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Executive Summary
Problem: A modern thermally-constrained mobile SoC has three domains: compute, 
IO, and memory. The SoC allocates a fixed power budget to these domains unfairly 
based on their worst-case performance demands even if they are underutilized.

Goal: Increase the energy efficiency and performance of mobile SoCs by dynamically 
orchestrating the distribution of the SoC power budget across the three domains 
based on their actual performance demands.

Mechanism: SysScale, a new multi-domain power management technique that introduces
- A new DVFS (dynamic voltage and frequency scaling) mechanism to distribute the SoC power 

to each domain based on its predicted performance demand
- An accurate algorithm to predict each domain’s performance demand
- Domain-specialized techniques to optimize the energy efficiency of each domain at different 

operating points

Evaluation: We implement SysScale on the Intel Skylake SoC for mobile devices. SysScale: 
- Improves the performance of SPEC CPU2006 and 3DMark workloads by up to 16% and 8.9% 

(9.2% and 7.9% on average), providing larger benefits at lower power budgets
- Reduces the average power consumption of battery life workloads by up to 10.7% (8.5% on 

average)
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Overview of a Modern SoC Architecture
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• 3 domains in modern 
thermally-constrained mobile 
SoC: Compute, Memory, IO 

• Several voltage sources exist,  
and some of them are shared
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• IO controllers and engines, 

IO interconnect, memory 

controller, and DDRIO 

typically each has an 
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• 3 domains in modern 
thermally-constrained mobile 
SoC: Compute, Memory, IO 

• Several voltage sources exist,  
and some of them are shared
between domains

• IO controllers/engines, IO 

interconnect, memory 

controller, and DDRIO 

typically each has an 

independent clock

Compute domain supports dynamic 
voltage and frequency scaling (DVFS).

IO and memory domains have fixed 
clock frequencies and voltages.
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• We evaluate the potential benefits of employing DVFS across
the three SoC domains

• We carry out an experiment on the Intel Broadwell processor 
under two setups

- Baseline

- Multi-Domain DVFS (MD-DVFS)

• We use multiple workloads from SPEC CPU2006 and 3DMark, 
and a workload that exercises the peak memory bandwidth 
of DRAM 

Motivational Experiment
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Observation 1: SoC Multi-Domain Scaling 

• The SoC power budget management algorithm (PBM) assigns a fixed

power budget to the IO and memory domains

• The power budget corresponds to the worst-case performance 

demands (bandwidth/latency)

• Running three SPEC CPU2006 workloads using baseline and MD-DVFS

400.perlbench                        436.cactusADM                               470.lbm
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• The power budget corresponds to the worst-case performance 
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• Running three SPEC CPU2006 workloads using baseline and MD-DVFS

400.perlbench                        436.cactusADM                               470.lbm

The effect on energy efficiency (EDP) 
varies widely across workloads.
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Observation 1: SoC Multi-Domain Scaling 

• The SoC power budget management algorithm (PBM) assigns a fixed

power budget to the IO and memory domains

• The power budget corresponds to the worst-case performance 

demands (bandwidth/latency)

• Running three SPEC CPU2006 workloads using baseline and MD-DVFS

400.perlbench                        436.cactusADM                               470.lbm

The workloads have different 
memory bandwidth demands 
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DVFS in IO and memory can reduce power and energy
with minimal performance impact,

for workloads that are not bottlenecked by memory
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• PBM (Power Budget Management Algorithm) employs a power 
budget redistribution mechanism between components within a 
domain

- E.g., between cores and graphics engines 

• Current PBMs do not support dynamic power redistribution across 
different domains

• We evaluate the impact of increasing CPU cores’ frequency of the 
MD-DVFS setup from 1.2GHz to 1.3GHz (redistribute power budget)

Observation 2: Power Budget Redistribution 
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• PBM (Power Budget Management Algorithm) employs a power 
budget redistribution mechanism between components within a 
domain

- E.g., between cores and graphics engines 

• Current PBMs do not support dynamic power redistribution across 
different domains

• We evaluate the impact of increasing CPU cores’ frequency of the 
MD-DVFS setup from 1.2GHz to 1.3GHz (redistribute power budget)

Observation 2: Power Budget Redistribution 

Applying DVFS in IO and memory domains and
redistributing the saved power budget between domains
can improve performance in compute-bound workloads.
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Observation 3: Memory Bandwidth Demands

• Multiple components in the IO and compute domains have 
widely-varying main memory bandwidth demands across 
different workloads.

• For example, memory bandwidth demands of some SPEC 
CPU2006 and 3DMark workloads over time look like:
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Observation 3: Memory Bandwidth Demands

• Multiple components in the IO and compute domains have 
widely-varying main memory bandwidth demands across 
different workloads.

• Memory bandwidth demand of different SoC engines: 
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Observation 3: Memory Bandwidth Demands

• Multiple components in the IO and compute domains have 
widely-varying main memory bandwidth demands across 
different workloads.
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Typical workloads have modest memory demands.

Yet, the SoC IO and memory domains are provisioned high.

This makes existing mobile SoCs inefficient for typical workloads.
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• Memory reference code (MRC) training is 

part of the BIOS code that manages 

system memory initialization 

• The purpose of MRC training is to:
- Detect the DIMMs and their capabilities

- Configure the configuration registers (CRs) of 

the memory controller (MC), DDRIO, and 

DIMMs

• Compared to using optimized MRC 

values for a given frequency, unoptimized

MRC values can greatly degrade: 
- Average power (by 22%) 

- Performance (by 10%)

Observation 4: Optimizing DRAM Configuration
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Optimizing the DRAM configuration for each frequency
is very important for

multi-domain DVFS energy efficiency
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Our Goal: Holistic SoC Power Management

• We conclude that a holistic power management approach
is needed to mitigate the power management 
inefficiencies in current mobile SoCs 

• Our goal is to provide such an efficient multi-domain 
power management approach 
- by dynamically orchestrating the distribution of the SoC 

power budget across the three domains based on their actual 
performance demands
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SysScale

• SysScale is a new multi-domain power management 
technique to improve the energy efficiency of mobile SoCs

• SysScale is based on three key ideas:

1. A new DVFS (dynamic voltage and frequency scaling) 
mechanism to distribute the SoC power to each domain
based on its predicted performance demand

2. An accurate algorithm to predict each domain’s 
performance demand

3. Domain-specialized techniques to optimize the energy 
efficiency of each domain at different operating points
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SysScale Architecture 

SysScale has three key components:

1. A power management flow that is responsible for the 

DVFS process and reconfiguring DRAM with optimized 

MRC values

2. A demand prediction mechanism that predicts the 

performance demands from each SoC domain

3. A holistic power management algorithm that is 

responsible for DVFS of the SoC domains to meet the 

system’s dynamic performance demand and 

redistributing the power budget across domains 
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Power Management Flow

• The SysScale power management flow is responsible for adjusting the 

frequencies and voltages of the IO interconnect and memory 

subsystem. The flow steps are:
1. A demand prediction mechanism decides on target operating point

• Evaluated every 30ms (configurable, tuned post-silicon) 

2. Adjust voltages depending on the DVFS direction

3. Block and drain IO and memory domains

4. Enter DRAM into self refresh

5. Load optimized MRC (Memory reference code) values for the new 

operating point

6. Adjust clock frequencies

7. Resume SoC operation      
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Demand Prediction Mechanism

• Demand prediction mechanism predicts the performance 

demands using:

- Peripheral configuration registers 

- Performance counters

• Peripheral configuration registers indicate the active devices 

and their configuration:

- For example, number of active displays or cameras and frame rates 

• We use 4 performance counters with thresholds corresponding 

to each counter:

- The performance counter indicates the bandwidth/latency demand of 

CPU cores, graphics engines and IO devices
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Holistic Power Management Algorithm

• SysScale implements a power distribution algorithm in the 
power management unit (PMU) firmware

• The system moves the IO and memory domains to a high- or
low-performance  operating point based on the decision of the 
demand prediction mechanism
- The system redistributes the power budget across SoC domains when 

changing the  operating point

• For example, when the SoC moves to a low-performance
operating point, the PMU: 
- Reduces the power budgets of the IO and memory domains and 
- Increases the power budget of the compute domain 
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Methodology

• System: We implement SysScale on a real Intel Skylake system
- For our baseline measurements, we disable SysScale 
- We use an SoC with 4.5W thermal design power (TDP) 

• Power Measurements: We use National Instruments data 
acquisition device for power measurement

• Workloads: We evaluate SysScale with three classes of workloads
- CPU: SPEC CPU2006 benchmarks
- Graphics: 3DMARK benchmarks
- Battery life: web browsing, light gaming, video conferencing, and video 

playback benchmarks

• Comparison Points: We compare SysScale to the two most 
relevant prior works, MemScale [Deng+, ASPLOS 2011] and CoScale
[Deng+, MICRO 2012]:
- MemScale applies DVFS only for memory subsystem
- CoScale coordinates CPU cores and memory subsystem DVFS 
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Results – CPU Workloads
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• SysScale improves real system performance by 9.2% on average 

• SysScale provides 5.4×/2.4× the performance improvement of 
MemScale/CoScale, because:

- SysScale is holistic, taking into account all SoC domains

- Unlike the other mechanisms, SysScale optimizes the DRAM interface

• The performance benefit of SysScale correlates with the performance 
scalability of the running workload with CPU frequency
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Results – CPU Workloads
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• SysScale improves real system performance by 9.2% on average 

• SysScale provides 5.4×/2.4× the performance improvement of 
MemScale/CoScale, because:

- SysScale is holistic, taking into account all SoC domains

- Unlike the other mechanisms, SysScale optimizes the DRAM interface

• The performance benefit of SysScale correlates with the performance 
scalability of the running workload with CPU frequency.

SysScale significantly improves CPU core performance
by holistically applying DVFS to SoC domains 

and redistributing power budget
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Results – Graphics Workloads

• SysScale improves real system performance (6.7%-8.9%) because it 
boosts the graphics engines’ frequency by redistributing the power 
budget across the three domains

• SysScale provides approximately 5× the performance improvement 
of MemScale and CoScale

• MemScale and CoScale have similar performance improvements 
because their average power savings are identical.
- In graphics workloads, CPU cores run at the lowest possible frequency
- CoScale cannot further scale down the CPU frequency
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• SysScale improves performance because it boosts the graphics 
engines’ frequency by redistributing the power budget across the 
three domains

• SysScale provides approximately 5× the performance improvement 
of MemScale and CoScale

• MemScale and CoScale have similar performance improvements 
because their average power savings are identical.
- In graphics workloads, CPU cores run at the lowest possible frequency
- CoScale cannot further scale down the CPU frequency.

SysScale significantly improves the graphics performance using
the saved power budget from IO and memory domains
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Results – Battery Life Workloads 

• Battery life workloads have fixed performance requirements

• SysScale reduces average power (6.4%-10.7%) on a real system 
and workloads

• SysScale provides approximately 5× the power reduction of 
MemScale and CoScale

• MemScale and CoScale have similar average power reduction
- In battery life workloads, CPU cores run at the lowest possible frequency

- CoScale cannot further scale down the CPU frequency
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Results – Battery Life Workloads 

• Battery life workloads have fixed performance requirements

• SysScale reduces average power (6.4%-10.7%) on a real system 
and workloads

• SysScale provides approximately 5× the power reduction of 
MemScale and CoScale

• MemScale and CoScale have similar average power reduction
- In battery life workloads CPU cores run at the lowest possible frequency

- CoScale cannot further scale down the CPU frequency.

SysScale significantly reduces
the SoC average power consumption
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Other Results in the Paper

SysScale performance and average power consumption  

sensitivity to:

• System Thermal Design Power (TDP)

- SysScale's performance benefit increases as TDP decreases

- SysScale improves energy consumption across the entire 

TDP range (3.5W–91W)

• Different DRAM frequencies and types
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Conclusion

• SysScale is the first work to enable coordinated and highly-efficient 
DVFS across all SoC domains to increase energy efficiency

• SysScale optimizes and efficiently redistributes the total power 
budget across all SoC domains based on the performance demands 
of each domain

• We implemented SysScale on the Intel Skylake SoC for mobile 
devices 
- SysScale improves the performance of real CPU and graphics workloads (by 

up to 16% and 8.9%, respectively, for 4.5W TDP) 

- SysScale reduces the average power consumption of battery life workloads 
(by up to 10.7%) across all TDPs of the Intel Skylake system 

• We conclude that SysScale is an effective approach to balance 
power consumption and performance demands across all SoC 
domains
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