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Experimental characterization of DRAM errors is a powerful
technique for understanding DRAM behavior and provides valu-
able insights for improving overall system performance, energy
e�ciency, and reliability. Unfortunately, recent DRAM technol-
ogy scaling issues are forcing manufacturers to adopt on-die
error-correction codes (ECC), which pose a signi�cant challenge
for DRAM error characterization studies by obfuscating raw error
distributions using undocumented, proprietary, and opaque error-
correction hardware. As we show in this work, errors observed in
devices with on-die ECC no longer follow expected, well-studied
distributions (e.g., lognormal retention times) but rather depend
on the particular ECC scheme used.

In this work, we develop Error-correction INference (EIN), a new
statistical inference methodology that overcomes the inability to
understand the error characteristics of DRAM devices with on-
die ECC. EIN uses maximum a posteriori (MAP) estimation over
statistical models that we develop to represent ECC operation to:
i) reverse-engineer the ECC scheme and ii) infer the pre-correction
error rates given only the post-correction errors. We design and
publicly release EINSim, a �exible open-source simulator that
can apply EIN to a wide variety of DRAM devices and standards.
We evaluate EIN through the �rst experimental error-

characterization study of DRAM devices with on-die ECC in
open literature. Using the data-retention error rates of 232 (82)
LPDDR4 devices with (without) on-die ECC across a wide range
of temperatures, refresh rates, and test pa�erns, we show that EIN
enables: i) reverse-engineering the on-die ECC scheme, which we
�nd to be a single-error correction Hamming code with (n = 136,
k = 128, d = 3), ii) inferring pre-correction error rates given only
post-correction errors, and iii) recovering the well-studied pre-
correction error distributions that on-die ECC obfuscates.

1. Introduction
DRAM has long since been a crucial component in computing
systems primarily due to its low cost-per-bit relative to alterna-
tive memory technologies [73, 88, 91, 92]. However, while sub-
sequent technology generations have substantially increased
overall DRAM capacity, they have not achieved comparable
improvements in performance, energy e�ciency, and reliabil-
ity [12, 32, 73, 91]. �is has made DRAM a signi�cant perfor-
mance and energy bo�leneck in modern systems [88, 91].

To address this challenge, researchers propose a wide variety
of solutions based on insights and understanding about DRAM
behavior gleaned from system-level DRAM error characteriza-
tion studies [5, 10, 12, 15, 24, 27, 33, 34, 40, 45–47,50–53,56–59,61,
70, 72, 79–81, 85, 95–99, 101, 105, 106, 114–121, 124, 125, 129, 134].
�ese studies deliberately induce errors in a DRAM device by
experimentally testing the device at conditions that exacerbate

physical DRAM error mechanisms (e.g., charge leakage, circuit
interference). �e resulting errors directly re�ect the e�ects
of the error mechanisms, providing researchers with insight
into the physical properties that underlie DRAM operation
(e.g., data-retention, circuit timings, data-pa�ern sensitivity).
Researchers can then exploit these insights to develop new
mechanisms that improve DRAM and overall system e�ciency.
Unfortunately, continued DRAM technology scaling her-

alds grave reliability concerns going forward primarily due
to increasing single-bit error rates that reduce manufacturing
yield [28,37,49,73,82,85,86,92,93,106,114,115]. While manufac-
turers traditionally use redundant circuit elements (e.g., rows,
columns) to repair manufacturing faults [28, 38, 49, 84, 92, 113],
mitigating growing single-cell error rates is no longer tractable
using circuit-level redundancy alone [86].
To maintain desired yield targets, DRAM manufacturers

have recently supplemented circuit-level redundancy with on-
die error correction codes (on-die ECC)1 [49, 86, 92–94]. On-die
ECC is completely invisible to the system [49, 93]: its imple-
mentation, encoding/decoding algorithms, and metadata are
all fully contained within the DRAM device and provide no
feedback about error detection and/or correction to the rest
of the system. On-die ECC is independent of any particular
DRAM standard, and JEDEC speci�cations do not constrain
how the on-die ECC mechanism may be designed [44]. Since
DRAM manufacturers primarily employ on-die ECC to trans-
parently improve yield, they do not publicly release the ECC
implementation details. �erefore, on-die ECC is typically not
described in DRAM device datasheets, and neither publica-
tions [17, 48, 49, 67, 68, 94] nor whitepapers [41, 86] provide
details of the ECC mechanism for a given product.

Unfortunately, on-die ECC has dire implications for DRAM
error characterization studies since it censors the true errors
that result from physical error mechanisms inherent to DRAM
technology. For a device with on-die ECC, we observe only
post-correction errors, which do notmanifest until pre-correction
error rates exceed the ECC’s correction capability. However,
the way in which the ECC mechanism transforms a speci�c
uncorrectable error pa�ern is implementation-de�ned based on
the mechanism’s design, which is undocumented, proprietary,
opaque, and possibly unique per product. �us, on-die ECC
e�ectively obfuscates the pre-correction errors such that they
cannot be measured simply by studying post-correction errors
without knowing the ECC scheme.

Figure 1 demonstrates the di�erences in the observed data-
retention bit error rate (BER) (y-axis) for di�erent on-die ECC
schemes (explained in Section 3.3) given the same pre-correction

1Also known as in-DRAM ECC and integrated ECC.
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BER (x-axis). We generate this data in simulation using EINSim,
which is described in detail in Section 5. We see that the ob-
served error rates are dependent on the particular ECC scheme
used, and without knowledge of which ECC scheme is used in
a given device, there is no easy way to tie the observed error
rates to the pre-correction error rates.
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Figure 1: Observed vs. pre-correction data-retention bit error
rate (BER) for various ECC schemes (color) and no ECC (black)
assuming 256 data bits written with RANDOM data (simulated).

�is means that post-correction errors may not follow ex-
pected, well-studied distributions based on physical errormech-
anisms (e.g., exponential temperature dependence of charge
leakage rates [4, 30, 79], lognormal retention-time distribu-
tions [30, 76, 80, 98]) but rather device-architecture-speci�c
shapes that cannot be reliably compared with those from a
device with a di�erent ECC scheme. We discuss and experi-
mentally demonstrate the implications of this observation in
Sections 2 and 8, respectively.

�us, on-die ECC e�ectively precludes studying DRAM error
mechanisms, motivating the need for a DRAM error charac-
terization methodology that isolates the e�ects of intrinsic
DRAM behavior from those of the ECC mechanism used in
a particular device. To this end, our goal in this work is to
overcome the barrier that on-die ECC presents against under-
standing DRAM behavior in modern devices with on-die ECC.
To achieve this goal, we develop Error-correction INference
(EIN), a statistical inference methodology that uses maximum
a posteriori (MAP) estimation to 1) reverse-engineer the ECC
scheme and 2) infer the pre-correction error rates from only
the observed post-correction errors. We follow a methodical
four-step process:
First, we tackle the unique reverse-engineering problem

of determining the on-die ECC scheme without any visibility
into the error-correction algorithm, the redundant data, or
the locations of pre-correction errors. Our approach is based
on the key idea that even though ECC obfuscates the exact
locations of the pre-correction errors, we can leverage known
statistical properties of pre-correction error distributions (e.g.,
uniform-randomness [5, 57, 98, 112]) in order to disambiguate
the e�ects of di�erent ECC schemes (Section 4).

We develop statistical models to represent how a given pre-
correction error distribution will be transformed by an arbi-
trary ECC scheme (Section 4.1). Our models are parameterized
by i) the desired ECC scheme and ii) statistical properties of
the pre-correction error distribution. We then formulate the
reverse-engineering problem as a maximum a posteriori (MAP)

estimation of the most likely model given experimental data
from real devices (Section 4.4).

Second, in order to compute several expressions in our
statistical models that are di�cult to evaluate analytically,
we develop EINSim [1], a �exible open-source simulator that
numerically estimates the error-detection, -correction, and
-miscorrection e�ects of arbitrary ECC schemes for di�erent
pre-correction error distributions (Section 5). EINSim models
the lifetime of a given ECC dataword through the encoding,
error injection, and decoding processes faithful to how these
steps would occur in a real device (Section 5.1). To ensure
that EINSim is applicable to a wide range of DRAM devices
and standards, we design EINSim to be modular and easily
extensible to additional error mechanisms and distributions.

�ird, we perform the �rst experimental study of DRAM
devices with on-die ECC in open literature and demonstrate
how EIN infers both: i) the on-die ECC scheme and ii) the
pre-correction error rates. We study the data-retention char-
acteristics of 232 (82) state-of-the-art LPDDR4 DRAM devices
with (without) on-die ECC from one (three) major DRAM man-
ufacturers across a wide variety of temperatures, refresh rates,
and test pa�erns. To accurately model pre-correction errors in
EINSim, we �rst reverse-engineer:
◦ �e layout and dimensions of internal DRAM cell arrays.
◦ �e locations and frequency distribution of redundant

DRAM rows used for post-manufacturing repair.
Applying EIN to data from devices with on-die ECC, we:
◦ Find that the on-die ECC scheme is a single-error correction

Hamming code [31] with (n = 136, k = 128, d = 3).
◦ Show that EIN can infer pre-correction error rates given only

post-correction errors.
Fourth, we demonstrate EIN’s usefulness by providing a

proof-of-concept experimental characterization study of the
data-retention error rates for the DRAM devices with on-die
ECC. We test across di�erent refresh intervals and tempera-
tures to show that EIN e�ectively enables inferring the pre-
correction error rates, which, unlike the ECC-obfuscated post-
correction error rates, follow known shapes that result from
well-studied device-independent error mechanisms.

2. Motivation
EIN allows researchers to more holistically study the relia-
bility characteristics of DRAM devices with on-die ECC by
exposing the pre-correction error rates beneath the observed
post-correction errors. �is enables researchers to propose new
ideas based on a more general understanding of DRAM devices.
To demonstrate how EIN may be useful, we provide: 1) several
examples of studies and mechanisms that EIN enables and 2)
a discussion about the implications of continued technology
scaling for future error characterization studies.

2.1. Example Applications
We provide several examples of potential studies and mecha-
nisms that are enabled by knowing pre-correction error rates,
which on-die ECC masks and EIN reveals:
◦ Runtime Error Rate Optimization: A mechanism that in-
telligently adjusts operating timings/voltage/frequency to
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meet dynamically changing system performance/energy/re-
liability targets (e.g., Voltron [15], AL-DRAM [70], AVA-
DRAM [71], DIVA-DRAM [72]) typically needs to pro�le the
error characteristics of a device for runtime decision-making.
If the particular ECC scheme is known (e.g., using EIN), such
a mechanism can leverage device-independent DRAM er-
ror models for decision-making and quickly interpolating
or extrapolating “safe” operating points rather than having
to: (1) use complex, likely non-parametric, device-speci�c
models for each supported ECC scheme or (2) characterize
each device across its entire region of operation.

◦ Device Comparison Studies: EIN enables fair comparisons of
DRAM error characteristics between devices with di�erent
(and without) on-die ECC mechanisms. �is is useful for
studying the evolution of error characteristics over time,
which provides insight into the state of the industry and fu-
ture technology trends. With DRAM error rates continuing
to worsen (discussed in Section 2.2), such studies can help
predict how much worse future devices may be and how
well current/future error-mitigation mechanisms will cope.
◦ Reverse-Engineering Other ECCs: As we discuss in Section 5.6,
EIN is applicable to other systems (e.g., rank-level ECC,
Flash memory) whose ECC schemes are typically also pro-
prietary. Reverse-engineering their ECC schemes can be
useful for various reasons [7, 19, 21, 26, 131], including fail-
ure analysis, security evaluation, forensic analysis, patent
infringement, and competitive analysis. For these systems,
EIN may provide a way to reverse-engineer the ECC scheme
without requiring hardware intrusion or internal access to
the ECC mechanism as typically required by previous ap-
proaches [19, 122, 123, 131] (discussed in Section 9).

We hope that future work will use EIN well beyond these use
cases andwill develop new characterization-driven understand-
ing of devices with on-die ECC.

2.2. Applicability to Future Devices
Despite its energy and reliability bene�ts, on-die ECC does not
fundamentally prevent error rates from increasing. �erefore,
future DRAM devices may require stronger error-mitigation
solutions, further obfuscating pre-correction error rates and
making error characterization studies even more di�cult.

Similarly, other memory technologies (e.g., Flash [7, 8], STT-
MRAM [42, 66, 138], PCM [69, 100, 107, 133], Racetrack [135],
RRAM [132]) su�er from ongoing reliability concerns, and char-
acterizing their error mechanisms requires surmounting any
error-mitigation techniques they use. EIN takes a �rst step to-
wards enabling a holistic understanding of devices whose error
characteristics are not directly visible, and we hope that future
work leverages this opportunity to develop new mechanisms
to tackle the reliability challenges that lie ahead.

3. Background
We provide the necessary background on DRAM operation and
error-correction codes (ECC) for understanding our motivation,
experimentation, and analysis. For further detail, we refer the
reader to prior works on DRAM optimization [11–14, 32, 33, 52,
57, 61–63, 70–74, 108–110, 136] and coding theory [9, 20, 31, 39,
49, 82, 83, 93, 102, 103, 130].

3.1. DRAM Organization
DRAM is organized in a hierarchy of two-dimensional arrays
as shown in Figure 2. Figure 2a illustrates a single DRAM cell
and its associated peripheral circuitry. Each cell encodes one
bit of data using the charge level in its capacitor. A true-cell
encodes data ‘1’ as fully charged (i.e., VDD) and data ‘0’ as fully
discharged (i.e., VSS), whereas an anti-cell uses the opposite
encoding. �e cell is accessed by driving the wordline, which
enables the access transistor and connects the bitline to the cell.
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Figure 2: DRAM organization.

Figure 2b shows how cells are packed in a grid to form a
subarray [62]. A wordline spans a row of DRAM cells, typically
one or more KiB long, and is the minimum granularity of
DRAM array operation. Upon a DRAM access, the row decoder
drives the corresponding wordline, thus activating the row.
�is allows the charge stored in each cell along the activated
row to be sensed by the sense ampli�ers connected to the cells’
respective bitlines. Because cells in a column share a single
bitline, a subarray may have only one row active at a time [62].
Multiple subarrays are aggregated to form a larger array

referred to as a bank, and banks are in turn combined to form
a chip as depicted in Figure 2c. I/O circuitry within each chip
interfaces the individual banks with the external DRAM bus.
A set of DRAM chips that share a common bus is known as
a rank, and one or more ranks may be combined via rank
selection signals to form a single DRAM channel. �e DRAM
bus is connected to amemory controller, which typically resides
within the processor die. Each DRAM access transfers one burst
of data that consists of multiple bus-width beats. For LPDDR4
DRAM, bursts are typically 32B or 64B long, and each beat is
16 bits long [44].

3.2. DRAM Timings and Errors
�e memory controller interfaces with DRAM according to
manufacturer-speci�ed timing parameters,2 which guarantee
correct DRAM behavior by providing enough time in between
DRAM commands for internal DRAM circuitry to stabilize.
Our work primarily deals with with DRAM refresh timings
(Section 3.2.1) and the data-retention errors that result from
violating refresh timing speci�cations (Section 3.2.2).

3.2.1. DRAM Refresh Timing. DRAM cell capacitors inher-
ently lose charge over time [79,80,104], potentially resulting in
data corruption. A cell’s retention time de�nes how long it can
reliably store data and typically varies between cells from mil-
liseconds tomany hours [33,49,51,59,70,76,79,80,98,99,124]. To
prevent data loss, the memory controller regularly refreshes the

2We encourage the interested reader to refer to the JEDEC speci�cation [44]
for an exhaustive list of all available parameters and their usage.
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entire DRAM memory using periodic REF commands, which
are scheduled according to a timing parameter called the re-
fresh window (tREFW ). tREFW de�nes the maximum amount
of time allowed between consecutive refresh operations to a
given DRAM cell. In our work, we experimentally test LPDDR4
DRAM devices (Sections 6, 7, and 8), for which tREFW is 32ms
at typical operating conditions [44].

3.2.2. Violating Recommended Timings. We can in-
duce errors3 in real DRAM devices by deliberately violating
manufacturer-recommended timings. �e resulting error dis-
tributions allow us to: 1) reverse-engineer various proprietary
DRAM microarchitectural characteristics [45, 70, 72] and 2) un-
derstand the behavior of di�erent DRAM error mechanisms
(e.g., charge leakage [30, 79], circuit crosstalk [52, 61, 111]).

By increasing tREFW , we observe data-retention errors in
certain cells with higher charge leakage rates [30,49,59,80,124].
�e quantity and locations of these errors depend on i) the
data pa�ern programmed into cells, ii) the layout of true- and
anti-cells in DRAM [65,79], and iii) environmental factors such
as operating temperature and voltage [15, 30, 51–54, 61, 75, 76,
79,80,98]. Section 4.3 discusses the statistical characteristics of
data-retention errors in greater depth.

3.3. Block Error-Correction Codes
Block coding enables data communication over a noisy channel
by breaking the data stream into datawords of length k, where
each element of the dataword is a symbol representing q bits of
data. During encoding, the ECC encoder maps each dataword
to a single codeword of length n using n – k redundant symbols.
Each symbol is a function (e.g., xor-reduce) of a subset of the
data symbols such that an error will cause one or more of these
functions to evaluate incorrectly. Encoding results in qk valid
codewords out of qn possible n-symbol words. Upon receiving
an n-symbol word that may contain erroneous symbol(s), the
ECC decoder a�empts to determine the originally transmi�ed
dataword using a decoding algorithm.

As a demonstrative example, we consider a common decod-
ing algorithm for binary (i.e., q = 2) block codes known as
maximum-likelihood decoding, which uses Hamming distance
as a metric to �nd the closest valid codeword to a received
word. Using this approach, the error-correction capability, or t,
is de�ned by the minimum Hamming distance, or d, between
any two valid codewords in the space of all valid codewords.
With d = 2, a single-symbol error can always be detected but
not always corrected since there may exist two valid code-
words equidistant from the received word. In general, the
error-correction capability can be computed using the rela-
tionship t = b d–12 c, which shows that a minimum Hamming
distance of at least 3 is necessary for single-symbol correction
and 5 for double-symbol correction.
When faced with more errors than the code can correct,

the decoding result is implementation-de�ned based on the
exact circuitry used to implement the encoding and decoding

3According to the IEEE TCRTS [2], a fault is a defect inherent to a system,
an error is a discrepancy between intended and actual behavior, and a failure
is an observed instance of incorrect behavior. We conform to this terminology
throughout this manuscript.

algorithms. �is is because a code designer has complete free-
dom to choose the precise functions that map data symbols
to each redundant symbol, and the same errors induced in
two di�erent code implementations can result in two di�erent
post-correction words. In each implementation, the decoding
logic may i) manage to correct one or more actual errors, ii)
mistakenly do nothing, or iii) “miscorrect” a symbol that did
not have an error, e�ectively exacerbating the number of errors
in the decoding result.

�roughout this work, we follow a commonly used notation
for ECC block codes, in which a tuple (n, k, d) describes the
length of the codeword (n), the length of the dataword (k),
and the minimum Hamming distance (d), respectively. �is
allows us to concisely express the type and strength of a block
code. However, certain codes are also well-known by name
(e.g., Repetition (REP) [22], Hamming Single-Error Correction
(HSC) [31], Bose-Chaudhuri-Hocquenghem (BCH) [6, 36]), and
we will use these names where appropriate.

4. Statistically Modeling DRAM and ECC
We begin by formalizing the relationship between pre- and
post-correction error distributions and expressing reverse-
engineering as a maximum a posteriori (MAP) estimation
problem. Our approach is grounded on the key idea that
pre-correction errors arise from physical error mechanisms
with known statistical properties, and because di�erent ECC
schemes transform these distributions in di�erent ways, we
can use what we know about both the pre- and post-correction
error distributions to disambiguate di�erent ECC schemes. �is
section provides a step-by-step derivation of EIN, the statistical
inference methodology we propose in this work.

4.1. Statistically Modeling Error Correction Codes
Consider an ECC mechanism implementing an (n, k, d) binary
block code as illustrated in Figure 3. �e ECC encoding al-
gorithm fenc, ECC transforms a dataword w out of the set of
all possible datawords W = Zk

2 into a valid codeword c out
of the set of all possible valid codewords C ⊂ Zn

2 . Likewise,
the decoding algorithm fdec, ECC transforms a codeword c′ (po-
tentially invalid due to errors) out of the set of all possible
codewords C′ = Zn

2 into a corrected dataword w′ out of the set
of all possible corrected datawordsW ′ = Zk

2 .

CPU

dataword[k-1:0]
w ∈ W

ECC Encoder
fenc, (n, k, d) : W → C

DRAM

codeword[n-1:0]
c ∈ C

ECC Decoder
fdec, (n, k, d) : C’ → W’

potentially
erroneous 

codeword[n-1:0]
c’ ∈ C’

corrected
dataword[k-1:0]

w’ ∈ W’

(n, k, d) On-Die ECC Mechanism

Figure 3: Illustration of an on-die ECCmechanism implement-
ing an (n, k, d) binary block code.

fdec, ECC can be thought of as a deterministic mapping4 from
the �nite set of inputs C′ to a �nite set of outputsW ′:

fdec, ECC : C′ 7→ W ′ (1)
4While non-deterministic encoding/decoding algorithms exist, they are

typically not usedwith the simple ECCs found in DRAM. If more complex ECCs
must be considered (e.g., LDPC [7, 20]), our models can be extended to treat
the encoding/decoding functions as probabilistic transformations themselves.
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�is means that for a particular ECC scheme fi , the probability
of observing output w′ is determined by the probabilities that
its corresponding inputs {c′j ∈ C′, ∀j : fdec, i(c′j ) = w′} occur:

Pfi [w
′] =

∑
∀j : fdec, i(c′j )=w′

P[c′j ] (2)

From this perspective, if we know both 1) the ECC scheme fi
and 2) the frequency distribution of all possible input values ck ,
we can calculate the corresponding distribution of all possible
output values.5 Inverting this relationship, if we experimentally
measure the frequency distribution of output values from a real
device, we can determine the probability of having made such
observations given 1) a suspected ECC scheme and 2) an ex-
pected frequency distribution of all possible inputs. Section 4.3
describes what we know about pre-correction error distribu-
tions and how we leverage this knowledge to disambiguate
di�erent suspected ECC schemes.

4.2. Experimental Observables

Solving Equation 2 requires measuring the relative frequency
distribution of post-correction datawords (i.e., w′i ). For exam-
ple, if we use 64-bit datawords, we have 264 unique datawords.
Unfortunately, a single DRAM device has on the order of mil-
lions of datawords, which is nowhere near enough to obtain a
representative sample of the full distribution.
Instead, we divideW ′ into N + 1 subsets,W ′n, which each

comprise all possible datawords with n ∈ [0,N ] errors. Using
this approach, a relative frequency distribution of theW ′n con-
tains only N + 1 categories, and even a single DRAM device
contains more than enough samples to obtain a representative
distribution. Experimentally, measuring the number of errors
in each dataword simply requires counting errors.6 We can
then rewrite Equation 2 in terms of the subsetsW ′n:

Pfi [w
′ ∈ W ′n] =

∑
∀j : fdec, i(c′j )∈W ′n

Pfi [c
′
j ] (3)

Unfortunately, this approach requires knowing the exact
layout of ECC words in memory. �is may be di�cult since
multiple bits are read/wri�en together at the granularity of a
burst (Section 3.1), and each burst may contain one or more
ECC words with an arbitrary bit-to-ECC-word mapping.
To circumvent this problem, we instead consider the prob-

ability of observing n errors per burst, where each burst com-
prises dataword(s) from one or more ECC schemes. Mathemat-
ically, the total number of errors in a burst is the sum of the
individual per-dataword error counts and is computed by con-
volving the per-dataword error-count distributions. Counting
errors at burst-granularity is independent of the layout of ECC
words within a burst assuming that ECC words are contained
within burst boundaries so that bursts can be read/wri�en in-
dependently. However, if a di�erent design is suspected, even
longer words (e.g., multiple bursts) may be used as necessary.

5Note that since ECC decoding is generally not injective (i.e., multiple
codewords may map to a single decoded dataword), we cannot determine
exactly which input produced an observed output.

6�ere is no fundamental reason for this choice beyond experimental con-
venience; if another choice is made, our analysis still holds but will need to be
modi�ed to accommodate the new choice ofW ′n.

4.3. Statistically Modeling DRAM Errors
To estimate the relative frequencies of the pre-correction code-
words c′j ∈ C′, we exploit the fact that errors arise from physical
phenomena that follow well-behaved statistical distributions.
�roughout this work, we focus on data-retention error distri-
butions since they are well-studied and are easily reproduced in
experiment. However, EIN is applicable to any experimentally-
reproducible error distribution whose statistical properties are
well-understood (e.g., reduced activation-latency [12, 56–58,
70, 72], reduced precharge-latency [12, 117, 118], reduced volt-
age [15], RowHammer [61, 89, 90]).
As described in Section 3.2.2, data-retention errors occur

when a charged cell capacitor leaks enough charge to lose its
stored value. �is represents a “1” to “0” error for a charged
true-cell (i.e., programmed with data “1”), and vice-versa for
an anti-cell [19, 61, 79]. Due to random manufacturing-time
variations [23,59,61,70,71,76,137], certain cells are more prone
to data-retention errors than others [30, 49, 59, 79, 80, 124]. Fur-
thermore, absolute data-retention error rates depend on operat-
ing conditions such as refresh timings, data pa�erns, ambient
temperature, and supply voltage. �rough extensive error char-
acterization studies, prior works �nd that, for a �xed set of
testing conditions (e.g., tREFW , temperature), data-retention
errors show no discernible spatial pa�erns [5, 30, 80, 112, 124]
and can be realistically modeled as uniform-randomly dis-
tributed [5, 57, 112] independent events [112].
To model an arbitrary pre-correction error distribution in

our analysis, we introduce an abstract model parameter θ that
encapsulates all state necessary to describe the distribution. In
general, θ is a set of two key types of parameters: i) experimen-
tal testing parameters (e.g., data pa�ern, timing parameters,
temperature) and ii) device microarchitectural characteristics
(e.g., spatial layout of true- and anti-cells). We incorporate θ
into our analysis as a dependency to the terms in Equation 3:

Pfi ,θ[w
′ ∈ W ′n] =

∑
∀j : fdec, i(c′j )∈W ′n

Pfi ,θ[c
′
j ] (4)

Ideally, all of the parameters that comprise θ are known at test-
ing time. Unfortunately, experiments are o�en imperfect, and
internal device characteristics are di�cult to obtain without
proprietary knowledge or laborious reverse-engineering. If
such parameters are unknown, we can infer them alongside
the unknown ECC scheme.7
In this work, we model data-retention errors as uniform-

random, independent events among cells programmed to the
“charged” state with a �xed probability determined by testing
conditions. θ then encapsulates i) the single-bit error proba-
bility, called the raw bit error rate (RBER), ii) the programmed
data pa�ern, and iii) the spatial layout of true-/anti-cells.

Unfortunately, evaluating Equation 4 analytically is di�cult
even for data-retention errors due to the complexity of the
interactions between the ECC scheme and the parameters en-
compassed by θ. Instead, we numerically estimate the solution
to Equation 4 usingMonte-Carlo simulation as described in Sec-

7While we could lump the unknown ECC scheme into θ as an unknown
microarchitectural characteristic, we keep it logically separate since θ repre-
sents what we already understand about DRAM devices, and the unknown
ECC scheme represents what we do not.

5



tion 5. �is approach allows our analysis to �exibly take into
account arbitrarily complex model parameters (e.g., detailed
microarchitectural characteristics, nontrivial error models).

4.4. Inferring the Model Parameters
We now formulate the reverse-engineering task as a maxi-
mum a posteriori (MAP) estimation problem over a set F of
hand-selected ECC schemes that are either directly mentioned
in context with on-die ECC (HSC(71, 64, 3) [41, 43, 93] and
HSC(136, 128, 3) [17, 48, 67, 68, 86]) or are used as demonstra-
tive examples of applying our methodology to devices with
stronger and/or more complicated codes (e.g., BCH(n, k, d),
HSC(n, k, d), REP(3, 1, 3)). Note that we also take into ac-
count implementation details of each of these schemes (e.g.,
systematic vs. non-systematic encodings) using our simulation
infrastructure as we describe in Section 5.3.

To reverse-engineer the unknown ECC scheme funknown, we
start by expressing it as the most likely ECC scheme out of all
possible schemes fi ∈ F given a set of observations O:

funknown = argmax
fi

(P[fi | O]) (5)

Unfortunately, we cannot directly evaluate Equation 5 since
our observations O are measured from a device with a �xed
ECC scheme. Instead, we use the Bayes theorem to express
Equation 5 in terms of the probability of obtaining measure-
ments O given an arbitrary ECC scheme fi, which we can
calculate using the relationship in Equation 3. �is yields:

funknown = argmax
fi

(
P[O | fi]P[fi]

P[O]

)
= argmax

fi
(P[O | fi]P[fi])

(6)

Note that we ignore the denominator (i.e., the marginal likeli-
hood) in Equation 6 because it is a �xed scale factor indepen-
dent of fi and does not a�ect the maximization result.
We assume a uniformly-distributed prior (i.e., P[fi]) given

that we cannot guarantee anything about the on-die ECC im-
plementation. By restricting our analysis to only the afore-
mentioned ECC schemes, we already exclude any schemes that
we consider to be unrealistic. In principle, we could assign
greater or lower probability mass to schemes that have been
mentioned in prior work or that are exceedingly expensive,
respectively, but we choose not to do so because i) we cannot
guarantee that the devices we test are similar to those men-
tioned in prior work, and ii) we want to demonstrate the power
of our methodology without biasing the results towards any
particular ECC schemes.
�e likelihood function (i.e., P[O | fi]) incorporates the ex-

perimental data we obtain from real devices. As we show in
Section 4.2, our measurements provide us with the probability
of observing an n-bit error in each of j independent DRAM
bursts. De�ning N as a random variable representing the num-
ber of erroneous bits observed in a single burst and assuming
observations are independent events (validated in Section 4.3),
we rewrite the likelihood function as:

P[O | fi] = Pfi ,θ

jmax⋂
j=0

N = nj

 =
jmax∏
j=0

Pfi ,θ[N = nj] (7)

�is is essentially a multinomial probability mass function
(PMF) evaluated atO, where each probability mass is computed
using Equation 4. Unfortunately, as described in Section 4.3, the
model parameter θ encapsulates the pre-correction error rate,
which we do not know and cannot measure post-correction.
�erefore, for each ECC scheme fi , we �rst maximize the like-
lihood distribution over θ:

P[O | fi] = max
θ

jmax∏
j=0

Pfi ,θ[N = nj]

 (8)

Inserting the result of Equation 8 into our original optimiza-
tion objective (Equation 6), we obtain the �nal objective func-
tion to optimize in order to reverse-engineer the ECC scheme
funknown used in our devices:

funknown = argmax
fi

max
θ

jmax∏
j=0

Pfi ,θ[N = nj]

 P[fi]

 (9)

where the inner product term is calculated using Equation 4.
A�er the ECC scheme is reverse-engineered, we can repeat-

edly apply Equation 8 to solve for θ across many di�erent ex-
periments (i.e., observations). Since θ represents all parameters
necessary to describe the pre-correction error distribution (de-
scribed in Section 4.3), this is equivalent to reverse-engineering
the pre-correction error rate. With the ECC scheme known as
fknown, Equation 8 simpli�es to:

θunknown = argmax
θ

jmax∏
j=0

Pfknown,θ[N = nj]

 (10)

With Equations 9 and 10, we can reverse-engineer both i) the
ECC scheme and ii) the pre-correction error rates from ob-
served post-correction errors for any DRAM device whose
error distributions are obscured by ECC. In Section 7.3, we
experimentally demonstrate how to apply Equation 9 to real
devices with on-die ECC.

5. Simulation Methodology
To apply EIN to data from real devices, we develop and publicly
release EINSim [1], a �exible open-source C++-based simulator
that models the life of a dataword through the entire ECC en-
coding/decoding process. EINSim accounts for di�erent ECC
implementations and pre-correction error characteristics to
ensure that EIN is applicable to a wide variety of DRAM de-
vices and standards. �is section describes EINSim’s extensible
design and explains how EINSim can be used to solve the opti-
mization problems formulated in Section 4.

5.1. EINSim High-Level Architecture
Figure 4 shows a high-level diagram of the logical �ow of data
through EINSim’s di�erent components. To model a DRAM
experiment, we simulate many individual burst-length accesses
that each access a di�erent group of cells. Each burst simu-
lates an experimental measurement, yielding a distribution of
measured values across all simulated bursts. We describe the
function of each simulator component.
1 Word generator constructs a bitvector using commonly
tested data pa�erns (e.g., 0xFF, 0xAA, RANDOM) [3, 51, 52, 72,
79, 98, 128], simulating the data wri�en to DRAM.
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Figure 4: High-level block diagram showing the logical �ow of
data through the di�erent components in our simulator.

2 ECC model encompasses an ECC implementation, includ-
ing the encoding/decoding algorithms and implementation de-
tails such as systematic vs. non-systematic encodings. Because
a single word from the word generator may comprise multiple
ECC datawords, EINSim provides a con�gurable mapping for
decomposing the word into ECC datawords.
3 Error injector injects errors into a given codeword ac-
cording to a con�gurable error distribution. We implement
support for data-retention errors as described in Section 4.3.
We provide con�gurable parameters for the spatial distribution
of true-/anti-cells (e.g., alternating per row) and the single-bit
probability of failure (i.e., RBER). Errors are injected uniform-
randomly across each bit that can fail (i.e., each “charged” cell
per the chosen true-/anti-cell layout and data pa�ern) using a
Bernoulli distribution with p equal to the desired RBER nor-
malized by the ratio of all cells that can fail, which ensures that
the simulated error rate meets the target RBER on average.
4 Error checker takes the pre- and post-correction words
as inputs and calculates a user-de�ned measurement (e.g., to-
tal number of bit-�ips). �is corresponds to an experimental
observable as explained in Section 4.2.

5.2. EINSim Validation
We validate EINSim using a combination of manual and
automatic unit tests. For the ECC model, we 1) provide
tests for detecting/correcting the right amount of errors
(exhaustively/sample-based for short/long codes); 2) hand-
verify the inputs/outputs of encoders/decoders where reason-
able; 3) hand-validate the generator/parity-check matrices
and/or code generator polynomials against tables of known
values (e.g., [18]); and 4) validate the minimum distance and
weight distributions of codewords. Due to the simplicity of
how we model the true-/anti-cell layout and data-retention er-
rors, we validate the error-injection correctness by 1) manual
inspection and 2) using summary statistics (e.g., distribution
of errors across many simulated bursts).

5.3. Applying EINSim to Experimental Data
To analyze data taken from a real experiment, we con�gure the
simulation parameters to match the experiment and simulate
enough read accesses (e.g., >105) to allow the distribution
of simulated measurements to numerically estimate the real
experimental measurements. �is approach e�ectively solves
Equation 4 through Monte-Carlo simulation for any model
parameters {fi , θ} that can be simulated using EINSim.

Figure 1 in Section 1 provides several examples of evaluating
Equation 4 across a wide range of model parameters {fi, θ}

using a 256-bit input word programmed with a RANDOM data
pa�ern. �e X-axis shows the pre-correction bit error rate
(BER), i.e., the RBER component of θ, and the Y-axis shows
the observed BER, which is computed by taking an expectation
value over the distribution resulting from solving Equation 4.
Curves represent di�erent ECC schemes fi , and each data point
represents one simulation of 106 words, subdividing each word
into multiple ECC datawords as necessary.

We see that each ECC scheme transforms the pre-correction
error rate di�erently. For example, stronger codes (e.g.,
REP(768, 256, 3), BCH(78, 64, 5)) dramatically decrease the
observed BER, whereas weaker codes (e.g., HSC(265, 256, 3))
have a relatively small e�ect. Interestingly, we see that many
of the codes actually exacerbate the error rate at high enough
pre-correction error rates because, on average, the decoder
mistakenly “corrects” bits without errors more o�en than not.
�ese examples demonstrate that di�erent ECC schemes have
di�erent e�ects on the pre-correction error distribution, and
Equation 9 exploits these di�erences to disambiguate schemes.

5.4. Inferring the Model Parameters
To infer themodel parameters f and θ, which represent the ECC
scheme and pre-correction error distribution characteristics,
respectively, we need to perform the optimization given by
Equation 9. We do this using a grid search across f and θ,
simulating 104 uniformly-spaced error rates for each of several
di�erent ECC schemes, data pa�erns and true-/anti-cell layouts.
While a denser grid may improve precision, this con�guration
su�ciently di�erentiates the models we analyze (Section 7.3).
�e solutions to Equation 9 are the inferred ECC scheme

and pre-correction error distribution characteristics that best
explain the experimental observations. From there, we can use
Equation 10 evaluated with the known ECC scheme in order to
determine θ for any additional experiments that we run (e.g.,
di�erent error rates).

5.5. Inference Accuracy
MAP estimation rigorously selects between known models and
inherently can neither con�rm nor deny whether the MAP esti-
mate is the “real” answer. We identify this as a limitation of EIN
in Section 5.8. However, in the event that a device uses a scheme
that is not considered in the MAP estimation, it would be ev-
ident when testing across di�erent experimental conditions
and error rates since it is unlikely that any of the chosen ECC
schemes would be the single maximum-a-posteriori scheme
(i.e., best explaining the observed data) across all experiments.

We can also use con�dence intervals to gauge the error in
each MAP estimate. �is requires repeating the MAP estima-
tion over N bootstrap samples [25] taken from the observed
dataO. �e min/max or 5th/95th percentiles are typically taken
to be the con�dence bounds.

5.6. Applying EIN to Other Systems
EIN can be extended to any ECC-protected communication
channel provided that we can induce uncorrectable errors
whose pre-correction spatial distribution follows some known
property (e.g., uniform-randomness). Examples include, but
are not limited to, DRAM rank-level (i.e., DRAM-controller-
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level) ECC and other memory technologies (e.g., SRAM, Flash,
Phase-Change Memory).

5.7. Applying EIN to Data from Prior Studies
EIN is applicable to data presented in a prior study if the study
supplies enough information to solve Equation 10. �is re-
quires that the study provides both: 1) the pre-correction error
characteristics, either directly as statistical distributions or im-
plicitly through the experimental methodology (e.g., device
model number, tested data pa�erns) and 2) the distribution
of errors amongst post-correction words as discussed in Sec-
tion 4.2. If these are known, EIN can infer both the ECC scheme
and the pre-correction error rates from the given data.

5.8. Limitations of EIN
EIN has three main limitations. However, in practice, these
limitations do not hurt its usability since both DRAM and ECC
design are mature and well-studied topics. We discuss each
limitation individually:
1) Cannot guarantee success or failure. As described in Sec-

tion 5.5, MAP estimation cannot guarantee whether the
correct solution has (not) been found. However, Section 5.5
describes how testing across di�erent operating conditions
and using con�dence intervals helps mitigate this limitation.

2) Requires knowledge and control of errors. Using EIN requires
i) knowing statistical properties of the spatial distribution
of pre-correction errors, and ii) the ability to induce uncor-
rectable errors. Fortunately, EIN can use any one of themany
well-studied, easily-manipulated error mechanisms that
are fundamental to DRAM technology (e.g., data retention,
RowHammer, reduced-latency access; see Section 4.3). Such
mechanisms are unlikely to change dramatically for future
devices (e.g., retention errors are modeled similarly across
decades of DRAM technologies [16, 29, 30, 35, 64, 77, 87, 127]),
which means that EIN will likely continue to be applicable.

3) Cannot identify bit-exact error locations. While EIN infers
pre-correction error rates, it cannot determine the bit-exact
locations of pre-correction errors. Unfortunately, since multi-
ple erroneous codewords may map to each visible dataword,
we are not aware of a way to infer error locations without
insight into the exact ECC implementation (e.g., algorithms,
redundant data). However, inferring error rates is su�cient
to study aggregate distributions, and we leave error localiza-
tion to future work.

6. Experimental Setup
We experimentally characterize 232 LPDDR4 [44] DRAM de-
vices with on-die ECC from a single major DRAM manufac-
turer that we cannot disclose for con�dentiality reasons. For
comparison purposes, we test 82 LPDDR4 DRAM devices of
the previous technology generation without on-die ECC from
across three major DRAM manufacturers. Given that DRAM
manufacturers provide neither: i) non-ECC counterparts of de-
vices with on-die ECC nor ii) a mechanism by which to disable
on-die ECC, the older-generation devices provide our closest
point of comparison.
We perform all testing using a home-grown infrastructure

that provides precise control over DRAM timing parameters,

bus commands, and bus addresses. Our infrastructure provides
reliable ambient temperature control between 40◦C - 55◦Cwith
a tolerance of of ±1◦C. To improve local temperature stabil-
ity for each DRAM device throughout testing, a local heating
source maintains DRAM at 15◦C above the ambient temper-
ature at all times, providing an e�ective DRAM temperature
testing range of 55◦C - 70◦C.

7. Experimentally Inferring On-Die ECC
and Pre-Correction Error Rates Using EIN

In this section, we apply EIN to infer the i) on-die ECC scheme
and ii) pre-correction error rates of real devices with on-die
ECC. Before doing so, we validate our uniform-random statis-
tical model for pre-correction errors and determine the layout
of true-/anti-cells to accurately model the pre-correction error
distribution of the devices that we test.

7.1. Validating Uniform-Random Retention Errors
Our model for data-retention errors (Section 4.3) treats errors
as independent, uniform-randomly distributed events based on
observations made in several prior works [5,30,57,80,112,124].
For such errors, the total number of errors X in each �xed-
length n-bit region of DRAM follows a binomial distribution [5,
98, 124] parameterized by the RBER R:

P[X = x | R] =
(
n
x

)
Rx (1 – R)n–x (11)

Before demonstrating the use of EIN, we �rst validate that
the independent, uniform-random data-retention error model
holds for the devices that we test by comparing experimentally-
measured error distributions to the expected distributions. Fig-
ure 5 shows both the expected and experimental probabilities
of observing an X -bit error in a single 256-bit word throughout
DRAM at �xed operating conditions of tREFW = 20s and 60◦C
for a single representative DRAM device without on-die ECC.
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Figure 5: Expected and experimental probabilities of observ-
ing an X-bit error in a 256-bit word for a representative DRAM
device without on-die ECC at tREFW = 20s and 60◦C.

�e experimental data is well predicted by the binomial
distribution and diverges only at extreme error counts that have
few experimental samples. �is validates modeling retention
errors using a uniform-random distribution for the devices
without on-die ECC. We repeat this experiment across all of
our devices without on-die ECC for various word sizes, refresh
windows, and temperatures, and we �nd that the uniform-
random model holds across all experiments.

7.2. Determining the True-/Anti-Cell Layout
We reverse-engineer the true-/anti-cell layout in the devices
with on-die ECC to ensure that we can accurately model the
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pre-correction error distribution in simulation (as described
in Section 5.1, we only inject errors in cells programmed to
the “charged” state). We do this by studying the locations of
data-retention errors a�er disabling refresh for a long time
(e.g., >30 minutes), which causes most cells to leak to their
discharged state.8 Figure 6 illustrates the resulting pa�ern,
showing how individual rows comprise entirely true- or anti-
cells, and contiguous groups of either 824 or 400 rows alternate
throughout a bank. In simulation, we model each DRAM burst
to be entirely composed of either true- or anti-cells with a 50%
probability. �is accurately models sampling an arbitrary burst
from the entire memory address space.

True-Cells
Anti-Cells...

2048 Rows
824 Rows

400 Rows
824 Rows8192 Rows

Figure 6: A DRAM bank comprises groups of 824 or 400 rows
with alternating true- and anti-cells per group.

Despite the observed true-/anti-cell pa�ern, we �nd that a
small amount of uniquely randomly-distributed rows in each
bank do not follow the pa�ern shown in Figure 6. Instead,
these rows alternate true- and anti-cells every byte and are
o�en found in clusters of two or more. A histogram of the
number of such rows, called outlier rows, per bank across
all 232 devices with on-die ECC is shown in Figure 7 along-
side a best-�t negative-binomial distribution curve. Both the
shape of the frequency distribution and the observed clustering
are consistent with post-manufacturing repair row remapping
techniques [38]. Since these rows have a di�erent true- and
anti-cell composition, they add unwanted noise to our reverse-
engineering analysis. While we could account for them in our
simulations, we simply skip testing these rows in our experi-
mental analysis to avoid unnecessary complexity.
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Figure 7: Histogram of the number of rows with outlier
true-/anti-cell layouts per bank across all banks of all DRAM
devices with on-die ECC (NB: negative-binomial).

7.3. Applying EIN to DRAM with On-Die ECC
We demonstrate applying EIN to the DRAM devices with on-
die ECC using the experimental con�guration shown in Ta-
ble 1. �e error distribution resulting from a single experiment
provides the PMF given by Equation 3, which forms the obser-
vations O in the overall optimization problem (Equation 9).

8A small number of cells do not follow the overall pa�ern due to either i)
extraordinarily long retention times or ii) ECC correction.

Model Parameter Experiment Simulation
Word Size 256-bits

True-/Anti-Cell Layout 50%/50% at word-granularity
Data Pa�ern RANDOM RANDOM and 0xFF
Outlier Rows Skipped Ignored
Temperature 70◦C Encompassed in the RBER

tREFW 5 minutes Encompassed in the RBER

Table 1: Experimental and simulation setup for reverse-
engineering the ECC scheme used in the tested devices.

Using a representative device, we perform a single exper-
iment at the conditions shown in Table 1, measuring a post-
correction BER of 0.041578. �en, con�guring EINSim with
the parameters listed under “Simulation” in Table 1, we eval-
uate the full optimization problem of Equation 9 using the
grid-search approach described in Section 5.4.
Figure 8 presents the negative log-likelihoods (Equation 8)

of the eight highest-likelihood ECC schemes for each of the
0xFF and RANDOM data pa�erns. Models are sorted in order of
increasing likelihood (i.e., decreasing negative log-likelihood)
from le� to right for each data pa�ern. Bars show black con�-
dence intervals spanning the min/max values when bootstrap-
ping the observed data 105 times (described in Section 5.5).
�e con�dence intervals are tight enough to appear as a single
line atop each bar. Note that the 0xFF models have low likeli-
hoods (i.e., higher bars), which agrees with the fact that our
experimental data is obtained using a RANDOM data pa�ern.
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Figure 8: Likelihoods of eight di�erent ECC schemes across
two di�erent data patterns, where each likelihood is individu-
ally maximized over the model parameter θ.

�e smallest (i.e., rightmost) bar represents the most likely
model, which provides the �nal reverse-engineered model pa-
rameters, including the ECC scheme and the pre-correction
error rate. For greater insight into the results, Table 2 describes
the �ve highest-likelihood models in detail.

–Log-Likelihood fi θ
Value Bootstrap (Min, Max) ECC Code RBER Data Pattern
2.12e-5 (2.09e-5, 2.15e-5) (136, 128, 3) 0.038326 RANDOM
3.21e-5 (3.18e-5, 3.24e-5) (144, 128, 5) 0.039113 RANDOM
3.26e-5 (3.22e-5, 3.29e-5) (274, 256, 5) 0.039995 RANDOM
5.38e-5 (5.32e-5, 5.43e-5) (265, 256, 3) 0.039956 RANDOM
8.74e-5 (8.69e-5, 8.79e-5) (71, 64, 3) 0.038472 RANDOM

Table 2: Details of the �ve highest-likelihood models (shown
in Figure 8) and their raw likelihood values.

�e data indicates that a Hamming single-error correction
code with (n = 136, k = 128, d = 3) is the most likely ECC
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scheme out of all models considered. �is result is consistent
with several industrial prior works [17, 67, 68, 86].9 Compared
to most of the other codes we consider, (136, 128, 3) code
has a relatively low error-correction capability (i.e., 1 bit per
136 codeword bits), which is reasonable for a �rst-generation
on-die ECC mechanism and requires a relatively simple, low-
overhead circuit implementation.
�e MAP estimate of θ provides the most likely pre-

correction error rate (i.e., RBER) and data pa�ern to explain
the observed data. Note that on-die ECC actually increases
the error rate at these testing conditions, likely due to a high
incidence of miscorrections as described in Section 5.3. EIN
correctly infers that our experiment uses the RANDOM data
pa�ern, which is indicated by the relatively low likelihoods of
the models that assume a 0xFF data pa�ern.
Figure 9 shows the full PMF of Equation 4 for all sixteen

models considered in Figure 8. �e maximum-a-posteriori
model (dashed) and the experimental data (solid) are shown
alongside all other models (do�ed). When shown graphically, it
is clear that EIN e�ectively performs a rigorous best-�t analysis
over several models to the experimental observations.
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Figure 9: Full PMF for each model considered in Figure 8.

We repeat this analysis across di�erent devices, tempera-
tures, refresh windows, and data pa�erns and consistently �nd
the (136, 128, 3) ECC code to be the maximum-a-posteriori
model. �us, we conclude that the (136, 128, 3) ECC code is
the ECC scheme used in the tested devices.

We draw three key conclusions from this application of EIN.
First, EIN infers the on-die ECC scheme with no visibility into
the encoded data or error-detection/-correction information,
without disabling the ECC mechanism, and without tampering
with the hardware in any way.
Second, EIN can simultaneously infer several components of
θ that might not be known. While we demonstrate a simple
inference over only two data pa�erns in addition to the pre-
correction error rate, we could also infer other characteristics
(e.g., true-/anti-cell composition, refresh window, temperature).
In general, θ is extensible to any model parameter that can be
implemented in simulation (i.e., in EINSim).
�ird, Figure 9 shows that the maximum-a-posteriori model is
a good �t for the empirical data, which supports our assump-
tion that data-retention errors can be modeled as uniformly-
random events (Section 4.3) even for devices with on-die ECC.

9We obtained this result without informing the prior distribution about the
existence of prior works. If instead we had done so as mentioned in Section 4.4,
(136, 128, 3) [17, 67, 68, 86] and (71, 64, 3) [41, 43] ECC code would have been
more overwhelmingly likely.

8. Data-Retention Error Characterization
of DRAM Devices with On-Die ECC

Having reverse-engineered the on-die ECC scheme, we char-
acterize data-retention error rates with respect to both tREFW
and temperature to demonstrate how EIN enables studying pre-
correction errors in practice. To our knowledge, this is the �rst
work to provide a system-level error characterization study of
DRAM devices with on-die ECC in open literature in an e�ort
to understand the pre-correction error characteristics.

8.1. Data-RetentionErrorRate vs. RefreshWindow
Figure 10 shows the measured data-retention error rates for
DRAM devices with and without on-die ECC using di�erent
tREFW values at a �xed temperature of 50◦C using a 0xFF data
pa�ern. Each of the �ve distributions shows the minimum and
maximum error rates observed for di�erent groups of devices
organized by manufacturer. We also show the pre-correction
error rates inferred using EIN.
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Figure 10: Comparison of data-retention error rates measured
using devices with and without on-die ECC, including the in-
ferred pre-correction error rates for devices with on-die ECC.

�e data shows that the observed error rates for devices
with on-die ECC lie far below those of devices without on-
die ECC. �is is consistent with observations from prior
works [67,68,86], which �nd that on-die ECC is a strong enough
error-mitigation mechanism to allow for refresh rate reduction.
Unfortunately, the observed error rates do not provide insight
into how the core DRAM technology has changed because it is
unclear how much of the error margin improvement is simply
a result of ECC.

EIN solves this problem. By inferring the pre-correction
error rates, we observe considerable error margin for even the
pre-correction error rates, implying that on-die ECC may be un-
necessary at these testing conditions. �is may seem surprising
at �rst sight, since error rates are believed to be increasing with
technology generation [49, 85, 86, 93]. However, on-die ECC’s
goal is to combat single-cell errors at worst-case operating spec-
i�cations [86] (i.e., 85◦C, tREFW = 32ms [44], worst-case usage
characteristics). Unfortunately, our testing infrastructure cur-
rently cannot achieve such conditions, and even if it could, the
pathological access- and data-pa�erns depend on the propri-
etary internal circuit design known only to the manufacturer.
�erefore, our observations do not contradict expectations, and
we conclude that for devices with on-die ECC: i) on-die ECC
e�ectively reduces the observed error rate and ii) both pre- and
post-correction error rates are considerably lower than those
of devices without on-die ECC at our testing conditions.
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�is example demonstrates EIN’s strengths: EIN separates
the e�ects of a device’s particular ECCmechanism from the raw
error rates of the DRAM technology and enables a meaningful
comparison of error characteristics between devices with (or
without) di�erent ECC schemes. EIN enables this analysis for
any error mechanism that EIN is applicable to (Section 5.6).

8.2. Data-Retention Error Rate vs. Temperature
Data-retention error rates are well-known to follow an expo-
nential relationship with respect to temperature [4, 30, 79], and
prior works [55, 64, 79] exploit this relationship to extrapolate
error rates beyond experimentally feasible testing conditions.
We show that on-die ECC distorts this exponential relationship
such that observed error rates cannot be reliably extrapolated,
and EIN recovers the underlying exponential relationship.

Figure 11 shows the exponential relationship for a single rep-
resentative device with on-die ECC at a �xed refresh window
of 10s on a semilog scale. Measurements (orange,×) are taken
between the temperature limits of our infrastructure (55◦C -
70◦C, illustrated with a grey background), and the inferred
pre-correction error rates (blue, +) and the hypothetical error
rates if the on-die ECC scheme were a stronger double-error
correction (144, 128, 5) code (green, ∗) are shown. We show
exponential �ts to data within the measurable region for all
three curves. Outside of the measurable region (i.e.,<55◦C and
>70◦C), we use EINSim to extrapolate the two post-correction
curves beyond the measurable region (dashed) based on the
exponential �t for the pre-correction curve.
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Figure 11: Data-retention error rates of a single representative
device with tREFW = 10s across di�erent temperatures, show-
ing error rates: i) measured (post-correction), ii) inferred (pre-
correction), and iii) hypothetical post-correction assuming a
(144, 128, 5) ECC scheme.

While all three curves appear to �t an exponential curve
within the measurable temperature range, this is a misleading
artifact of sampling only a small fraction of the overall error dis-
tribution. Across the full range, only the pre-correction curve
follows the exponential relationship: both post-correction
curves diverge from the exponential �t on both sides of themea-
surable region and follow an ECC-speci�c shape. �is means
that post-correction error rates cannot be directly ��ed to
an exponential curve, and extrapolating along the known ex-
ponential relationship of the data-retention error mechanism
requires knowing the pre-correction error rates.
�is example demonstrates how EIN recovers the statisti-

cal characteristics of the pre-correction error rates that on-die
ECC obfuscates. In general, EIN enables this for any error
mechanism that EIN is applicable to (discussed in Section 4.3),

allowing future works to make use of well-studied error char-
acteristics for devices with ECC.

9. Related Work
To our knowledge, no other work provides and experimentally
demonstrates a methodology to infer i) the ECC scheme and
ii) pre-correction error characteristics of a DRAM device with
on-die ECC, without access to the device’s implementation
details. We brie�y survey and di�erentiate our work from
related works that are categorized based on their goals.
Reverse-Engineering ECC. Prior works provide techniques
for reverse-engineering ECC schemes in NAND �ash mem-
ories [122, 123, 131] and rank-level ECC DRAMs [19]. How-
ever, none of these works provide a methodology by which to
reverse-engineer an ECC scheme without visibility into the ECC
mechanism. �ese works rely on observing the encoded data
through a side-channel (e.g., cold-boot a�acks [19], directly
probing the underlying memory [19, 122, 123, 131]), or know-
ing when an ECC correction occurs (e.g., timing a�acks [19],
custom drivers [19]).
In contrast, on-die ECC provides no such visibility into the

error correction mechanism, and our analysis relies purely on
measuring the statistical properties of post-correction errors.
On-Die ECC. Prior works examine on-die ECC as an ex-
ploitable mechanism for additional system bene�ts, including
refresh rate reduction [67], standby power reduction [68], and
reliability improvement [93]. Our work is the �rst to propose
a general methodology for inferring the on-die ECC scheme
and pre-correction error rates.
DRAM Error Characterization. Prior works [5, 10–12, 15,
33, 34, 45–47, 50–53, 56, 57, 57, 58, 60, 61, 70–72, 78–81, 85, 92, 95,
98, 106, 115–118, 121, 124–126, 128, 129, 134] study both data-
retention and reduced-latency errors in DDR3 and LPDDR4
DRAM devices. To our knowledge, our work is the �rst to
characterize commodity DRAM devices with on-die ECC.

10. Conclusion
We develop EIN, the �rst statistical inference methodology
capable of determining the ECC scheme and pre-correction
error rates of a DRAM device with on-die ECC. We provide
EINSim [1], a �exible open-source simulator that can apply
EIN across di�erent DRAM devices and error models. We eval-
uate EIN with the �rst experimental study of 232 (82) LPDDR4
DRAM devices with (without) on-die ECC. Using EIN, we: i)
�nd that the ECC scheme employed in the devices we test is a
single-error correction Hamming code with (n = 136, k = 128,
d = 3), ii) infer pre-correction error rates from post-correction
errors, and iii) recover well-known pre-correction error distri-
butions that on-die ECC obfuscates. With this, we demonstrate
that EIN enables DRAM error characterization studies for de-
vices with on-die ECC. We believe and hope that future work
will use EIN to develop new understanding and mechanisms
to tackle the DRAM scaling challenges that lie ahead.
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