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Abstract

Aligning sequencing reads onto a reference is an essential step of the majority of
genomic analysis pipelines. Computational algorithms for read alignment have
evolved in accordance with technological advances, leading to today’s diverse array
of alignment methods. We provide a systematic survey of algorithmic foundations
and methodologies across 107 alignment methods, for both short and long reads.
We provide a rigorous experimental evaluation of 11 read aligners to demonstrate
the effect of these underlying algorithms on speed and efficiency of read alignment.
We discuss how general alignment algorithms have been tailored to the specific
needs of various domains in biology.

Introduction
In April 2003, the high-throughput sequencing era started with the Human Genome

Project, which led to the successful sequencing of a nearly complete human genome

and establishment of a reference genome that is still in use [1]. The Human Genome

Project cost approximately $3 billion over 13 years to sequence the genome of an indi-

vidual human. Recent advances in high-throughput sequencing technologies have en-

abled cost-effective and time-efficient probing of the DNA sequences of living

organisms through a process known as DNA sequencing [2]. Modern high-throughput

sequencing techniques are capable of producing millions of nucleotide sequences of an

individual’s DNA [3] and providing multifold coverage of whole genomes or particular

genomic regions. The output of high-throughput sequencing consists of sets of rela-

tively short genomic sequences, usually referred to as reads. Contemporary sequencing

technologies are capable of generating tens of millions to billions of reads per sample,

with read lengths ranging from a few hundred to a few million base pairs [4].

The trade-off for decreased cost and increased throughput offered by modern se-

quencing technologies is a larger margin of noise in sequencing data [5]. The magni-

tude of error rates in data produced by state-of-the-art sequencing platforms varies

from ~ 10−3 for short reads to ~ 15 × 10−2 for the relatively new long and ultra-long
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reads [6]. The increased error rate of today’s emerging long-read technologies may

negatively impact biological interpretations. For example, errors in protein-coding re-

gions can bias the accuracy of protein predictions [7]. Sequenced reads lack informa-

tion about the order and origin (i.e., which part, homolog, and strand of the subject

genome) of reads. The main challenge in genome analysis today is to reconstruct the

complete genome of an individual. This process, read alignment (also known as read

mapping), typically requires the reference genome which is used to determine the po-

tential location of each read. Accuracy of alignment has a strong effect on many down-

stream analyses [8]. For example, most trans-eQTL signals were shown to be solely

caused by alignment errors [9].

Read alignment can be performed in a brute force manner but is impractical for

modern sequencing platforms capable of producing hundreds of millions of reads. In-

stead, today’s efficient bioinformatics algorithms enable fast and accurate read align-

ment and can be thousands of orders of magnitude faster when compared to the naive

brute force approach [10] (Supplementary Note 1). Read alignment enables observation

of the differences between the read and the reference genome. These differences can be

caused by either real genetic variants in the sequenced genome or errors generated by

the sequencing platform. These sequencing errors and read lengths, which are typically

short, make the read alignment problem computationally challenging. The continued

increase in the throughput of modern sequencing technologies creates additional de-

mand for efficient algorithms for read alignment. Over the past several decades, a

plethora of tools were developed to align reads onto reference genomes across various

domains of biology. Previous efforts that provide overviews of various algorithms and

techniques used by read aligners are presented elsewhere [10–12], including studies

that present benchmarks of existing tools [13, 14]. Since the time those efforts were

published, many new alignment algorithms have been developed. Additionally, previous

efforts lack a historical perspective on algorithm development.

Our review provides a historical perspective on how technological advancements in

sequencing are shaping algorithm development across various domains of modern biol-

ogy, and we systematically assess the underlying algorithms of a large number of

aligners (n = 107). Algorithmic development and challenges associated with read align-

ment are to a large degree data- and technology-driven, and emerging highly accurate

ultra-long-read sequencing techniques promise to expand the application of read

alignment.

Where do reads come from—advantages and limitations of read alignment
One can study an individual genome using sequencing data in two ways: by mapping

reads to a reference genome, if it exists, or by de novo assembling the reads. The com-

plexity of the human genome, in combination with the short length of sequenced reads,

poses substantial challenges to our ability to accurately assemble personal genomes

[15]. Even recently-introduced ultra-long reads [16] (up to 2Mb) offer the limited cap-

acity to build a de novo assembly of an individual genome with no prior knowledge

about the reference genome [16]. The presence of many repetitive regions in the hu-

man genome limits our ability to assemble a personal human genome as a single se-

quence. Emerging long-read sequencing technologies that are capable of producing

ultra-long reads [16] promise to deliver more accurate assemblies [17]. However, the
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relatively high error rate of data output from recently developed long-read sequencing

technologies often results in inaccuracies in the assembled genomes, especially when

using low sequencing coverage [18, 19].

The read alignment problem is known to be solvable in polynomial time [20], while a

polynomial-time solution for genome assembly is still unknown [20–22]. Genome as-

sembly is typically slower and more computationally intensive than read alignment [17,

23, 24] due to the presence of repeats that are much longer than the typical read

length. This makes assembly impractical in studies that involve large-scale clinical co-

horts of thousands of individuals. At the same time, when the reference genome is un-

known, long reads are a valuable resource for assembling genomes that are far more

complex than the human genome, such as the hexaploid bread wheat genome [17, 23,

25].

The availability of a large number of alignment methods that are scalable to both

read length and genome size has enabled read alignment to become an essential com-

ponent of high-throughput sequencing analysis (Table 1) [26]. However, read alignment

also has its own fundamental challenges. First, some challenges are caused by the in-

completeness of the reference genomes that have multiple assembly gaps [16]. Reads

originating from these gaps often remain unmapped or are incorrectly mapped to hom-

ologous regions. Second, the presence of repetitive regions of the genome confounds

current read alignment techniques, which often map reads originating from one region

to match several other repetitive regions (such reads are known as multi-mapped

reads). In such cases, most read aligners simply report one location randomly selected

among the possible mapping locations, in turn, significantly reducing the number of

detected variants [27]. Third, read alignment techniques should tolerate differences be-

tween reads and the reference genome. These differences may correspond to a single

nucleotide (including deletion, insertion, and substitution of a nucleotide) or to larger

structural variants [28]. Fourth, read alignment algorithms need to align reads to both

forward and reverse DNA strands of the same reference genome in order to tackle the

strand bias problem, defined as the difference in genotypes identified by reads that map

to forward and reverse DNA strands. Strand bias is likely caused by errors introduced

during library preparation and not by mapping artifacts [27, 29].

Co-evolution of read alignment algorithms and sequencing technologies
Over the past few decades, we have observed an increase in the number of alignment

tools developed to accommodate rapid changes in sequencing technology (Table 1).

Published alignment tools use a variety of algorithms to improve the accuracy and

speed of read alignment (Table 2). At the same time, the development of read align-

ment algorithms is impacted by rapid changes in sequencing technologies, such as read

length, throughput, and error rates (Supplementary Table 1). For example, some of the

first alignment algorithms (e.g., BLAT [38]) were designed to align expressed sequence

tag (EST) sequences, which are 200 to 500 bp in length. Another early alignment algo-

rithm, BLASTZ [39], was designed to align 1Mb human contigs onto the mouse gen-

ome. After short reads became available, the majority of the algorithms have focused

on the problem of aligning hundreds of millions of short reads to a reference genome.

Recent sequencing technologies are capable of producing multi-megabase reads at the

cost of high error rates (up to 20%)—a development that poses additional challenges
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for modern read alignment methods [17]. A recent improvement in circular consensus

sequencing (CCS) allows a substantial reduction in sequencing error rates; for example,

the error rate has dropped from 15% down to 0.0001% by sequencing the same mol-

ecule at least 30 times and further correcting errors by calculating consensus [136].

We have studied the underlying algorithms of 107 read alignment tools that were de-

signed for the short- and long-read sequencing technologies and were published from

1988 to 2020 (Table 1). We defined read alignment as a three-step procedure (Supple-

mentary Note 2). First, indexing with the aim of quickly locating genomic subsequences

in the reference genome is performed. This step includes building a large index data-

base from a reference genome and/or the set of reads (Fig. 1a, b). Second, global posi-

tioning is performed to determine the potential positions of each read in the reference

genome. In this step, alignment algorithms use the prepared index to determine one or

more possible regions of the reference genome that are likely to be similar to each read

sequence (Fig. 1c, d). Lastly, pairwise alignment is performed between the read and

each of the corresponding regions of the reference genome to determine the exact

number, location, and type of differences between the read and corresponding region

(Fig. 1e, f).

Hashing is the most popular technique for indexing the reference genome
The key goal of the indexing step is to facilitate quick and efficient querying over the

whole reference genome sequence, producing a minimal memory footprint by storing

the redundant subsequences of the reference genome only once [17, 20, 137]. Rapid ad-

vances in sequencing technologies have shaped the development of read alignment al-

gorithms, and major changes in technology have rendered many tools obsolete. For

example, some early methods [43, 44, 47, 48, 80] built the index database from the

reads. Today’s longer read lengths and increased throughput of sequencing technolo-

gies make such an approach infeasible for analyzing modern sequencing data. Modern

alignment algorithms typically build the index database from the reference genome and

then use the subsequences of the reads (known as seeds or qgrams) to query the index

database (Fig. 1a). In general, indexing the reference genome compared to the read set

Table 2 Advantages and limitations of read alignment algorithms. We compare the ease of
implementing each algorithm (“Easy to implement”). We define the “ease of implementation” as
the ability to quickly implement such an algorithm and its indexing technique, flexibly apply some
changes to it, and easily understand its working principle. We also record whether the algorithm
allows for an exact and/or inexact match (“Search for exact/inexact match”). The use of spaced
seeds enables searching for inexact match using a hash table. We also compare the size of the
genome index (indicated in column “Index size”), the speed of seed query (indicated in column
“Seed query speed”), and the possibility to vary the length of the seed (“Seed length”)

Hashing Suffix tree and BWT-FM

Easy to implement Yes No

Search for exact/inexact match Exact Exact and inexact

Index size Large Compressed (small)

Indexing time Small Large

Seed query speed O(1), fast Slow

Seed length Fixed length per index Can be fixed or variable
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is a more practical and resource-frugal solution. Additionally, it allows reusing the con-

structed reference genome index across multiple samples.

We observe that the most popular indexing technique used by read alignment tools

is hashing, which is used exclusively by 60.8% of our surveyed read aligner tools from

various domains of biological research (Fig. 2). Hashing is also the most popular indi-

vidual indexing method for aligners that can handle DNA-Seq data, accounting for

68.3% of the surveyed read aligner tools. Hash table indexing was first used in 1988 by

FASTA [30, 138] and has since dominated the landscape of read alignment tools.

Fig. 1 Overview of a read alignment algorithm. a The seeds from the reference genome sequence are
extracted. b Each extracted seed and all its occurrence locations in the reference genome are stored using
the data structure of choice (suffix tree and hash table are presented as an example). Common prefixes of
the seeds are stored once in the branches of the suffix tree, while the hash table stores each seed
individually. c The seeds from each read sequence are extracted. d The occurrences of each extracted seed
in the reference genome are determined by querying the index database. In this example, the three seeds
from the first read appear adjacent at locations 5, 7, and 9 in the reference genome. Two of the same seeds
appear also adjacent at another two locations (12 and 16). Other non-adjacent locations are filtered out
(marked with X) as they may not span a good match with the first read. e The adjacent seeds are linked
together to form a longer chain of seeds by examining the mismatches between the gaps. Pre-alignment
filters can also be applied to quickly decide whether or not the computationally expensive DP calculation is
needed. f Once the pre-alignment filter accepts the alignment between a read and a region in the
reference genome, then DP-based (or non-DP-based) verification algorithms are used to generate the
alignment file (in BAM or SAM formats), which contains alignment information such as the exact number of
differences, location of each difference, and their type.
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Hashing was also the only dominant technique to be used until the BWT-FM index

was introduced by Bowtie [55] (Fig. 3a). Its popularity can be explained by the simpli-

city and ease of implementation when compared to other indexing techniques. Other

advantages and limitations of hashing are outlined in Table 2. The hash table is a data

structure that stores the content of some short regions of the genome (e.g., seeds) and

their corresponding locations in the reference genome (Fig. 1b). Such regions are also

known as k-mers or qgrams [139]. After the genomic seeds are produced, the align-

ment algorithm extracts the seeds from each read and uses them as a key to query the

hash table index. The hash table returns a location list storing all occurrence locations

of the read seed in the reference genome.

Alignment tools utilizing suffix-tree-based indexing are generally faster and
more widely used
The second most popular approach to indexing is the suffix-tree-based techniques,

used exclusively by 36.5% of the surveyed read aligner tools (Fig. 2) (Table 1). ERNE 2

[116], LAMSA [122], and lordFAST [128] are categorized separately since they combine

hashing with a suffix-tree-based technique. A suffix tree is a tree-like data structure

where separate branches represent different suffixes of the genome; the shared prefix

between two suffixes of the genome is stored only once. Every leaf node of the suffix

tree stores all occurrence locations of this unique suffix in the reference genome

(Fig. 1b). Unlike a hash table, a suffix tree allows searching for both exact and inexact

match seeds [140, 141] by walking through the tree branches from the root to a leaf

node, detouring as needed, following the query sequence (Table 2). While some algo-

rithms [142, 143] specifically rely on creating suffix trees, the most frequently chosen

tools from this category use the Burrows-Wheeler Transform (BWT) and the FM index

(hence called BWT-FM-based tools) to mimic the suffix-tree traversal process while

generating a smaller memory footprint [99]. The performance of the read aligners in

this category degrades as either the sequencing error rate increases or the genetic

Fig. 2 Combination of algorithms utilized by read alignment tools. Sankey plot displaying the flow of
surveyed tools using each indexing technique and pairwise alignment. For every indexing technique, the
percentage of surveyed tools using the algorithm is displayed (BWT-FM 26.2%, BWT-FM, and Hashing 2.8%,
Hashing 60.8%, Other Suffix 10.3%). For every pairwise alignment technique, the percentage of surveyed
tools using the algorithm is displayed (Smith-Waterman 28.3%, Hamming distance 19.2%, Needleman-
Wunsch 16.2%, Other DP 14.1%, Non-DP Heuristic 13.1%, Multiple Methods 9.1%)
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differences between the subject and the reference genome are more likely to occur

[144, 145].

The effect of read alignment algorithms on speed of alignment and
computational resources
To measure the effect of read alignment algorithms on speed of alignment and compu-

tational resources, we have compared the running time and memory (RAM) required

of eleven read alignment tools when applied to ten real WGS datasets (Fig. 4a, b). We

used tools available via the Bioconda package manager [146]. We ran these tools using

their default parameters. We randomly selected ten WGS samples from the 1000 Ge-

nomes Project. We excluded tools specifically designed for RNA-Seq or BS-Seq. Details

on how the tools were installed and ran are provided in Supplementary Note 3.

We found no significant difference in the runtime for BWT-FM tools and hashing-

based tools when adjusting for year of publication, chain of seeds, and type of pairwise

alignment (Likelihood ratio test (LRT) p value = 0.5) (Fig. 4c, Supplementary Table 3,

4). SMALT [69] is an outlier to this observation, and it shows the highest execution

Fig. 3 The landscape of read alignment algorithms published from 1988 to 2020. a Histogram showing the
cumulation of surveyed tools over time colored by the algorithm used for genome indexing. The first
published aligner, FASTA, is labeled as well as the point at which Bowtie and BWA were introduced and
changed the landscape of aligners. b The popularity of all surveyed aligners, judged by citations per year
since the initial release. Tools are grouped by the algorithm used for genome indexing. The six overall most
popular aligners are labeled. c Histogram showing the cumulation of surveyed tools over time colored by
the algorithm used for pairwise alignment. The two aligners credited to have been the first to use the three
most popular algorithms (FASTA: Smith-Waterman and Needleman-Wunsch, RMAP: Hamming distance) are
labeled. d The popularity of each surveyed aligner, judged by citations per year since the initial release.
Tools are grouped by the algorithm used for pairwise alignment. The six overall most popular aligners
are labeled.
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time (Fig. 4c) as it uses standard non-accelerated pairwise alignment algorithm (Smith-

Waterman algorithm). BWT-FM-based tools did require, on average, 3.8× less compu-

tational resources when compared to hashing-based tools, adjusting for year of publica-

tion, chain of seeds, and type of pairwise alignment algorithm (LRT p value = 2.2 ×

Fig. 4 The effect of read alignment algorithms on the speed of alignment and computational resources.
Results of the benchmarking performed on 11 surveyed DNA read alignment tools that can be installed
through bioconda (RMAP, Bowtie, BWA, GSNAP, SMALT, LAST, SNAP, Bowtie2, Subread, HISAT2, and
minimap2) additionally noted in Supplementary Table 2 and Supplementary Note 3. Each tool’s CPU time
and RAM required were recorded for 10 different WGS samples from the 1000 Genomes Project. a, b Violin
plots showing the relative performance (a CPU time and b RAM) of the benchmarked aligners. Aligners are
ordered by year of release. c, d The relative performance (c CPU time and d RAM) of the benchmarked
aligners grouped by the algorithm used for genome indexing and colored by individual aligners (BWT-FM
CPU time vs. Suffix array CPU time: LRT, p value = 1.5 × 10−15, Hashing memory vs. BWT-FM memory: LRT, p
value = 2.2 × 10−3, BWT-FM memory vs. Suffix Array memory: LRT, p value < 2 × 10−16). The legend of d is
the same for c, e, and f. e The relative performance (CPU time) of the benchmarked aligners grouped by
whether the tool was released before or after long-read technology was introduced (2013) and colored by
individual aligners (LRT, p value = 3.7 × 10−11). f The relative performance (CPU time) of the benchmarked
aligners grouped by the algorithm used for pairwise alignment and colored by individual aligners
(Needleman-Wunsch CPU time vs. Smith-Waterman CPU time: Wald, p value = 1.3 × 10−4, Needleman-
Wunsch CPU time vs. Hamming Distance CPU time: Wald, p value = 9.3 × 10−7, Needleman-Wunsch CPU
time vs. Non-DP Heuristic CPU time: Wald, p value = 1.8 × 10−10)

Alser et al. Genome Biology          (2021) 22:249 Page 17 of 34



10−3) (Fig. 4d, Supplementary Table 5, 6). SNAP [81] shows the highest memory foot-

print (Fig. 4d) as its index exceptionally uses much longer (> 20 bp) seeds compared to

most other tools. The default suffix array implemented by LAST [78] requires, on aver-

age, 4.38× more running time and 3.58× more computational resources when com-

pared to BWT-FM-based tools (LRT test p value = 1.5 × 10−15 and < 2 × 10−16 for

runtime and memory, respectively) (Fig. 4c, d, Supplementary Table 3, 4, 5, 6).

Despite the difference in performance driven by algorithms, we observed an overall

improvement (9.2× reduction) in computation time of read alignment over time (s.e. =

0.09; LRT test p value = 3.7 × 10−11) (Fig. 4e, Supplementary Table 3, 4) but no signifi-

cant improvement (only 1.57× reduction) of their memory requirements (s.e. = 0.24;

LRT p value = 0.41) (Supplementary Figure 1, Supplementary Table 5, 6). Usually, the

index is created separately for each genome. Some methods incorporate multiple ge-

nomes into a single index graph [58, 76, 115], while other methods use a de Bruijn

graph for hashing [58, 116]. Although computing the genome index can take up to four

hours, it usually needs to be computed only once and is often already precomputed for

various species (Supplementary Figure 2). Updating the genome index can create a

bottleneck in the analysis, especially for extremely large genome databases. Bloom1-

filter-based algorithms promise to provide an alternative way of indexing while preserv-

ing faster search times [125, 147].

We surveyed 28 BWT-FM-based tools to compare the popularity of the read align-

ment algorithms using the number of times the introductory publication has been cited

in other papers. Of those, three aligners have accumulated more than 1000 citations

per year since release, and 18% of the BWT-FM-based tools have been cited by at least

500 papers per year. In contrast, only two of the 63 hashing-based tools have more than

1000 citations per year, but those two aligners (BLAST [31] and Gapped BLAST [32])

are, by far, the most popular with 2726 and 3143 citations per year, respectively

(Fig. 3b). Notably, tools cited more than 500 times per year were among the most ef-

fective both in terms of runtime and required computational resources (Supplementary

Figure 3).

Majority of the tools utilize fix length seeding to find the global position of
the read in the reference genome
The goal of the second step of read alignment is to find the global position of the read

in the reference genome. This step is known as global positioning and uses the gener-

ated genome index to retrieve the locations (in the genome) of various seeds extracted

from the sequencing reads (Fig. 1c). The read alignment algorithm uses the determined

seed locations to reduce the search space from the entire reference genome to only the

neighborhood region of each seed location (Supplementary Note 4).

The number of possible locations of a seed in the reference genome is affected by

two key factors: the seed length and the seed type. The estimated number of such loca-

tions is extremely large for short seeds and can reach tens of thousands for the human

genome. The high frequency of short seeds is due to the repetitive nature of most ge-

nomes, which creates a high probability of finding the same short seed frequently in a

long string of only four DNA letters. A large number of possible locations for short

seeds imposes a significant computational burden on read alignment algorithms [148,

149]. Only a few read alignment algorithms examine all the seed locations reported in
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the location list [102]. Most of the read alignment algorithms apply heuristic devices to

avoid examining all the locations of the seed in the reference genome (Fig. 1d, Supple-

mentary Note 4).

Longer seed lengths can help reduce both the number of possible locations of a seed

in the reference genome and the number of chosen seeds from each read. These bene-

fits come at the cost of a possible reduction in alignment sensitivity, especially in cases

where the mismatches between the read and the genome are located within the seed se-

quence. To enable increasing the seed length without reducing the alignment sensitiv-

ity, seeds can be generated as spaced seeds (Supplementary Note 4 ) [34–37, 139].

The majority of the surveyed alignment algorithms use seeds of fixed length at run

time. Some algorithms generate seeds of various lengths [83, 108, 150] in order to re-

duce the hit frequencies while tolerating mismatches. Varying the seed length or using

different types of seed during the same run is often referred to as hybrid seeding [108]

and was used by 20 of the 107 surveyed alignment algorithms. The first tool to use

variable-length seeds was GMAP [41]. Hybrid seeding with a hash-based index would

require the creation of multiple hash tables of the same genome and would require

extra computational resources. As a result, the vast majority of tools that use variable-

length seeds use a suffix tree indexing technique (BWT-FM or other).

Majority of the tools utilize Hamming distance and Smith-Waterman to
determine similarity between the read and its global positions in the
reference genome
The goal of the last step of a read alignment algorithm is to determine regions of simi-

larity between each read and the global positions of each read in the reference genome,

which was determined in the previous step. These regions are potentially highly similar

to the reads, but read alignment algorithms still need to determine the minimum num-

ber of differences between two genomic sequences, the nature of each difference, and

the location of each difference in one of the two given sequences. Such information

about the optimal location and the type of each edit is normally calculated using a veri-

fication algorithm (Fig. 1f) that first verifies the similarity between the query read and

the corresponding region in the reference genome. Verification algorithms can be cate-

gorized into algorithms based on dynamic programming (DP) [151] and non-DP-based

algorithms. The DP-based verification algorithms can be implemented as local align-

ment (e.g., Smith-Waterman [152]) or global alignment (e.g., Needleman-Wunsch

[153]). DP-based verification algorithms can also be implemented as semi-global align-

ment, where the entirety of one sequence is aligned to one of the ends of the other se-

quence [108, 109, 117].

The non-DP verification algorithms include Hamming distance [154] and the Rabin-

Karp algorithm [155]. When one is interested in finding genetic substitutions, inser-

tions, and deletions, DP-based algorithms are favored over non-DP algorithms. In gen-

eral, the local alignment algorithm is preferred over global alignment when only a

fraction of the read is expected to match with some regions of the reference genome

due to, for example, large structural variations [63]. The Smith-Waterman [152] and

Needleman-Wunsch [153] alignment algorithms were both first used by FASTA [30,

138] in 1988, which we categorize as “Multiple Methods” (Fig. 3c). Smith-Waterman

remains the most popular algorithm and is used by 28.3% of our surveyed tools (Fig. 2).
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Needleman-Wunsch, in contrast, has only been used by 16.2% of our surveyed tools

(Fig. 2). However, if we include the tools which allow for multiple methods, Smith-

Waterman represents 38.3% and Needleman-Wunsch represents 26.2% of alignment al-

gorithms used. This trend is due to the fact that 12 of the 13 tools classified as “Mul-

tiple Methods” use or allow both Smith-Waterman and Needleman-Wunsch. Non-DP

verification using Hamming distance [154] has been the second most popular single

technique since used for the first time by RMAP [44] in 2008 (Fig. 3c). There is no sig-

nificant correlation between the indexing technique used and the pairwise alignment al-

gorithm chosen. Most major indexing techniques are used in conjunction with most

pairwise alignments. However, BWT-FM-based aligners do comprise the largest per-

centage of tools that allow multiple pairwise alignment methods (Fig. 2).

As the number of differences between two sequences is not necessarily equivalent to

the sum of the number of differences between the subsequences of these sequences, it

is necessary to perform verification for the entire read sequence and the corresponding

region in the reference sequence [156]. Existing DP-based algorithms can be inefficient

as they require quadratic time and space complexity. Despite more than three decades

of attempts to improve their algorithmic implementation, the fastest known edit dis-

tance computation algorithm is still nearly quadratic [157]. Some of the read alignment

algorithms use DP only for seed chaining, which provides suboptimal alignment calcu-

lation [38, 40]. This approach is called sparse DP and is used in C4 [40], conLSH [135],

and LAMSA [122]. An alternative way to accelerate the alignment algorithms is by re-

ducing the maximum number of differences that can be detected by the verification al-

gorithm, which reduces the search space of the DP algorithm and shortens the

computation time [106, 158–164, 167, 168] (Supplementary Note 5).

We found that tools which use the Needleman-Wunsch [153] algorithm are faster

than tools which use other algorithms (faster by 3.57×, 4.14×, and 6.7× and Wald test p

values 9.3 × 10−7, 1.8 × 10−10, and 1.3 × 10−4 for Hamming distance, non-DP heuristics,

and SW algorithms, respectively) (Fig. 4f, Supplementary Table 3), adjusting for publi-

cation year, seed chaining, and indexing method. Despite the overall longer runtime of

Hamming distance-based methods, the latest hashing-based tools (e.g., HISAT2 [133])

provide a comparable running time with the fastest Needleman-Wunsch-based tools.

We also found significant differences in the amount of computational resources re-

quired by read alignment tools using different pairwise alignment algorithms after

adjusting for publication year, type of seed, and indexing method (LRT; p value = 0.04)

(Supplementary Figure 4, Supplementary Table 6). Notably, the algorithms with the

smallest computational footprints use various types of pairwise alignment algorithms.

Influence of long-read technologies on the development of novel read
alignment algorithm
Alignment of the long reads produced by modern long-read technologies [16, 136, 169]

provides a unique possibility to discover previously undetectable structural variants [16,

170, 171]. Long reads also improve the construction of an accurate hybrid de novo as-

sembly [16, 172], in cases where long and short reads are suffix-prefix overlapped, or in

cases where reads are aligned using pairwise alignment algorithms, to construct an en-

tire assembly graph. This is helpful when a reference genome is either unavailable [173,

174] or is complex and contains large repetitive genomic regions [175].
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Existing long-read alignment algorithms still follow the three-step-based approach of

short-read alignment. Some long-read alignment tools even divide every long read into

short segments (e.g., 250 bp), align each short segment individually, and determine the

mapping locations of each long read based on the adjacent mapping locations of these

short segments [123, 127]. Some long-read alignment tools use hash-based indexing

[110, 120, 176], while others use BWT-FM indexing [54, 98, 177]. The major challenge

with the long-read alignment algorithms is dealing with large sequencing errors and a

significantly large number of short seeds extracted from each long or ultra-long read

[178]. Thus, the most recently developed long-read alignment algorithms require heur-

istically extracting fewer seeds per read length when compared to those extracted from

short reads. Instead of creating a hash table for the full set of seeds, recent long-read

alignment algorithms find the minimum representative set of seeds from a group of ad-

jacent seeds within a genomic region. These representative seeds are called minimizers

[179, 180] and can also be used to compress genomic data [181] or taxonomically pro-

file metagenomic samples [182]. Long-read alignment algorithms [119, 124, 183] that

use hashed minimizers as an indexing technique provide a faster alignment process

compared to other algorithms that use conventional seeding or BWT-FM. They also

provide a significantly faster (> 10×) indexing time (Supplementary Table 1). However,

their accuracy degrades with the use of short reads as they process a fewer number of

seeds per short read [124].

Box 1. Advantages and limitations of short- versus long-read alignment

algorithms

• Error rate. The error rate of modern short-read sequencing technologies is smaller than that of modern long-
read technologies.

• Genome coverage. Throughput (i.e., the number of reads) of modern short-read sequencing technologies is
higher than that of modern long-read technologies.

• Global position. Determine a global position of the read by identifying the starting position or positions of the
reads in the reference genome. This step is ambiguous with short reads, as the repetitive structure of the
human genome causes such reads to align to multiple locations of the genome. In contrast, long reads are
usually longer than the majority of repeat regions and are aligned to a single location in the genome.

• Local pairwise alignment. After determining the global position of each read, the algorithms map all bases of
the read to the reference segments, located at these global positions, in order to account for indels. Due to
the smaller error rate of short-read technologies, it is usually easier to perform local alignment on short reads
than on long ones.

• Genomic variants. Single-nucleotide polymorphisms (SNPs) are easy to detect using short reads when com-
pared to long reads due to the lower error rate and higher coverage of short-read sequencing technologies.
Structural variants (SVs) are easy to detect with long reads, which span the entire SV region. Current long-
read-based tools [184] are able to detect deletions and insertions with high precision. The sparse coverage of
long reads may lower the sensitivity of detection.

Read alignment across various domains of biological research
We discuss the challenges and the features of these algorithms that are specific to the

various domains of modern biological research. Often the domain-specific alignment

problem can be solved by creating a novel tool from scratch or wrapping the existing

algorithms into a domain-specific alignment tool (Supplementary Figure 5 and 6). Add-

itionally, longer reads make the read alignment problem similar across areas of bio-

logical research. For example, tools recently designed to align long reads can handle

both DNA and RNA-Seq reads [131].
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RNA-Seq alignment
RNA sequencing is a technique used to investigate transcriptomics by generating

millions of reads from a collection of human alternative spliced isoform transcripts,

referred to as a transcriptome [185]. RNA-Seq has been widely used for gene expres-

sion analysis as well as splicing analysis [14, 185, 186]. However, the alignment of RNA

sequencing reads needs to overcome additional challenges when mapping the reads ori-

ginating from human transcriptome onto the reference genomes. Those challenges

arise due to differences between the human transcriptome and the human genome;

these differences define a subset of alignment problems known as spliced alignment.

Spliced alignment requires that the one takes into account reads spanning over large

gaps caused by spliced out introns [185]. Reads spanning only a few bases across the

junctions can be easily aligned to an adjacent intron or aligned in a wrong location,

making the accurate alignment more difficult [14, 185].

Several spliced alignment tools have been developed to address this issue and align

RNA-Seq reads in a splicing-aware manner (Table 1 and Fig. 1c). Hashing is the most

popular technique among RNA-Seq aligners (Supplementary Figure 7). This is even

more evident if we remove the RNA-Seq aligners that are wrappers of existing DNA-

Seq alignment methods (Supplementary Figure 5). Over 60% of the RNA-Seq aligners

which are wrappers of existing DNA-Seq alignment methods use Bowtie or Bowtie2

(Supplementary Figure 5). When considering only stand-alone RNA-Seq aligners, the

number of aligners using hashing more than doubles the number of aligners using an

FM index (Supplementary Figure 8).

The most popular tool based on the number of citations was TopHat2 [105]

(Table 1). TopHat2 uses Bowtie2 to align reads that may span more than one exon by

splitting the reads into smaller segments and stitching the segments together to form a

whole read alignment. The stitched read alignment spans a splicing junction on the

human genome. This method allows identification of the splicing junction without

transcriptome alignment. A more recent tool, HISAT2, uses a hierarchical indexing

algorithm that leverages the Burrows-Wheeler Transform and Ferragina-Manzini index

to align parts of reads and extend the alignment [115]. Another popular method, RNA-

Seq aligner—called STAR—utilizes suffix arrays to identify a maximal mappable prefix,

which is used as seeds or anchors, and stitch together the seeds that aligned within the

same genomic window [104]. Although those tools can detect splicing junctions within

their algorithm, it is possible to supply known gene annotation to increase the accuracy

of a spliced alignment. The alignment accuracy, measured by correct read placement,

can be increased 5–10% by supplying known gene annotations [14, 185]. HISAT2 and

STAR are able to align the reads accurately with or without a splicing junction [14].

Furthermore, the discovery and quantification of novel splicing junctions can be signifi-

cantly improved using two passes in STAR, which generates a list of possible junctions

in the first pass and identifies aligning reads leveraging the junctions in the second pass

[187]. While spliced alignment can provide an important splicing junction information,

those tools require intensive computational resources [14].

To align RNA-Seq reads onto the transcriptome reference instead of the genome ref-

erence, regular DNA aligners are typically used. Mapping to the transcriptome is usu-

ally performed to estimate expression levels of genes and alternatively spliced isoforms

by assigning reads to genes and alternatively spliced isoforms [104, 188]. Since many
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alternatively spliced isoforms share exons, which are usually longer than the short

reads, probabilistic models are used as it is impossible to uniquely assign reads to the

isoform transcripts [189].

Alternatively, one can avoid computationally expensive alignment and perform

pseudo-alignment, such as Kallisto [104] and Salmon [187]. Kallisto [190] uses tran-

scriptome de Bruijn graph as an index where its nodes are seeds. Kallisto determines

the locations of each input read by matching seeds extracted from reads with the seeds

of the index without performing sequence alignment. Kallisto also exploits the struc-

ture of the de Bruijn graph to avoid examining more than a few seeds located at the

same graph’s path (between two junctions). This reduces the number of seed lookups

in the index and hence reduces expensive memory accesses.

In contrast, Salmon [190, 191] can optionally perform either pseudo-alignment or

read alignment. Salmon approximates the locations of each input read by building a

hashing index in conjunction with a suffix array index. The seeds extracted from each

read are looked up in the hash table and then the suffix array provides all suffixes of

the reference genome containing the matched seed. Similar to Kallisto, Salmon tries to

reduce the number seed lookups by finding the longest subsequence of the read that

exactly matches the reference suffixes and excluding these regions from seed lookups.

In contrast to regular alignment algorithms, pseudo-alignment algorithms [190, 191]

are unable to provide the precise alignment position of the read in the genome nor

alignment profile (e.g., CIGAR string). Instead, pseudo-alignment algorithms assign the

reads to a corresponding gene and/or alternatively spliced isoform. Usually, such infor-

mation can be sufficient to accurately estimate gene expression levels of the sample

[192]. A higher sequencing depth is demonstrated to improve the accuracy of Salmon

and decreases the accuracy of Kallisto, as only Salmon exploits abundance information

of each isoform to assist the seed matching [188].

Metagenomic alignment
Metagenomics is a technique used to investigate the genetic material in human or

environmental microbial samples by generating millions of reads from the

microbiome—a complex microbial community residing in the sample. Metagenomic

data often contains an increased number of reads required to be aligned against more

than hundreds of thousands of microbial genomes. For example, as of July 2018, the

total number of nucleotides in NCBI’s collection of bacterial genomes measures over

204 times the number of nucleotides present in the Genome Reference Consortium

Human Build 38 (Supplementary Note 6). The increased number of reads and the size

of reference databases pose unique challenges to existing alignment algorithms when

applied to metagenomics studies.

In targeted gene sequencing studies, such as those that sequence portions of the 16S

ribosomal RNA of prokaryotes or internally transcribed spacers (ITS) of eukaryotes, a

number of task-specific aligners are utilized to identify the origin of candidate reads or

to perform homology searches. For example, Infernal [193] utilizes profile hidden Mar-

kov models to perform alignment based on RNA secondary structure information.

Multiple sequence aligners are also utilized in metagenomic analysis pipelines such as

QIIME [194], Mothur [195], and Megan [195, 196]. For example, NAST [195–197] and

PyNAST [198] use 7-mer seeds and a BLAST alignment that is then further refined
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using a bidirectional search to handle indels. Similarly, MUSCLE [198, 199] uses an ini-

tial distance estimation based on k-mers and proceeds through a progressively con-

structed hierarchical guide tree while optimizing a log expectation for multiple

sequence alignment [199].

For untargeted whole genome shotgun (WGS) metagenomic studies, the task of

identifying the genomic or taxonomic origin of sequencing reads (referred to as

“fragment recruitment” or “taxonomic read binning”) is even more difficult, individual

reads can originate from multiple organisms due to shared homology or horizontal

gene transfer and reads may originate from previously unsequenced organisms. This

has sparked the development of a variety of tools [200] which aim to identify the

presence and relative abundance of taxa or organisms present in a metagenomic

sample via a reference-free and/or alignment-free fashion (referred to as “taxonomic

profiling”). Similar in spirit to RNA-Seq alignment, these tools avoid computationally

expensive base-level alignment and perform pseudo-alignment or multiple types of k-

mer matching to detect the presence of organisms in a metagenomic sample [182, 201,

202], as well as use minimizers to reduce computational time [182].

Other approaches handle growing reference database sizes by aligning reads onto a

reduced reference database, sometimes composed of marker microbial genes that are

present in specific taxa. Reads mapping to those genes can be used to determine the

presence of specific taxa in a sample [203]. Such tools typically use existing DNA

alignment algorithms (e.g., MetaPhlAn [203] uses the Bowtie2 aligner).

Even with the development of these new metagenomic tools, existing read alignment

tools (e.g., MOSAIK, SOAP, and BWA) are still used for fragment recruitment

purposes [204]. However, the use of existing read alignment tools for metagenomics

carries a significant computational burden and is identified as the main bottleneck in

the analysis of such data. This major limitation suggests the need for the development

of alignment tools capable of handling the increased number of reads and reference

genomes seen in such studies [205].

Metagenomics studies are also capable of functional annotation of microbiome

samples by aligning the reads to genes, gene families, protein families, or metabolic

pathways. Protein alignment is beyond the scope of this manuscript, but many of the

algorithmic approaches previously discussed are utilized for functional annotation [204,

206]. For example, RAPSearch2 [204, 206] uses a collision-free hash table based on

amino acid 6-mers. The protein aligner DIAMOND [207] utilizes a spaced-seed-and-

extend approach based on a reduced alphabet and unique indexing of both reference

and query sequences. Indexing of both the reference and the query reads provides mul-

tiple orders of magnitude in speed improvements over older tools (such as BLASTX) at

the cost of increased memory usage. Recently, MMseqs2 [205] utilizes consecutive,

similar k-mer matches to further improve the speed of protein alignment.

Viral quasispecies alignment
RNA viruses such as human immunodeficiency virus (HIV) are highly mutable, with

the mutation rates being as high as 10−4 per base per cell [208] allowing such viruses to

form highly heterogeneous populations of closely related genomic variants commonly

referred to as quasispecies [209]. Rare genomic variants, which are a few mutations

away from the major strain, are often responsible for immune escape, drug resistance,
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viral transmission, and increase of virulence and infectivity of the viruses [210, 211].

Massively parallel sequencing techniques allow for sampling of intra-host viral popula-

tions at high depth and provide the ability to profile the full spectra of viral quasispe-

cies, including rare variants.

Similar to other domains, accurate read alignment is essential for assembling viral

genomic variants including the rare ones. Aligning reads that originated from

heterogeneous populations of closely related genomic variants to the reference viral

genome give rise to unique challenges for existing read alignment algorithms. For

example, read alignment methods should be extremely sensitive to small genomic

variations while being robust to artificial variations introduced by sequencing

technologies. At the same time, the genetic difference between viral quasispecies of

different hosts is usually substantial (unless they originated from the same viral

outbreak or transmission cluster), which makes the application of predefined libraries

of reference sequences for viral read alignment problematic or even impossible.

Currently, viral haplotyping tools [212, 213] and variant calling tools [214, 215]

frequently rely on existing independent alignment tools. While viral samples contain

several distinct haplotypes, the read alignment tools such as BWA [145] and BowTie

[216] can only map reads to a single reference sequence. Since certain haplotypes may

be further or closer to the reference sequence, the reads emitted by such haplotypes

may have different mapping quality. Some tools re-align reads to the consensus se-

quence instead of keeping the original alignment to the reference. Nevertheless, even

alignment to the perfect reference or consensus sequence can reject perfectly valid

short reads because of multiple mismatches. Rejection of such reads may cause loss of

rare haplotypes and mutations. Systematic sequencing errors (such as homopolymer er-

rors) frequently cause alignment errors. Although the sequencing error rate, both sys-

tematic and random, is comparatively low, such errors can be more frequent than the

rarest variants. The alignment errors caused by sequencing errors may cause drastic

sensitivity and reduction in specificity of haplotyping and variant calling methods (Sup-

plementary Figure 9).

Aligning bisulfite-converted sequencing reads
Bisulfite-converted sequencing is a technique used to sequence methylated

fragments [217, 218]. During sequencing, most of the cytosines (C) in the reads

become thymines (T). Since every sequenced T could either be a genuine genomic

T or a converted C, special techniques are used to map those reads [219]. Some

tools substitute all C in reads with wildcard bases, which can be aligned to C or T

in the reference genome [37, 52], while other tools substitute all C by T in all

reads and reference and work with a three-letter alphabet aligning to a C-to-T-

converted genome [77, 96]. Unlike RNA-Seq aligners, FM index was the most

popular technique among BS-Seq aligners (Supplementary Figure 10). One-third of

the surveyed BS-Seq aligners were wrappers of existing DNA-Seq alignment

methods (Supplementary Figure 6), with all three of those wrapping Bowtie or

Bowtie2 (Supplementary Figure 6). As a result, when considering only stand-alone

BS-Seq aligners, the numbers of aligners using each indexing algorithm become ex-

tremely similar (Supplementary Figure 11).
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Other domains
Other domains requiring specialized alignment include B and T cell receptor repertoire

analysis. The repertoire data is generated using targeter repertoire sequencing

protocols, known as BCR- or TCR-Seq. For example, tools designed to align reads to

the V(D)J genes use combinations of fast alignment algorithms and more sensitive

modified Smith-Waterman and Needleman-Wunsch algorithms [182, 220, 221].

Discrepancies between the reads and the reference may reveal the historical
errors in the reference assembly
Genome sequencing datasets, especially those generated with long reads, provide a

unique perspective to reveal errors in the reference assemblies (e.g., human reference

genome) based on the discrepancies between the reads and the reference sequence.

References and reads (e.g., resequencing data) are often produced using different

technologies, and there are usually disagreements between references and reads that

produce mapping errors. Similarly, some of these errors also come from the errors in

the reads used for assembly, collapsed/merged duplications/repeats, and heterozygosity.

For example, a study for structural variation discovery led to the identification of

incorrectly inverted segments in the reference genome [222]. Similarly, Dennis et al.

[223] characterized a duplicated gene that was not represented accurately because it

collapsed in the reference genome. Therefore, using the most recent version of a

reference genome is always the best practice, as demonstrated by an analysis of the

latest version of the human genome [223, 224].

Structural errors in the reference genomes can be found and corrected by using

various orthogonal technologies such as mate-pair and paired-end sequencing [225,

226], optical mapping [227], and linked-read sequencing [228]. Smaller-scale errors

(i.e., substitutions and indels) can also be corrected using assembly polishing tools such

as Pilon, which employs short-read sequencing data [229]. However, long reads are

more powerful in detecting and correcting errors due to the fact that they can span the

most common repeat elements. Long-read-based assembly polishers include Quiver

[230] that uses Pacific Biosciences data, Nanopolish [231] that uses Nanopore sequen-

cing, and Apollo [232] that can use read sets from any sequencing technology to polish

large genomes. Additionally, more modern long-read genome assemblers, such as Canu

[233], include built-in assembly polishing tools.

Discussion
Rapid advances in sequencing technologies shaped the landscape of modern read

alignment algorithms leading to today’s diverse array of alignment methods. Those

technological changes rendered some read alignment algorithms irrelevant—yet

provide context for the development of new tools better suited for modern next-

generation sequencing data. The development of alignment algorithms is shaped not

only by the characteristics of sequencing technologies but also by the specific charac-

teristics of the application domain. Often different biological questions can be answered

using similar bioinformatics algorithms. For example, BLAT [38, 234], a tool that was

originally designed to map EST and Sanger reads, is now used to map the assembled

contigs to the reference genome [234]. Specific features of various domains of biological

research, including whole transcriptome, adaptive immune repertoire, and human

Alser et al. Genome Biology          (2021) 22:249 Page 26 of 34



microbiome studies, confront the developer with a choice of developing a novel algo-

rithm from scratch or adjusting existing algorithms.

In general, the read alignment problem is extremely challenging due to the large size

of analyzed datasets and numerous technological limitations of modern sequencing

platforms. A modern read aligner should not only be able to maintain a good balance

between speed and memory usage but also be able to preserve small and large genetic

variations. It should be capable of tackling numerous technological limitations and

changes, ultimately inducing rapid evolution of sequencing technologies such as

constant growth of read length and changes in error rates. In general, determining an

accurate global position of the read in the reference genome provides no guarantee that

accurate local pairwise alignment can be found. This is especially challenging for the

error-prone long reads, where determining the accurate global position of the read in

the reference genome is usually easy, but local pairwise alignment represents a substan-

tial challenge due to a high error rate.

This review not only provides an understanding of the basic concepts of read

alignment, its limitations, and how they are mitigated but also helps inform its future

directions in read alignment development. We believe the future is bright for read

alignment algorithms, and we hope that the many examples of read alignment

algorithms presented in this work inspire researchers and developers to enhance the

field of computational genomics by accurate and scalable tools.
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{Supplementary Information} 

 

Supplementary Table 1. Genome index size across three read alignment tools.  

Tool Version Index Size Indexing Time 

mrFAST 2.2.5 16.5 GB 1202 seconds 

minimap2 0.12.7 7.2 GB 200 seconds 

BWA-MEM 0.7.17 4.7 GB 2998 seconds 

 

 

Supplementary Table 2. Tools available in the bioconda package manager. Here we have 

included only the tools that are primarily built for DNA read alignment. 

Software tool Version Publication Conda command 

Bowtie2 2.2.5 1 conda install -c bioconda bowtie2 

Bowtie 0.12.7 2 conda install -c bioconda bowtie 

BWA 0.7.17 3 conda install -c bioconda bwa 

GSNAP 2018-03-25 4 conda install -c compbiocore gsnap 

HISAT2 2.1.0 5 conda install -c bioconda hisat2 

LAST 963 6 conda install -c bioconda last 

minimap2 2.12-r827 7 conda install -c bioconda minimap2 

RMAP 2.1 8 conda install -c bioconda rmap 

SMALT 0.7.6 9 conda install -c bioconda smalt 

SNAP 1.0beta.23 10 conda install -c bioconda snap-aligner 

Subread v1.6.2 11 conda install -c bioconda subread 

 

https://paperpile.com/c/c9hsou/62YND
https://paperpile.com/c/c9hsou/QwjKW
https://paperpile.com/c/c9hsou/EfcuR
https://paperpile.com/c/c9hsou/wuskL
https://paperpile.com/c/c9hsou/0y1S
https://paperpile.com/c/c9hsou/NVhup
https://paperpile.com/c/c9hsou/pylIM
https://paperpile.com/c/c9hsou/Aad1r
https://paperpile.com/c/c9hsou/BKuwz
https://paperpile.com/c/c9hsou/ZyN37
https://paperpile.com/c/c9hsou/H0tLp


Supplementary Table 3. Fixed effect size estimates, standard errors (se), test statistics, and p-

values for the effect of the listed variables on the expected CPU run time. The parameters 

were estimated using the Gamma generalized linear mixed model in Equation (1). “Variable 

name: Level 1 vs Level 2” indicates that Level 1 is the reference level and the coefficient 

quantifies the increase / decrease in expected CPU run time for Level 2 over Level 1.  

  Estimate se t stat p-value 

Intercept 0.19 0.23 0.81 4.2e-01 

Year of publication -0.7 0.09 -7.96 1.7e-15 

Chain of seeds: No vs Yes 1.45 0.19 7.46 8.8e-14 

Pairwise alignment: NW vs HD  1.37 0.28 4.91 9.3e-07 

Pairwise alignment: NW vs Non-DP Heuristic 1.22 0.19 6.37 1.8e-10 

Pairwise alignment: NW vs SW 0.78 0.2 3.83 1.3e-04 

Indexing: hashing vs BWT-FM -0.11 0.16 -0.68 5.0e-01 

 

  



Supplementary Table 4. Likelihood ratio test p-values for the effect of the listed variables on 

the expected CPU run time. The parameters (Supplementary Table 3) were estimated using the 

Gamma generalized linear mixed model in Equation (1). The null Gamma generalized linear 

mixed model is generated as in Equation (1), but without the variable of interest. Additionally, 

we ran one LRT between BWT-FM tools and LAST, an aligner that does not use BWT and the 

FM-index by default. 

 

Variable of Interest LRT p-value 

Indexing 5.0e-01 

Year of publication 3.7e-11 

Pairwise alignment 3.7e-08 

BWT-FM vs LAST 1.5e-15 

 

 

  



Supplementary Table 5. Fixed effect size estimates, standard errors (se), test statistics, and p-

values for the effect of the listed variables on the expected RAM usage. The parameters were 

estimated using the Gamma generalized linear mixed model in Equation (2). “Variable name: 

Level 1 vs Level 2” indicates that Level 1 is the reference level and the coefficient quantifies the 

increase / decrease in expected RAM usage for Level 2 over Level 1. 

  Estimate se t stat p-value 

Intercept 3.41 0.51 6.67 2.2e-02 

Year of publication -0.21 0.24 -0.85 4.8e-01 

Chain of seeds: No vs Yes -0.5 0.51 -0.99 4.3e-01 

Pairwise alignment: NW vs HD  -1.12 0.73 -1.53 2.7e-01 

Pairwise alignment: NW vs Non-DP Heuristic 0.2 0.5 0.4 7.3e-01 

Pairwise alignment: NW vs SW -1.11 0.54 -2.06 1.8e-01 

Indexing: hashing vs BWT-FM -1.51 0.44 -3.43 7.6e-02 

 

  



Supplementary Table 6. Likelihood ratio test p-values for the effect of the listed variables on 

the expected RAM usage. The parameters (Supplementary Table 5) were estimated using the 

Gamma generalized linear mixed model in Equation (2). The null Gamma generalized linear 

mixed model is generated as in Equation (2), but without the variable of interest. Additionally, 

we ran one LRT between BWT-FM tools and LAST, an aligner that does not use BWT and the 

FM-index by default. 

 

Variable of Interest LRT p-value 

Indexing 2.2e-03 

Year of publication 4.1e-01 

Pairwise alignment 3.9e-02 

BWT-FM vs LAST 3.2e-77 

 

  



 

Supplementary Figure 1. The effect of year of publication  on computational resources. The 

relative performance (RAM) of the benchmarked aligners grouped by whether the tool was 

released before or after long read technology was introduced (2013) and colored by individual 

aligners. 



 

Supplementary Figure 2. Relative performance of human genome indexing performed by 

various read alignment tools. Tools are grouped based on the type of algorithm used for 

genome indexing. Tools are ordered from oldest (segemehl, 2009) to newest (HISAT2, 2019). (a) 

CPU time (b) RAM. 

 



 

Supplementary Figure 3. Average relative performance of various read alignment tools 

plotted against the number of citations the tool’s corresponding paper has received yearly 

since being published. Tools are ordered from oldest (RMAP, 2008) to newest (minimap2, 

2019). (a) CPU time. (b) RAM. 



 

Supplementary Figure 4. The effect of pairwise alignment algorithms on computational 

resources. The relative performance (RAM) of the benchmarked aligners grouped by the 

algorithm used for pairwise alignment and colored by individual aligners. 

 



 

Supplementary Figure 5. (a) Bar chart showing the number of surveyed RNA-Seq tools which 

are wrappers of existing DNA-Seq aligners tools. (b) Bar chart showing the number of surveyed 

RNA-Seq tools which are wrappers of Bowtie or Bowtie2. 

 



 

Supplementary Figure 6. (a) Bar chart showing the number of surveyed BS-Seq tools which are 

wrappers of existing DNA-Seq aligners tools. (b) Bar chart showing the number of surveyed BS-

Seq tools which are wrappers of Bowtie or Bowtie2. 



 

Supplementary Figure 7. Histogram showing the cumulation of surveyed RNA-Seq tools over 

time separated by the algorithm used for genome indexing. This includes both stand alone 

RNA-Seq tools and wrappers of existing DNA-Seq alignment tools.  

 

  



 

 

Supplementary Figure 8. Histogram showing the cumulation of surveyed RNA-Seq tools over 

time separated by the algorithm used for genome indexing. Only stand alone RNA-Seq aligners 

tools are included (not the wrappers of existing DNA-Seq aligners).  

 



 

Supplementary Figure 9. Examples of erroneous alignments of Influenza A virus PacBio 

sequencing dataset12. True viral haplotypes contain deletions that are inconsistently aligned to 

the reference. Such inconsistencies cause erroneous single-position shifts in the alignment, 

which in turn results in discovery of false positive single nucleotide variations. (A) and (B) Reads 

come from a true haplotype with the deletion with respect to the reference. Using BWA scoring 

method, the reads have two different alignments with the optimal score, but only the first 

alignment is correct. (C) and (D) Correct read alignment with the homopolymer errors should 

introduce an insertion and a deletion instead of “optimal” two mismatches. 

 

https://paperpile.com/c/c9hsou/3upY4


 

Supplementary Figure 10. Histogram showing the cumulation of surveyed BS-Seq tools over 

time separated by the algorithm used for genome indexing. This includes both stand alone BS-

Seq tools and wrappers of existing DNA-Seq alignment tools.  

 

 



 

Supplementary Figure 11. Histogram showing the cumulation of surveyed BS-Seq tools over 

time separated by the algorithm used for genome indexing. Only stand alone BS-Seq aligners 

tools are included (not the wrappers of existing DNA-Seq aligners). 

 

 

 



Supplementary Note 1 

 

We evaluate the effect of indexing on the end-to-end execution time of today’s read alignment 

algorithms. We align a single read of length 100 bp to the human reference genome (hg38) 

using BWA-MEM (with -a parameter selected to report all mapping locations). Building the 

index for the human reference genome takes 3,476 seconds. The read alignment step using 

BWA-MEM takes only 3.4 seconds after building the index for the human reference genome. 

Now we want to perform brute-force read alignment for the same read sequence and the same 

reference genome that we use for the BWA-MEM experiment. We divide the human reference 

genome into about 3.3 billion sequences, each of which is 100 bp long. That is, the first 

sequence is the first 100 bp of the reference genome and the second sequence is the segment 

that starts from the second bp of the reference genome and ends at the 101th bp and so forth 

for the other sequences. We then use Edlib’s global alignment tool (DP-based pairwise 

alignment) to check the similarity of the read sequence with each of the 3.3 billion generated 

sequences. We observe that Edlib takes about 24,200 seconds to complete the brute-force read 

alignment approach. This means that the indexing technique (and probably other filtering 

heuristics) used in BWA-MEM saves the execution time of read alignment by at least 7,100X. If 

we include the time needed to build the index in the total time of read alignment, then BWA-

MEM is only 7X faster than the brute-force read alignment approach. Note that indexing the 

reference genome is performed only once for each reference genome. 

  



Supplementary Note 2 

In our review, we define read alignment as a three-step process, which includes indexing, global 

positioning, and pairwise alignment. In this case, pairwise alignment is considered to be 

performed between a read and a section of the reference determined by global positioning. 

Alternatively, the entire process can be viewed as local alignment with respect to the reference, 

and global alignment with respect to the read. In this formulation, the read is aligned end-to-

end to the best substring in the reference and is expressed as semi-global alignment13. 

 

We have simplified pairwise alignment into overarching algorithm classifications like Smith-

Waterman or Needleman-Wunsch, but tools that use dynamic programming can be classified 

into subcategories that are beyond the scope of this review. For example, read alignment 

algorithms can choose to be gapless (ignoring some variants), compute edit distance (the 

minimum number of edits needed to convert one string into the other), or use an affine gap 

penalty where variants are weighted differently based on their length. It is also worth noting 

that BWT-based tools do not use seeding in the traditional sense, and seed classification might 

be performed differently. 

 

 

Supplementary Note 3 

 

We first built the index data, then ran the alignment procedure and extracted the data in bam 

format. Some tools do not provide the output in bam format, so in this case we used samtools 

toolkit to convert sam output to bam output.  

https://paperpile.com/c/c9hsou/37BfM


To install samtools from conda: conda install -c bioconda samtools 

1) Bowtie2 

Build index:  

bowtie2-build <reference_in> <index_basename> 

*reference_fasta: fasta file of reference genome 

*index_basename: write index data to files with this basename 

Mapping WGS data:  

bowtie2 -x <index_basename> -1 <r1_fastq> -2 <r2_fastq> | samtools view -bS - > output.bam 

*r1_fastq, r2_fastq: fastq files of the paired end reads 

 

2) Bowtie 

Build index:  

bowtie-build <reference_in> <index_basename> 

*reference_in: fasta file of reference genome 

*index_basename: write index data to files with this basename 

Mapping WGS data:  

bowtie -S <index_basename> -1 <r1_fastq> -2 <r2_fastq> | samtools view -bS - > output.bam 

3) BWA 

Build index:  

bwa index <reference_fasta> 

Mapping WGS data:  

bwa mem <reference_fasta> <r1_fastq> <r2_fastq> | samtools view -bS - > output.bam 



4) GSNAP 

Build index:  

gmap_build -D <destination_directory_path> -d <genome_name> <reference_fasta> 

Mapping WGS data: 

gsnap -D <destination_directory_path> -d <genome_name> <r1_fastq> <r2_fastq> -A sam | 

samtools view -bS - > output.bam 

5) HISAT2 

Build index:  

hisat2-build <reference_fasta> <index_basename> 

Mapping WGS data: 

hisat2 -q -x <index_basename> -1 <r1_fastq> -2 <r2_fastq> | samtools view -bS - > output.bam 

*-q: input as fastq file 

6) LAST 

Build index:  

lastdb -uNEAR -R01 <index_basename> <reference_fasta> 

*-uNEAR and -R01 optional 

Mapping WGS data: 

lastal -Q1 <index_basename> <r1_fastq> <r2_fastq> | last-split > output.maf 

*Q1: fastq-sanger format 

7) minimap2 

Build index: 

Minimap2 -d <index_file> <reference_fasta> 



* index file with “.mmi” extension 

Mapping WGS data: 

Minimap2 -a <index_file> <r1_fastq> | samtools view -bS - > output.bam 

8) RMAP 

rmap <read_fastq> -c <reference_fasta> -o output.sam | samtools view -bS - > output.bam 

9) SMALT 

Build index: 

smalt index [options] <index_name> <reference_fasta> 

Mapping WGS data: 

smalt map <index_name> <r1_fastq> <r2_fastq> | samtools view -bS - > output.bam 

10) SNAP 

Build index: 

snap-aligner <index_name> <reference_fasta> <index_dir_name> 

Mapping WGS data: 

snap-aligner paired <index_dir_name> <r1_fastq> <r2_fastq> -o output.bam 

11) Subread 

Build index: 

subread-buildindex -o <index_name> <reference_fasta> 

Mappins WGS data: 

subread-align -t 1 -i <index_name> -r <r1_fastq> -R <r1_fastq> -o output.bam 

 

 

 



Supplementary Note 4 

 

While a typical seed is a contiguous subsequence, a spaced seed contains in its sequence 

characters from a subsequence of the reference genome while ignoring the other characters of 

the same subsequence. Spaced seeds increase alignment sensitivity and enable hash tables to 

provide hits for both exact and inexact matches by ignoring certain bases of the seed. This 

approach was pioneered by PatternHunter4,14–16 in 2002 and has been adopted by 14 tools. A 

majority of the tools using spaced seeds are designed for short read technologies (Table 1). 

Spaced seeds can also be used in long read alignment to tolerate high error rates17. Another 

approach to account for the error rate of sequencing technologies involves generating seeds as 

prefixes of the read sequence. Generating the prefixes of the reads—as opposed to generating 

the suffixes—allows the read alignment algorithm to tolerate an increased error rate towards 

the end of a read18. Other methods generate both suffix seeds and prefix seeds in order to 

tolerate large genetic variations19. 

 

Instead of choosing a large number of seeds from each read, read alignment algorithms can 

choose only a small number of seeds that are apart from each other. This approach also allows 

larger genetic variations and sequencing errors that are located between every two adjacent 

seeds20. Most read alignment algorithms that follow this approach try to limit the number of 

differences that are located at the gaps in order to avoid aligning a read to highly dissimilar 

regions in the reference genome. This approach can be performed using seed extension followed 

by seed chaining. First, after finding a matching seed shared between a read and the reference 

genome, the read alignment algorithm extends the matching seed in both directions until there 

https://paperpile.com/c/c9hsou/tcuJc+8Eo4m+QtmFc+wuskL
https://paperpile.com/c/c9hsou/jx7aV
https://paperpile.com/c/c9hsou/Hjbpr
https://paperpile.com/c/c9hsou/iHpNx
https://paperpile.com/c/c9hsou/LuGxI


are no more exact matches (such extended seeds are called maximal exact matches (MEMs)21). 

Second, the read alignment algorithm examines the gaps between every two adjacent extended 

seeds in the reference genome using a pairwise alignment algorithm22,23 to construct a longer 

chain of these adjacent extended seeds 24. The pairwise alignment can be performed end-to-end 

(e.g., global alignment) for two sequences of the same length22,23, or by using a local alignment 

algorithm11,25,26, where subsequences of the two given sequences are aligned. The two sequences 

can also be examined using a Hamming distance algorithm in cases where insertions or deletions 

are not allowed27. This seed chaining approach can also be applied to non-hashing-based read 

alignment algorithms, such as Bowtie228 and BWA-MEM29. We observe that 54 read alignment 

algorithms out of the 107 surveyed alignment algorithms use a seed chaining approach. 

 

 

Supplementary Note 5 

 

Modern read alignment algorithms (e.g., Hobbes30, Hobbes231, Bitmapper32, mrFAST33, 

RazerS34) develop heuristics that quickly decide whether or not the computationally expensive 

DP calculation is needed—if not, significant time is saved by avoiding DP calculation. Such 

heuristics are called pre-alignment filters35–39, and they approximate the total number of 

differences between two sequences to determine if this count is greater than a threshold 

(Figure 1e). If so, these heuristics decide that the verification calculation is not needed due to 

high dissimilarity between the two sequences. Verification algorithms can also be accelerated 

using specialized or general-purpose hardware accelerators such as multi-core processors40–

42,43. 

 

https://paperpile.com/c/c9hsou/SiOxU
https://paperpile.com/c/c9hsou/iWbnK+QKTrH
https://paperpile.com/c/c9hsou/3gs93
https://paperpile.com/c/c9hsou/iWbnK+QKTrH
https://paperpile.com/c/c9hsou/967xO+N4xKg+H0tLp
https://paperpile.com/c/c9hsou/dBWbl
https://paperpile.com/c/c9hsou/9ifJ1
https://paperpile.com/c/c9hsou/3WJln
https://paperpile.com/c/c9hsou/Bi9P8
https://paperpile.com/c/c9hsou/FuwfU
https://paperpile.com/c/c9hsou/Klk3Z
https://paperpile.com/c/c9hsou/tfiGB
https://paperpile.com/c/c9hsou/SKPpm
https://paperpile.com/c/c9hsou/mVKx7+VfsUM+JYi3T+OQXc8+eTF5E
https://paperpile.com/c/c9hsou/EgfUX+fPHdR+foeRi
https://paperpile.com/c/c9hsou/EgfUX+fPHdR+foeRi
https://paperpile.com/c/c9hsou/WRV98


 

 

Supplementary Note 6 

 

To obtain the nucleotide count in all bacterial genomes possessed by NCBI, we utilized the tool 

RepoPhlAn(https://bitbucket.org/nsegata/repophlan) to download via ftp.ncbi.nih.gov all 

genomes contained in the genomes/all subdirectory. Taxonomic identifiers were used to 

identify bacterial genomes and subsequently obtain a nucleotide count.  

# obtain RepoPhlAn 

wget https://bitbucket.org/nsegata/repophlan/get/03f614c13cf0.zip 

unzip 03f614c13cf0.zip 

cd 03f614c13cf0 

# run RepoPhlAn 

./run.sh # this can take upwards of 5 days to complete this step 

cd out/microbes_<time_stamp>/fna 

# count number of bacterial nucleotides 

nohup ls -U | xargs -P 15 -I{} sh -c "bzcat {} | grep -v '>'| wc -m" | awk '{sum+=$1}END{print 

sum}' > ~/bacteria_bp_count.txt  

# 676153484835 

 

The human genome build GRCh38 was obtained from NCBI via ftp and nucleotides counted in 

the following way: 

# download the human genome 

https://bitbucket.org/nsegata/repophlan
https://bitbucket.org/nsegata/repophlan/get/03f614c13cf0.zip


wget -r https://ftp.ncbi.nih.gov/genomes/Homo_sapiens/Assembled_chromosomes/seq/* 

# select just the fasta files 

cd ftp.ncbi.nih.gov/genomes/Homo_sapiens/Assembled_chromosomes/seq/ 

ls | grep -v”\.fa\.” | xargs -I{} rm {} 

#Uncompress 

ls | xargs -I{} gunzip {} 

# count nucleotides 

ls *.fa | xargs -I{} sh -c " grep -v '>' {} | wc -m" | awk '{sum+=$1}END{print sum}' > 

~/human_bp_count.txt 

#3303852965 

# compare the two 

echo "`cat ~/bacteria_bp_count.txt` / `cat ~/human_bp_count.txt`" | bc -l 

204.65604613702898246260 

 

  

https://ftp.ncbi.nih.gov/genomes/Homo_sapiens/Assembled_chromosomes/seq/
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Install the read alignment tools  

 

We have selected tools available on bioconda and have installed them using the following 

commands (Table S1). 

 

Public Sequence Data 

 

We used 10 WGS datasets for comparing the tools listed in Table S1. The SRA run accession 

numbers of the 10 datasets are as follows: ERR009309, ERR013127, ERR013138, ERR045708, 

ERR050158, ERR162843, ERR181410, ERR183377, SRR061640, and SRR360549. To download 

this data, we used the SRA toolkit which is available as a conda package.  

Here are the commands that we used for the downloading process: 

- To download sra toolkit: conda install -c bioconda sra-tools 

- To download fastq files: 

- For single end fastq files: fastq-dump <SRA_id> 

- For paired end fastq files: fastq-dump --split-files <SRA_id> 

 

 

 

 



Compare the performance of the read alignments 

 

We recorded CPU time and RAM usage to compare the read alignment tools.  

Tools were run in the UCLA’s Shared Hoffman2 Cluster.  

Command that we used to submit our jobs in the cluster: 

qsub -o <logfiles/> -e <logfiles/> -m bea -cwd -V -N <name_job> -l 

h_data=32G,highp,time=24:00:00 <exe_script> 

 

*-m bea: define mailing rules 

- b- start time of the job 

- e- end time of the job 

- a- time when the job is aborted 

 

-cwd: changes the directory to where your executed file is, all log output will be created in this 

file unless you specify another directory (see command above output logs and error logs are 

directed to a folder named logfiles) 

 

-V: export environment variables 

-N: give a name to the submitted job 

-l h_date: resource allocation 

-l highp: submission of high priority jobs 

-l time: job running time 



 

Statistical analyses 

 

We model expected CPU time cij across all algorithms i and datasets j using the following 

gamma generalized linear mixed model regression  

log(E(cij)) = α + aj + β1 x Chain_of_seedsij + β2 x Indexingij + β3 x Year_of_publicationij +  

β’4 x Pairwise_alignmentij (1) 

where α is the intercept and aj ~ N(0,σj) is a data-level random intercept modelling the shared 

noise within each data set. β1 is the effect of the Chain_of_seeds where Chain_of_seeds is 

coded as zero for no and one for yes. β2 is the effect of Indexing, where Indexing is coded as 0 

for BWT-FM and 1 for hashing or suffix array, depending on the group being compared to BWT-

FM. β3 is the effect of Year_of_publication, coded as a continuous variable of year scaled to 

have mean zero and variance one. β4 is a vector with the effects of Pairwise_alignment, where 

Pairwise_alignment is a matrix of indicator variables for HD, Non-DP Heuristic, and SW 

algorithms, making NW the reference category. Parameter estimates are provided in (Table S3). 

We use a likelihood ratio test to test the effect of each variable discussed, e.g. year of 

publication or indexing, on the CPU time.  

We use a similar model for the median across all datasets of the expected RAM usage 

med_memi, i.e.  

log(E(med_memi)) = α + β1 x Chain_of_seedsij + β2 x Indexingij + β3 x Year_of_publicationij +  

β4 x Pairwise_alignmentij (2) 



Parameter estimates are provided in (Table S4). Note that, as memory usage does not vary 

considerably within algorithms across data sets, we use the median expected RAM usage across 

all datasets for each algorithm.  
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