistently provides the best fairness (i.e. lowest unfairness), the
highest system throughput (in terms of weighted-speedup), and
the best balance between throughput and fairness (in terms of
hmean-speedup)3 averaged over all the workloads run on 4-, 8-,
and 16-core CMPs. The numbers above the STFM bars show
STFM’s improvement over the best previous DRAM scheduling
technique for the given metric and system.4 STFM improves un-
fairness by at least 1.27X, system throughput by at least 4.1%,
and throughput-fairness balance by at least 9.5% compared to
the best previous technique. STFM improves system through-
put because it results in better system utilization (i.e. allows
otherwise-starved cores to make progress and be utilized). We
provide insights into why STFM performs better than other tech-
niques via detailed case studies and analyses (Sec. 4 and 7).

2Our methodology and processor/DRAM parameters are described
in detail in Section 6 of our paper.

3All metrics are defined and explained in Section 6.2 of our paper.
4No previous scheduling technique performs the best for all metrics

and system configurations; e.g., for the 16-core system, FCFS provides
the best fairness, but NFQ the best throughput. STFM consistently
outperforms all other techniques for all metrics on all systems.
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Figure 1: Comparison of STFM to other DRAM scheduling techniques in terms of (a) unfairness, (b) system throughput (weighted-speedup),
and (c) throughput-fairness balance (hmean-speedup). The best achievable unfairness value is 1 in these workloads.

2 Significance
The DRAM system is a critical shared resource that determines
the performance and scalability of CMP systems. Effective man-
agement (i.e. sharing) of the DRAM system performance among
threads determines not only the quality of service (QoS) each
thread running on a CMP experiences but also the overall perfor-
mance of the system. As the number of cores/hardware-threads
on a die increases, low-cost techniques that distribute the limited
DRAM performance fairly across processing cores/hardware-
threads becomes more desirable. Such techniques need to not
only take into account all factors that affect DRAM system per-
formance (bandwidth, locality, parallelism), but also be config-
urable enough to support the needs of the system software.

The primary contribution of our paper is a fundamentally
new, comprehensive (including configuration support for sys-
tem software), scalable, and low-cost technique for managing the
shared DRAM resource such that the performance it provides
is distributed fairly among different threads (in a way that also
improves overall system performance).

2.1 Contributions of STFM
In our paper, we make the following major contributions:

1. Our paper provides a fundamental and novel definition
of DRAM fairness: stall-time fairness. This definition
takes into account all characteristics affecting DRAM per-
formance (including not only DRAM bandwidth but also
DRAM latency/locality and memory-level parallelism) of
each thread executing on a CMP. We extensively compare
the merits of stall-time fairness with previously proposed
DRAM fairness definitions and provide insights into why
stall-time fairness is a better-suited fairness definition for a
shared DRAM system.

2. STFM provides a simple fairness substrate that provides
performance-based quality of service to threads sharing the
DRAM system. In previous research, it was not possible
to fairly distribute DRAM performance (i.e. slowdown)
among threads sharing the memory system. Our paper
shows that fairly distributing DRAM performance provides
better fairness and system throughput than fairly distribut-
ing DRAM bandwidth, which does not directly correspond
to observed DRAM performance when threads interfere.

3. STFM is fully configurable by system software and does not
require information about applications for DRAM perfor-
mance partitioning. STFM seamlessly allows the system
software to 1) choose the level of unfairness and 2) assign
weights to threads. STFM does not require applications
to specify their bandwidth requirements and can therefore
provide weight-based performance partitioning to both ex-
isting and legacy applications and applications where such
information might be input-dependent or might not be eas-
ily available. Thus, STFM offers a comprehensive solution
to fair and configurable DRAM sharing.

4. Our paper provides comprehensive performance, fairness,
and scalability evaluations of different DRAM scheduling
algorithms (FR-FCFS, FCFS, FR-FCFS+Cap, and NFQ)
on a very large set of diverse workloads, including Windows
desktop applications. We find that STFM provides the best
fairness and system throughput. STFM is also more scal-
able than other techniques in terms of both performance
and fairness as the number of cores on a CMP increases.

2.2 Impact of STFM on Current/Future Processors
STFM, with its low cost and robustness to variance in workload
behavior and system configuration, is immediately applicable to

current-generation CMP systems to solve the problems caused
by unfair DRAM sharing and provide protection against DRAM
denial of service attacks. The importance of STFM will increase
in future CMP systems due to two major reasons:

First, fairly distributing DRAM performance will become
even more important in future CMP systems. The number of
cores sharing the DRAM system will likely increase much faster
than the performance (i.e. bandwidth, speed, latency, and par-
allelism) provided by the DRAM system. As more threads share
the DRAM system, unfairness in the DRAM system will increase
(and its consequences will be exacerbated [3]), as shown in our
evaluations (Sec. 7). Hence, the DRAM system will be one of
the primary limiters of the performance and QoS provided by
future CMP systems. As our paper shows, STFM becomes more
effective in terms of fairness and performance as the number of
cores on a die increases (compared to other techniques).

Second, providing fairness and QoS to applications running on
a CMP will become much more important because future CMP
systems (handheld, desktop, and server) will likely host more
diverse workloads that will have very different memory perfor-
mance requirements and memory access characteristics. STFM
provides an efficient and flexible way to supply significantly bet-
ter QoS (and performance) to diverse sets of applications with
varying memory characteristics than alternative DRAM schedul-
ing techniques.

2.3 Scope of STFM and Stall-Time Fairness
STFM’s scope is not limited to CMP systems. STFM is gen-
erally (and trivially) applicable to any shared DRAM system
where different threads of execution can interfere, such as multi-
threaded (e.g. SMT or GPU) systems and systems using helper
threads.

Stall-time Fairness is a general fairness definition that we be-
lieve is applicable to shared resources beyond DRAM memory.
Mechanisms can be developed to enforce this definition of fair-
ness for shared processor, cache, or I/O resources.

We believe our method of estimating DRAM performance
slowdown of a thread can be used for other purposes. For ex-
ample, estimated slowdowns can be fed via performance coun-
ters to the operating system to adjust CPU scheduling and
memory/cache-space allocation policies.

2.4 Impact on Future Research
DRAM controllers and QoS/fairness/resource-management is-
sues are increasingly important research areas where not
enough research has been done to build adequately fair, high-
performance, and scalable CMP memory systems. Our paper
provides a simple, effective, and comprehensive solution for sup-
porting QoS in DRAM controllers. We believe and hope that
the problems, the concepts of stall-time fairness and performance
partitioning, and the solution described in our paper will attract
the interest of researchers and lead to other novel solutions for
effectively managing DRAM and other shared CMP resources.
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