
WARM: Improving NAND Flash Memory Lifetime
with Write-hotness Aware Retention Management

Yixin Luo Yu Cai Saugata Ghose
yixinluo@cs.cmu.edu yucaicai@gmail.com ghose@cmu.edu

Jongmoo Choi† Onur Mutlu
choijm@dankook.ac.kr onur@cmu.edu

Carnegie Mellon University †Dankook University

Abstract—Increased NAND flash memory density has come
at the cost of lifetime reductions. Flash lifetime can be extended
by relaxing internal data retention time, the duration for which a
flash cell correctly holds data. Such relaxation cannot be exposed
externally to avoid altering the expected data integrity property
of a flash device. Reliability mechanisms, most prominently
refresh, restore the duration of data integrity, but greatly reduce
the lifetime improvements from retention time relaxation by
performing a large number of write operations. We find that
retention time relaxation can be achieved more efficiently by
exploiting heterogeneity in write-hotness, i.e., the frequency at
which each page is written.

We propose WARM, a write-hotness aware retention man-
agement policy for flash memory, which identifies and physically
groups together write-hot data within the flash device, allowing
the flash controller to selectively perform retention time relax-
ation with little cost. When applied alone, WARM improves
overall flash lifetime by an average of 3.24× over a conventional
management policy without refresh, across a variety of real
I/O workload traces. When WARM is applied together with
an adaptive refresh mechanism, the average lifetime improves
by 12.9×, 1.21× over adaptive refresh alone.

1. Introduction
NAND flash memory has become ubiquitous as a storage

device in a wide variety of computer systems, ranging from
wearable/portable devices to enterprise servers, as it continues
to become cheaper with increasing density. These higher
densities have predominantly been enabled by two driving
factors: (1) aggressive feature size reductions and (2) the use
of multi-level cell (MLC) technology. Unfortunately, both of
these factors come at the significant cost of reduced flash
endurance, measured as the number of program/erase (P/E)
cycles a flash cell can sustain before it wears out. Although
the 5x-nm (i.e., 50- to 59-nm) generation of MLC NAND
flash had an endurance of ∼10k P/E cycles, modern 2x-nm
MLC and TLC NAND flash can endure only ∼3k and ∼1k
P/E cycles, respectively [26, 37].

Prior work has shown a tremendous opportunity for
improving flash endurance by relaxing the internal data
retention time, the length of time that a flash cell can correctly
hold the stored data [4, 9, 10, 31, 35, 42]. If the internal
retention time can be reduced from three years to three days,
flash endurance has the potential to improve by as much as
50× [9,10] because the required duration for stored data to be

readable without an error drops significantly. However, simply
exposing this reduced data retention time to the external
system is undesirable, as it would alter the data integrity
guarantee, or the non-volatility property expected from flash
memory devices. For example, users expect that a flash device
is non-volatile and can retain data for long-term (e.g., one
or more years) after the data is written. To ensure that the
data integrity guarantee is not impacted by internal retention
time relaxation, prior work provides mechanisms that actively
maintain long-term data integrity.

One approach to guaranteeing this long-term data integrity
is the use of periodic data refresh, which continually refreshes
the contents of flash cells with relaxed retention times to
ensure their data is not lost [9, 10, 30, 31, 34, 35, 39, 42]. A
refresh operation consists of reading, correcting, and rewriting
the stored data at an update frequency that is at least as
fast as the current internal retention time. Unfortunately,
refresh operations generate additional program and erase
(P/E) operations, which can slow down host requests and
consume additional energy. Perhaps more importantly, the
P/E operations eat away at the extra endurance that an
ideal, refresh-free retention time relaxation mechanism would
provide, and thus accelerate flash wear-out [9,10]. The loss in
lifetime improvement due to these additional P/E operations
for refresh can be significant — prior work [9,10] shows that
refresh operations consume over 80% of the potential lifetime
improvement of an ideal retention time relaxation mechanism.

One reason this overhead is so high is that state-of-the-
art refresh mechanisms cannot selectively avoid refreshes
to pages that have already been overwritten recently. As it
turns out, this affects some pages much more than others —
most workloads exhibit a highly-skewed distribution of their
write operations across their pages. As we observe, the vast
majority of writes for these workloads are to a small subset of
pages that exhibit high temporal write locality (typically less
than 1% of all pages of the workload), while the remaining
pages are seldom updated. We call the former, frequently-
written, subset of pages write-hot pages. Since these write-hot
pages are frequently overwritten (at a faster rate than even
relaxed retention times), refresh operations to these pages
become redundant and unnecessary, as the time between
writes is short enough to avoid any data loss. In essence,
the frequent write requests naturally refresh the data of such
pages.

978-1-4673-7619-8/15/$31.00 c© 2015 IEEE

A simple approach to eliminating much of the high
refresh overhead would be to eliminate all of these redundant
refresh operations. Unfortunately, this is difficult to do in
conventionally-managed flash memories, as these write-hot
pages are randomly dispersed across the flash device, resulting
in heterogeneous blocks that contain a mix of write-hot and
write-cold pages. There are two difficulties arising from this.
First, it is very expensive to track write-hotness at a page
granularity (for example, a 256GB SSD with an 8KB page
size contains over 33 million pages). Second, page-level
distinctions in write-hotness cannot be exploited by modern
refresh mechanisms, which conventionally operate at a much
coarser, i.e., block-level, granularity.1 Instead, such block-
level refresh operations must often assume the worst-case
behavior of any page across the entire block (i.e., a refresh to a
block cannot be eliminated unless all pages within the block
have been overwritten recently), which greatly restricts the
benefits of taking advantage of naturally refreshed pages. Our
goal in this work is to overcome these difficulties and enable
a tractable method of exploiting the write-hotness behavior of
pages, in order to reduce the P/E cycle overhead of retention
management algorithms, thereby enabling improvements in
flash memory lifetime.

Using our key insight that the write-hotness of a page has
an impact on flash endurance, we propose a write-hotness
aware retention management policy (WARM) for NAND
flash memory. WARM is based on two key ideas. First, it
separates write-hot data from write-cold data at runtime into
two physically-distinct subsets of blocks. This eliminates the
heterogeneity in write-hotness across pages within a block
that causes modern refresh mechanisms to be conservative, as
explained above. Second, it applies separate lifetime manage-
ment policies to both of these subsets of blocks with distinct
levels of write-hotness. By actively partitioning the data,
WARM allocates a small adaptively-sized pool of flash blocks
to the write-hot data. For these blocks, since every page has a
higher write frequency than the refresh rate, WARM applies
retention time relaxation without employing costly refresh
operations, leading to improved endurance. For the remaining,
write-cold, blocks, WARM does not relax the retention time,
but since these blocks do not contain any write-hot pages, the
frequency at which they are erased and overwritten is greatly
reduced, increasing the time until they are worn out. Thus,
employing WARM can increase the endurance of both write-
hot and write-cold blocks by physically separating them and
applying different management policies for them.

The following are the major contributions of this paper:

• We propose WARM, a heterogeneous retention manage-
ment policy for NAND flash memory that physically
partitions write-hot data and write-cold data into two
separate groups of flash blocks, so that we can relax
the retention time for only the write-hot data without
the need for refreshing such data. We show that doing
so improves flash lifetime by 3.24× on average across
a variety of server and system workloads, over a write-
hotness-oblivious flash memory that does not perform
any refresh.

1Note that a block is a set of interconnected flash pages. In a con-
temporary flash memory device, each block typically consists of 128–256
pages [1].

• We propose a mechanism that combines write-hotness-
aware retention management with an adaptive refresh
mechanism [9, 10]. By using WARM and applying re-
fresh to write-cold data, we can further improve flash
lifetime due to the benefits of both techniques. We show
that the combined approach improves flash lifetime by
1.21× over using adaptive refresh alone homogeneously
across the entire flash memory.

• We propose a simple, yet effective, window-based on-
line algorithm to identify frequently-written pages. This
mechanism can dynamically adapt to workload behavior
and correctly size the identified subset of write-hot
pages. We believe this mechanism can also be used for
purposes other than lifetime management, such as cache
performance and energy management.

2. NAND Flash Memory Overview
NAND flash memory can be read or written at the gran-

ularity of a flash page, which is typically 8–16KB in today’s
flash devices [1]. Before a flash page can be overwritten
with new data, the old data contained in that page has to be
erased. Due to limitations in its circuit design, NAND flash
memory performs erase operations at the granularity of a flash
block, which typically consists of 128–256 pages [1]. This
granularity mismatch needs to be handled properly by the
various management algorithms, otherwise the performance
and reliability of the device can be significantly reduced.

Flash devices contain a flash translation layer (FTL),
whose primary job is to map host data to flash pages such
that the host can remain unaware of the granularity mismatch
and management operations performed within the device. The
FTL also holds metadata on the pages and blocks stored
within the device, and executes management algorithms such
as garbage collection and wear-leveling.

Once data is written to a flash device, there is a data in-
tegrity guarantee. This guarantee provides an amount of time
for which the data is guaranteed to be read correctly after it is
written into the device (e.g., one year in 2x-nm NAND flash
devices [15]). As discussed earlier, a flash cell can tolerate
only a limited number of writes, known as its endurance,
before it can no longer fulfill expected data integrity. As more
writes take place to the flash device (involving program and
erase, or P/E, operations), the probability of errors grows,
which is known as wear-out. The predominant source of these
wear-out-induced errors are retention errors, which appear
as the data ages (i.e., the time since the most recent write
to the cell increases). Prior work has shown that a flash
cell with greater wear-out exhibits a higher rate of retention
errors [4, 9, 10].

Flash devices contain error correcting codes (ECC) to
counteract the effects of this wear-out, allowing read requests
to deliver correct data. However, ECC can only correct a
limited number of errors in each page. Once the number of
errors within a page exceeds this fixed error correction limit,
the read operation can no longer return valid data, at which
point data loss occurs. The expected lifetime of a flash device
is defined as the amount of time it takes for an application
to reach this point of data loss. In order to provide better
reliability, and to allow management operations to take place

2

in the background, flash devices are over-provisioned, i.e. they
contain more blocks than their user-visible capacity.

2.1. Garbage Collection
Since erase operations are performed at a block granular-

ity, when a single page is “overwritten,” the old data is simply
marked as invalid within that block’s metadata, and the new
data is written to a new flash block. Over time, such updates
cause fragmentation within a block, where the majority of
pages are invalid. The main goal of garbage collection is to
identify one of the fragmented flash blocks, where most of its
pages are invalid, and to erase the entire block (after migrating
any remaining valid pages to a new block). Garbage collection
often looks to identify and compact the blocks with the least
amount of utilization (i.e., the fewest valid pages) first. When
garbage collection is complete, and a page has been erased,
it is added to a free list in the FTL.

2.2. Wear-Leveling
Flash devices provide remapping functionality within the

FTL to associate a logical block address with a physical
location inside the device. Since a page can therefore phys-
ically reside anywhere in flash, modern devices exploit this
remapping capability to evenly wear out the blocks, which is
known as wear-leveling. By evenly distributing the number
of P/E cycles that take place across different blocks, flash
devices can reduce the heterogeneity of aging across these
blocks, extending the lifetime of the device. Wear-leveling
algorithms are invoked when the current block being written
to has been filled. A new block is selected from the free list,
and the wear-leveling algorithm dictates which of these blocks
are selected. One simple approach is to select the block in the
free list with the lowest number of P/E cycles to minimize
the variance of wear-out across blocks.

3. Motivation
As flash memory density has continued to increase, the en-

durance of flash devices has been rapidly decreasing. Relaxing
the internal retention time of flash devices can significantly
improve upon this endurance (Section 3.1), but this cannot
simply be externally exposed, as the relaxation would impact
the data integrity guarantee discussed in Section 2. Periodi-
cally performing data refresh allows the flash device to relax
the internal retention time while maintaining the data integrity
guarantee [4, 9, 10, 31, 34, 35, 39, 42]. Unfortunately, for real-
world workloads, these refresh operations consume a large
portion of the extra endurance gained from internal retention
time relaxation, as we describe in Section 3.2. In order to buy
back the endurance, we aim to eliminate redundant refresh
operations on write-hot data, as the write-hot pages incur
the vast majority of writes (Section 3.3). We use the insights
from this section to design a write-hotness aware retention
management policy for flash memory, which we describe in
Section 4.

3.1. Retention Time Relaxation
Traditionally, data stored within a block is retained for

some amount of time. This retention time is dependent on a

number of factors (e.g., the number of P/E cycles already
performed on the block, process variation). Flash devices
guarantee a minimum data integrity time. The endurance
of flash memory is a factor of how many P/E cycles can
take place before the internal retention time falls below this
minimum guarantee.

Prior work has shown that P/E cycle endurance of flash
memory can be significantly improved by relaxing the internal
retention time [4, 9, 10, 31, 34, 35, 39, 42]. We extrapolate the
endurance numbers under different internal retention times
and plot them in Figure 1. The horizontal axis shows the
flash endurance, expressed as the number of P/E cycles before
the device experiences retention failures. Each bar shows the
number of P/E cycles a flash block can tolerate for a given
internal retention time. With a three-year internal retention
time, which is the typical retention period used in today’s
flash drives, each flash cell can endure only 3,000 P/E cycles.
However, as we relax the internal retention time to three days,
flash endurance can improve by up to 50× (i.e., 150,000 P/E
cycles). Hence, relaxing the amount of time that flash memory
is required to internally retain data can potentially lead to
great improvements in endurance.

150000

20000

8000

3000

0 50K 100K 150K

3-day

3-week

3-month

3-year

Endurance (P/E Cycle)

In
te

rn
al

R

et
en

ti
o

n
 T

im
e

Fig. 1. P/E cycle endurance from different amounts of internal retention
time without refresh. (Data extrapolated from prior work [9, 10].)

3.2. Refresh Overhead
In order to compensate for the reduced internal retention

time, refresh operations are introduced to maintain the data
integrity guarantee provided to the user [9, 10]. When the
internal retention time of a flash block expires, the data stored
in the block can be simply remapped to another block (i.e.,
all valid pages within a block are read, corrected, and then
reprogrammed to a different block) to extend the duration of
data integrity. Several variants of refresh have been proposed
for flash memory [9, 10, 30, 31, 34, 35, 39, 42]. Remapping-
based flash correct-and-refresh (FCR) involves the lowest
implementation overhead, by triggering refreshes at a fixed
refresh frequency to guarantee the retention time never falls
below a predetermined threshold [9, 10].

Although relaxing internal retention time increases flash
endurance, each refresh operation consumes a portion of
this extra endurance, leading to significantly reduced lifetime
improvements. The curves in Figure 2 plot the relation
between the fraction of the extra endurance cycles consumed
by refresh operations for a 256 GB flash drive and the write
intensity of the workload (expressed as the average number of
writes the workload issues to the drive per day) for a refresh
mechanism with various refresh intervals (ranging from three
days to three years). When the write intensity is as low as
105 writes/day, refresh operations can consume up to 99%

3

105 106 107 108 109 1010 1011

Workload Write Frequency (Writes/Day)

10
20
30
40
50
60
70
80
90

100
%

 o
f P

/E
 C

yc
le

s
Co

ns
um

ed
 b

y
Re

fre
sh 3-day refresh

3-week refresh
3-month refresh
3-year refresh

iozone
postmark
financial
homes
web-vm
hm
prn
proj

prxy
rsrch
src
stg
ts
usr
wdev
web

Fig. 2. Fraction of P/E cycles consumed by refresh operations.

of the total endurance when the data is refreshed every three
days (regardless of how recently the data was written). The
data points in Figure 2 show the actual fraction of writes
that are due to refresh for each workload that we evaluate in
Section 6. Fourteen of the sixteen workloads are disk traces
from real applications, and they all have a write frequency less
than or equal to 107 writes/day. The remaining two workloads
are I/O benchmarks (iozone and postmark) with higher
write frequencies, which do not represent the typical usage
of flash devices. Unfortunately, refresh operations consume a
significant fraction of the extra endurance for all fourteen real-
world workloads. In this paper, we aim to reduce the fraction
of endurance consumed as overhead, in order to better utilize
the extra endurance gained from retention time relaxation and
thus improve flash lifetime.

3.3. Opportunities to Exploit Write-Hotness

Many of the management policies for flash memory are
focused on writes, as write operations reduce the lifetime of
the device. While these algorithms were designed to evenly
distribute device wear-out across blocks, they crucially ignore
the fine-grained behavior of writes across pages within an
application. We observe that write frequency can be quite
heterogeneous across different pages. While some pages are
often written to (write-hot pages), other pages are infre-
quently updated (write-cold pages). Figure 3 shows the write
distribution for all sixteen of our applications (described in
Table 2). We observe that for all but one of our workloads
(postmark), only a very small fraction (i.e., less than 1%)
of the total application data receives the vast majority of the
write requests. In fact, from Figure 3, we observe that for ten
of our applications, a very small fraction of all data pages
(i.e., less than 1%) are the destination of nearly 100% of the
write requests. Note that our workloads use a total memory
footprint of 217.6GB each, and that 1% of the total application
data represents 2.176GB. We conclude from this figure that
only a small portion of the pages in each application are
write-hot, and that the discrepancy between the write rate
to write-hot pages and the write rate to write-cold pages is
highly skewed.

In a typical flash device, page allocation policies are
oblivious to the frequency of writes, resulting in blocks that
contain a random distribution of interspersed write-hot and
write-cold pages. We find that such obliviousness to the
program write patterns forces several of our “general” flash
management algorithms to be inefficient. One such example
is refresh, where the increased number of program/erase
operations greatly limits the potential endurance gains that
can be achieved. Refreshes are only necessary to maintain
the integrity of data that has not yet been overwritten, as a
new write operation naturally refreshes the data by placing
the page into a new block. In other words, if a page is written
to often enough (i.e., at a higher frequency than the refresh
rate), any refresh operation to that page will be redundant.

Our goal is to enable such a mechanism that can elim-
inate refresh operations to write-hot pages. Unfortunately,
remapping-based refresh operations are performed at a block
granularity, which is much coarser than page granularity, as
flash devices only provide a block-granularity erase mech-
anism. Therefore, if at least one page within the block is
write-cold, the whole block must be refreshed, foregoing
any potential P/E cycle savings from skipping the refresh
operation. As the conventional page allocation algorithm is
oblivious to write-hotness, there is a very low probability that
a block contains only write-hot pages.

Unless we change the page allocation policy, it is im-
practical to simply modify the refresh mechanism to skip
refreshes for blocks containing only write-hot pages. If flash
management policies were made aware of the write-hotness
of a page, we could group write-hot pages together in a
block such that the entire block does not require a refresh
operation. This would allow us to efficiently skip refreshes
to a much larger number of flash blocks that are formed as
such. In addition, since write-cold pages would be grouped
together into blocks, we could also reduce wear-out on these
blocks through more efficient garbage collection. As write-
cold pages are rarely overwritten, all of the pages within a
write-cold block are more likely to remain valid, requiring
much less frequent compaction. Our goal for WARM, our
proposed management policy, is to physically separate write-
hot pages from write-cold pages into disjoint sets of flash
blocks, so that we can significantly improve flash lifetime.

4. Mechanism
In this section, we introduce WARM, our proposed write-

hotness-aware flash memory retention management policy.
The first key idea of WARM is to effectively partition pages
stored in flash into two groups based on the write frequency
of the pages. The second key idea of WARM is to apply
different management policies to the two different groups of
pages/blocks. We first discuss a novel, lightweight approach
to dynamically identifying and partitioning write-hot versus
write-cold pages (Section 4.1). We then describe how WARM
optimizes flash management policies, such as garbage collec-
tion and wear-leveling, in a partitioned flash memory, and
show how WARM integrates with a refresh mechanism to
provide further flash lifetime improvements (Section 4.2). We
discuss the hardware overhead required to implement WARM
(Section 4.3). We show in Section 6 that WARM is effective
at delivering significant flash lifetime improvements (by an

4

0%
20%
40%
60%
80%

100%
CD

F
iozone financial web-vm prn prxy src ts wdev

0.
0%

0.
2%

0.
4%

0.
6%

0.
8%

1.
0%

Data Size

0%
20%
40%
60%
80%

100%

CD
F

postmark
0.

0%
0.

2%
0.

4%
0.

6%
0.

8%
1.

0%

Data Size

homes

0.
0%

0.
2%

0.
4%

0.
6%

0.
8%

1.
0%

Data Size

hm

0.
0%

0.
2%

0.
4%

0.
6%

0.
8%

1.
0%

Data Size

proj

0.
0%

0.
2%

0.
4%

0.
6%

0.
8%

1.
0%

Data Size

rsrch

0.
0%

0.
2%

0.
4%

0.
6%

0.
8%

1.
0%

Data Size

stg

0.
0%

0.
2%

0.
4%

0.
6%

0.
8%

1.
0%

Data Size

usr

0.
0%

0.
2%

0.
4%

0.
6%

0.
8%

1.
0%

Data Size

web

Fig. 3. Cumulative distribution function of writes to pages for 16 evaluated workload traces. Total data footprints for our workloads are 217.6GB, i.e., 1.0%
on the x-axis represents 2.176GB of data.

Hot Virtual Queue

Hot Window

Hot Data

Cold Virtual Queue

Cooldown Window

Cold Data ……④ ⑤

⑥ ②

①

③

TAIL HEAD TAIL HEAD

Fig. 4. Write-hot data identification algorithm using two virtual queues and monitoring windows.

average of 3.24× over a conventional management policy
without refresh), and can do so with a minimal performance
overhead (averaging 1.3%).

4.1. Partitioning Data Using Write-Hotness

4.1.1. Identifying Write-Hot and Write-Cold Data

Figure 4 illustrates the high-level concept of our write-
hot data identification mechanism. We maintain two virtual
queues, one for write-hot data and another for write-cold
data, which order all of the hot and cold data, respectively,
by the time of the last write. The purpose of the virtual
queues is to partition write-hot and write-cold data in a space-
efficient way. The partitioning mechanism provides methods
of promoting data from the cold virtual queue to the hot
virtual queue, and for demoting data from the hot virtual
queue to the cold virtual queue. The promotion and demotion
decisions are made such that write-hot pages are quickly
identified (after two writes in quick succession to the page),
and write-cold pages are seldom misidentified as write-hot
pages (and are quickly demoted if they are). Note that the cold
virtual queue is divided into two parts, with the part closer
to the tail known as the cooldown window. The purpose of
the cooldown window is to identify those pages that are most
recently written to. The pages in the cooldown window are
the only ones that can be immediately promoted to the hot
virtual queue (as soon as they receive a write request). We
walk through examples for both of these migration decisions.

Initially, all data is stored in the cold virtual queue. Any
data stored in the cold virtual queue is defined to be cold.
When data (which we call Page C) is first identified as cold,

a corresponding queue entry is pushed into the tail of the cold
virtual queue (1©). This entry progresses forward in the queue
as other cold data is written. If Page C is written to again after
it leaves the cooldown window (2©), then its queue entry will
be removed from the cold virtual queue and reinserted at the
queue tail (1©). This allows the queue to maintain ordering
based on the time of the most recent write to each page.

If a cold page starts to become hot (i.e., it starts being
written to frequently), a cooldown window at the tail end of
the cold virtual queue provides these pages with a chance to
be promoted into the hot virtual queue. The cooldown win-
dow monitors the most recently inserted (i.e., most recently
written) cold data. Let us assume that Page C has just been
inserted into the tail of the cold virtual queue (1©). If Page C is
written to again while it is still within the cooldown window, it
will be immediately promoted to the hot virtual queue (3©). If,
on the other hand, Page C is not written to again, then Page C
will eventually be pushed out of the cooldown window portion
of the cold virtual queue, at which point Page C is determined
to be cold. Requiring a two-step promotion process from cold
to hot (with the use of a cooldown window) allows us to avoid
incorrectly promoting cold pages due to infrequent writes.
This is important for two reasons: (1) hot storage capacity is
limited, and (2) promoted pages will not be refreshed, which
for cold pages could result in data loss. With our two-step
approach, if Page C is cold and is written to only once, it
will remain in the cold queue, though it will be moved into
the cooldown window (2©) to be monitored for subsequent
write activity.

Any data stored in the hot virtual queue is identified as hot.
Newly-identified hot data, which we call Page H, is inserted

5

into the tail of the hot virtual queue (4©). The hot virtual
queue length is maximally bounded by a hot window size to
ensure that the most recent writes to all hot data pages were
performed within a given time period. (We discuss how this
window is sized in Section 4.1.3.) The assumption here is
that infrequently-written pages in the hot virtual queue will
eventually progress to the head of the queue (5©). If the entry
for Page H in the hot virtual queue reaches the head of the
queue and must now be evicted, we demote Page H into the
cooldown window of the cold virtual queue (1©), and move
the page out of the hot virtual queue. In contrast, a write to a
page in the hot virtual queue simply moves that page to the
tail of the hot virtual queue (6©).

4.1.2. Partitioning the Flash Device

Figure 5 shows how we apply the identification mecha-
nism from Section 4.1.1 to perform physical page partitioning
inside flash, with labels that correspond to the actions from
Figure 4. We first separate all of the flash blocks into two
allocation pools, one for hot data and another for cold data.
The hot pool contains enough blocks to store every page in the
hot virtual queue (whose sizing is described in Section 4.1.3),
as well as some extra blocks to tolerate management overhead
(e.g., erasing on garbage collection). The cold pool contains
all of the remaining flash blocks. Note that blocks can be
moved between the two pools when the queues are resized.

Hot block pool
(Hot window)

Hit in the cooldown window
③

⑥ Hit in the
hot window

Promote to
cooldown window

⑤ Migrate valid pages

Cooldown
window

②

Cold block pool

Fig. 5. Write-hotness aware retention management policy overview.

To simplify the hardware required to implement the virtual
queues, we exploit the fact that pages are written sequentially
into the hot pool blocks. Consecutive writes to hot pages will
be placed in the same block, which means that a single block
in the hot virtual queue will hold all of the oldest pages.
As a result, we can track the hot virtual queue at a block
granularity instead of a page granularity, which allows us to
significantly reduce the size of the hot virtual queue.

4.1.3. Tuning the Partition Boundary

Since the division between hot and cold data can be
dependent on both application and phase characteristics, we
need to provide a method for dynamically adjusting the size of
our hot and cold pools periodically. Every block is allocated
to one of the two pools, so any increase in the hot pool size
will always be paired with a corresponding decrease in the
cold pool size, and vice versa. Our dynamic sizing mechanism
must ensure that: (1) the hot pool size is such that every page
in the hot pool will be written to more frequently than the
hot pool retention time (which is relaxed as the hot pool does
not employ refresh), and (2) the lifetime of the blocks in the
cold pool is maximized. To this end, we describe an algorithm

that tunes the partitioning of blocks between the hot and cold
pools.

The partitioning algorithm starts by setting an upper
bound for the hot window, to ensure that every page in the
window will be written to at a greater rate than the fixed
hot pool retention time. Recall that the hot pool retention
time is relaxed to provide greater endurance (Section 3.1).
We estimate this size by collecting the number of writes to
the hot pool, to find the average write frequency and estimate
the time it takes to fill the hot window. We compare the time
to fill the window to the hot pool retention time, and if the fill
time exceeds the retention time, we shrink the hot pool size
to reduce the required fill time. This hot pool size determines
the initial partition boundary between the hot pool and the
cold pool.

We then tune this partition boundary to maximize the
lifetime of the cold pool, since we do not relax retention time
for the blocks in the cold pool. Assuming that wear-leveling
evenly distributes the page writes within the cold pool, we
can use the endurance capacity metric (i.e., the total number
of writes the cold pool can service), which is the product of
the remaining endurance of a block2 and the cold pool size,
to estimate the lifetime of blocks in the cold pool:

Endurance Capacity = Remaining Endurance×Cold Pool S ize (1)

Li f etime =
Endurance Capacity

Cold Write Frequency
∝

Cold Pool S ize
Cold Write Frequency

(2)

We divide the endurance capacity by the cold write
frequency (writes per day) to determine the number of days
remaining before the cold pool is worn out. We use hill
climbing to find the partition boundary at which the cold pool
size maximizes the flash lifetime. The cold write frequency
is dependent on cold pool size, because as the cold pool size
increases, the hot pool size correspondingly shrinks, shifting
writes of higher frequency into the cold pool.

Finally, once the partition boundary converges to obtain
the maximum lifetime, we must adjust what portion of the
cold pool belongs in the cooldown window. We size this
window to minimize the ping-ponging of requests between the
hot and cold pools. For this, we want to maximize the number
of hot virtual queue hits (6© in Figure 4), while minimizing
the number of requests evicted from the hot window (5© in
Figure 4). We maintain a counter of each of these events,
and then use hill climbing on the cooldown window size to
maximize the utility function Utility = (6© – 5©).

In our work, we limit the hot pool size to the number of
over-provisioned blocks within the flash device (i.e., the extra
blocks beyond the visible capacity of the device). While the
hot pages are expected to represent only a small portion of the
total flash capacity (see Section 3.3), there may be rare cases
where the size limit prevents the hot pool from holding all
of the hot data (i.e., the hot pool is significantly undersized).
In such a case, some less-hot pages are forced to reside in
the cold pool, and lose the benefits of WARM (i.e., endurance
improvements from relaxed retention times). WARM will not,

2Due to wear-leveling, the remaining endurance (i.e., the number of P/E
operations that can still be performed on the block) is the same across all of
the blocks.

6

however, incur any further write overhead from keeping the
less-hot pages in the cold pool. For example, the dynamic
sizing of the cooldown window prevents the less-hot pages
from going back and forth between the hot and cold pools.

4.2. Flash Management Policies
WARM partitions all of the blocks in a flash device into

two pools, storing write-hot data in the blocks belonging
to the hot pool, and storing write-cold data in the blocks
belonging to the cold pool. Because of the different degrees
of write-hotness of the data in each pool, WARM also
applies different management policies (i.e., refresh, garbage
collection, and wear-leveling) to each pool, to best extend
their lifetime. We next describe these management policies
for each pool, both when WARM is applied alone and when
WARM is applied along with refresh.

4.2.1. WARM-Only Management

WARM relaxes the internal retention time of only the
blocks in the hot pool, without requiring a refresh mechanism
for the hot pool. Within the cold pool, WARM applies con-
ventional garbage collection (i.e., finding the block with the
fewest valid pages to minimize unnecessary data movement)
and wear-leveling policies. Since the flash blocks in the
cold pool contain data with much lower write frequencies,
they (1) consume a smaller number of P/E cycles, and
(2) experience much lower fragmentation (which only occurs
when a page is updated), thus reducing garbage collection
activities. As such, the lifetime of blocks in the cold pool
increases even when conventional management policies are
applied.

Within the hot pool, WARM applies simple, in-order
garbage collection (i.e., finding the oldest block) and no wear-
leveling policies. WARM performs writes to hot pool blocks
in block order (i.e., it starts on the block with the lowest ID
number, and then advances to the block with the next lowest
ID number) to maintain a sequential ordering by write time.
Writing pages in block order enables garbage collection in
the hot pool to also be performed in block order. Due to the
higher write frequency in the hot pool, all data in the hot pool
is valid for a shorter amount of time. Most of the pages in
the oldest block are already invalid when the block is garbage
collected, increasing garbage collection efficiency. Since both
writing and garbage collection are performed in block order,
each of the blocks will be naturally wear-leveled, as they
will all incur the same number of P/E cycles. Thus, we do
not need to apply any additional wear-leveling policy.

4.2.2. Combining WARM with Refresh

WARM can also be used in conjunction with a refresh
mechanism to reap additional endurance benefits. WARM, on
its own, can significantly extend the lifetime of a flash device
by enabling retention time relaxation on only the write-hot
pages. However, these benefits are limited, as the cold pool
blocks will eventually exhaust their endurance at the original
internal retention time. (Recall from Figure 1 that endurance
decreases significantly as the selected internal retention time
increases.) While WARM cannot enable retention time relax-
ation on the cold pool blocks due to infrequent writes to such

blocks, a refresh mechanism can enable the relaxation, greatly
extending the endurance of the cold pool blocks. WARM
still provides benefits over a refresh mechanism for the hot
pool blocks, since it avoids unnecessary write operations that
refresh operations would incur.

When WARM and refresh are combined, we split the
lifetime of the flash device into two phases. The flash device
starts in the pre-refresh phase, during which the same man-
agement policies as WARM-only are applied. Note that during
this phase, internal retention time is only relaxed for the hot
pool blocks. Once the endurance at the original retention time
is exhausted, we enter the refresh phase, during which the
same management policies as WARM-only are applied and
a refresh policy (such as FCR [9]) is applied to the cold
pool to avoid data loss. During this phase, the retention time
is relaxed for all blocks. Note that during both phases, the
internal retention time for hot pool blocks is always relaxed
without the need for a refresh policy.

During the refresh phase, WARM also performs global
wear-leveling to prevent the hot pool from being prematurely
worn out. The global wear-leveling policy rotates the entire
hot pool to a new set of physical flash blocks (which were
previously part of the cold pool) every 1K hot block P/E
cycles. Over time, this rotation will use all of the flash blocks
in the device for the hot pool for one 1K P/E cycle interval.
Thus, WARM wears out all of the flash blocks equally despite
the heterogeneity in write-frequency between the two pools.

4.3. Implementation and Overheads

The logic overhead of the proposed mechanism is mini-
mal. Thanks to the simplicity of the write-hot data identifica-
tion algorithm, WARM can be integrated within an existing
FTL, allowing it to be implemented in the flash controller
that already exists in modern flash drives.

For our dynamic window tuning mechanism, four 32-bit
counters are required. Two counters track the number of
writes to the hot and cold pools. A third counter tracks the
number of hot virtual queue write hits (6© in Figure 4). The
fourth counter tracks the number of pages moved from the
hot virtual queue into the cooldown window (5© in Figure 4).

The memory and storage overheads for the proposed
mechanism are small. Recall that the cooldown window can
remain relatively small. We need to store data that tracks
which blocks belong to the cooldown window, and which
blocks belong to the hot pool. From our evaluation, we find
that a 128-block maximum cooldown window size is suffi-
cient. This requires us to store the block ID of 128 blocks, for
a storage overhead of 128×8B=1KB. As the blocks belonging
to the hot pool are written to in order of block ID, we require
even lower overhead for them. We allocate a contiguous series
of block IDs to the hot pool, reducing the tracking overhead
to four registers totaling 32B: the starting ID of the series, the
current size of the pool, a pointer to the most recently written
block (i.e., the block at the tail of the hot virtual queue), and
a pointer to the oldest block yet to be erased (i.e., the block
at the head of the hot virtual queue). All this information can
be buffered inside the memory of the flash controller in order
to accelerate write operations.

7

While WARM saves a significant amount of unnecessary
refreshes in the hot data pool, the proposed mechanism has
the potential to indirectly generate extra write operations
that consume some endurance cycles. First, WARM generates
extra write operations when demoting a hot page to the cold
data pool (5©). Second, partitioning flash blocks into two
allocation pools can sometimes increase garbage collection
activities. This is because one of the pools may have a
smaller number of blocks available in the free list, requiring
more frequent invocation of garbage collection. All of these
overheads are accounted for in our evaluation in Section 6,
and our results factor in all additional writes. As we show in
Section 6, WARM is designed to minimize these overheads
such that lifetime improvements are not overshadowed, and
the resulting impact on response time is minimal.

5. Methodology
We use DiskSim-4.0 [3] with SSD extensions [2] to

evaluate WARM. Table 1 lists the parameters of our simulated
NAND flash-based SSD. The latencies (the first four rows of
the table) are from real NAND flash chip measurements [18].
The sizes (rows 5–8) represent a modern commercial NAND
flash specification [1]. Flash endurance and refresh period are
measured from real NAND flash devices [9, 10].

We run each simulation with I/O traces collected from a
wide range of real workloads with different use cases [27,
40, 46]. We also select two popular synthetic file system
benchmarks to stress our mechanism with higher write rate
applications [24, 41]. Table 2 lists the name, source, length,
and description of each trace. To compute the lifetime of
each configuration, we assume the trace is repeated until the
flash drive fails. We fill all the usable space of the flash drive
with data, to mimic worst-case usage conditions and to trigger
garbage collection activities within the trace duration. Similar
to the approach employed in prior work [4,9,10], the overall
flash lifetime is derived using the average write frequency
of one run, which consists of writes generated by the trace
and by garbage collection, as well as by refresh operations
during the refresh phase. We use this methodology since it
is impossible to simulate multi-year-long traces that drain the
flash lifetime.

Table 1. Parameters of the simulated flash-based SSD.

Parameter Value

Page read to register latency 25µs
Page write from register latency 200µs
Block erase latency 1.5ms
Data bus latency 50µs

Page/block size 8KB/1MB
Die/package size 8GB/64GB
Total storage capacity (incl. over-provisioning) 256GB
Over-provisioning 15%

Endurance for 3-year retention time (P/E cycles) 3,000
Endurance for 3-day retention time (P/E cycles) 150,000

6. Evaluation
In this section, we evaluate and compare six configura-

tions:

Table 2. Source and description of simulated traces.

Trace Source Length Workload Description

Synthetic Workloads
iozone IOzone [41] 16 min File system benchmark
postmark Postmark [24] 8.3 min File system benchmark

Real-World Workloads
financial UMass [46] 1 day Online transaction processing
homes FIU [27] 21 days Research group activities
web-vm FIU [27] 21 days Web mail proxy server
hm MSR [40] 7 days Hardware monitoring
prn MSR [40] 7 days Print server
proj MSR [40] 7 days Project directories
prxy MSR [40] 7 days Firewall/web proxy
rsrch MSR [40] 7 days Research projects
src MSR [40] 7 days Source control
stg MSR [40] 7 days Web staging
ts MSR [40] 7 days Terminal server
usr MSR [40] 7 days User home directories
wdev MSR [40] 7 days Test web server
web MSR [40] 7 days Web/SQL server

• Baseline does not include WARM or refresh, and
uses conventional garbage collection and wear-leveling
policies, as described in Section 3.

• WARM uses the proposed write-hotness aware retention
management policy that we described in Section 4.

• FCR adds a remapping-based refresh mechanism to
Baseline. Our refresh mechanism is similar to the
remapping-based FCR described in prior work [9, 10],
but refresh is not performed in the pre-refresh phase (see
Section 4.2.2) to reduce unnecessary overhead. During
the refresh phase (see Section 4.2.2), FCR refreshes all
valid blocks every three days, which yields the best
endurance improvement.

• WARM+FCR uses write-hotness aware retention manage-
ment alongside 3-day refresh (Section 4.2) to achieve
maximum lifetime.

• ARFCR adds the ability to progressively increase re-
fresh frequency on top of the remapping-based refresh
mechanism (similar to adaptive-rate FCR [9, 10]). The
refresh frequency increases as the retention capabilities
of the flash memory decrease, in order to minimize the
overhead of write-hotness-oblivious refresh.

• WARM+ARFCR adds WARM alongside the adaptive-rate
refresh mechanism.

To provide insights into our results, we first show the hot
pool sizes and the cooldown window sizes as determined by
WARM for each of the configurations (Section 6.1). We then
use four metrics to show the benefits and costs associated
with our mechanism:

• We evaluate all configurations in terms of overall lifetime
(Section 6.2).

• We evaluate the gain in endurance capacity, the ag-
gregate number of write requests that the flash device
can endure across all pages, for WARM with respect
to Baseline (Section 6.3). We use this metric as an
indicator of how many additional writes we can sustain
to the flash device with our mechanism.

• We evaluate and break down the total number of writes

8

100

1K

10K

100K

1M

10M

Li
fe

ti
m

e
(D

ay
s)

Baseline WARM FCR WARM+FCR ARFCR WARM+ARFCR

Fig. 6. Absolute flash memory lifetime for Baseline, WARM, FCR, WARM+FCR, ARFCR, and WARM+ARFCR configurations. Note that the y-axis uses a log scale.

0

1

2

3

4

5

io
zo

n
e

p
o

st
m

ar
k

fi
n

an
ci

al
h

o
m

es
w

eb
-v

m
h

m
p

rn
p

ro
j

p
rx

y
rs

rc
h

sr
c

st
g ts

u
sr

w
d

ev
w

eb
G

M
ea

nN
o

rm
al

iz
ed

 L
if

et
im

e
Im

p
ro

ve
m

en
t

(a) WARM over Baseline

0.6

0.8

1.0

1.2

1.4

1.6

io
zo

n
e

p
o

st
m

ar
k

fi
n

an
ci

al
h

o
m

es
w

eb
-v

m
h

m
p

rn
p

ro
j

p
rx

y
rs

rc
h

sr
c

st
g ts

u
sr

w
d

ev
w

eb
G

M
ea

nN
o

rm
al

iz
ed

 L
if

et
im

e
Im

p
ro

ve
m

en
t

(b) WARM+FCR over FCR

0.6

0.8

1.0

1.2

1.4

1.6

io
zo

n
e

p
o

st
m

ar
k

fi
n

an
ci

al
h

o
m

es
w

eb
-v

m
h

m
p

rn
p

ro
j

p
rx

y
rs

rc
h

sr
c

st
g ts

u
sr

w
d

ev
w

eb
G

M
ea

nN
o

rm
al

iz
ed

 L
if

et
im

e
Im

p
ro

ve
m

en
t

(c) WARM+ARFCR over ARFCR

Fig. 7. Normalized flash memory lifetime improvement when WARM is applied on top of Baseline, FCR, and ARFCR configurations.

consumed by FCR and WARM+FCR during the refresh
phase, to demonstrate how our mechanism reduces the
write overhead of retention time relaxation (Section 6.4).

• We evaluate the average response time, the mean latency
for the flash device to service a host request, for both
Baseline and WARM to demonstrate the performance
overhead of using WARM (Section 6.5).

Finally, we show sensitivity studies on flash memory over-
provisioning and the refresh rate (Section 6.6).

6.1. Hot Pool and Cooldown Window Sizes
Table 3 lists the hot pool and the cooldown window sizes

learned by WARM for each of our WARM-based configura-
tions. To allow WARM to quickly adapt to different workload
behaviors, we set the smallest step size by which the hot
pool size can change to 2% of the total flash drive capacity,
and we restrict the cooldown window sizes to power-of-
two block counts. For WARM+ARFCR, as the refresh frequency
of the flash cells increases (going to the right in Table 3),
the hot pool size generally reduces. This is because WARM
automatically selects a smaller hot pool size to ensure that
the data in the hot pool has a high enough write intensity
to skip refreshes. Naturally, as the internal retention time
of a cell decreases, previously write-hot pages with a write
rate slower than the new retention time no longer qualify
as hot, thereby reducing the number of pages that need to be
maintained in the hot pool. WARM adaptively selects different
hot pool sizes based on the fraction of write-hot data in each
particular workload. Similarly, WARM intelligently selects
the best cooldown window size for each workload, such that it
minimizes the number of cold pages that are misidentified as
hot and considered for promotion to the hot pool. As such, our

analysis indicates that WARM can intelligently and adaptively
adjust the hot pool size and the cooldown window size to
achieve maximum lifetime.

Table 3. Hot pool and cooldown window sizes as set dynamically by
WARM. H%: Hot pool size as a percentage of total flash drive capacity.
CW: Cooldown window size in number of blocks.

Trace WARM WARM WARM+ARFCR
+FCR 3-month 3-week 3-day

H% CW H% CW H% CW H% CW H% CW

iozone 10 8 10 8 10 8 10 8 10 8
postmark 2 128 4 128 4 128 4 128 4 128
financial 10 4 10 4 10 4 10 4 10 4
homes 10 128 4 32 10 4 10 4 4 32
web-vm 10 128 10 32 10 4 10 4 10 32
hm 10 128 10 128 10 32 10 32 10 128
prn 10 128 10 128 8 4 10 128 10 128
proj 10 4 10 4 10 4 10 4 10 4
prxy 10 4 10 4 10 4 10 4 10 4
rsrch 6 128 6 128 10 4 10 4 6 128
src 10 128 8 128 10 32 10 32 8 128
stg 10 128 8 128 10 4 10 4 8 128
ts 10 128 6 128 10 4 10 4 6 128
usr 6 128 6 128 10 4 10 4 6 128
wdev 6 128 4 128 10 128 10 128 4 128
web 6 128 6 128 10 4 10 4 6 128

6.2. Lifetime Improvement
Figure 6 shows the lifetime in days (using a logarithmic

scale) for all six of our evaluated configurations. Figure 7a
shows the lifetime improvement of WARM when normalized to
the lifetime of Baseline. The mean lifetime improvement for

9

WARM across all of our workloads is 3.24× over Baseline.
In addition, WARM+FCR improves the mean lifetime over FCR
alone by 1.30× (Figure 7b), leading to a mean improvement
for combined WARM and FCR over Baseline of 10.4× (as
opposed to 8.0× with FCR alone). WARM+ARFCR improves the
mean lifetime over ARFCR by 1.21× (Figure 7c), leading to a
mean improvement for combined WARM and ARFCR over
Baseline of 12.9× (as opposed to 10.7× with ARFCR alone).
Even for our worst performing workload, postmark, in which
the amount of hot data and the fraction of writes due to
refresh are very low (as discussed in Sections 6.3 and 6.4),
the overall lifetime improves by 8% when WARM is applied
without refresh, and remains unaffected with respect to FCR
when WARM+FCR is applied. We conclude that WARM can
adjust to workload behavior and effectively improve overall
flash lifetime, either when used on its own or when used
together with a refresh mechanism, without adverse impacts.

6.3. Improvement in Endurance Capacity

Figure 8 plots the normalized endurance capacity of WARM
for each workload split up by the endurance for both the hot
and cold data pools. The endurance capacity is defined as the
total number of write operations the entire flash device can
sustain before wear-out. On average, WARM improves the total
endurance capacity by 3.6× over Baseline. Note that the
endurance capacity varies across different workloads, in rela-
tion to the number of hot writes that can be identified by the
mechanism. For example, postmark contains only a limited
amount of write-hot data (as is shown in Figure 3), which
results in only minor endurance capacity improvement (8%).
Unlike the other workloads, the majority of the endurance
capacity for postmark remains within the cold pool, as the
workload exhibits very low write locality.

0%

100%

200%

300%

400%

500%

600%
Cold pool Hot pool

En
d

u
ra

n
ce

 C
ap

ac
it

y

Fig. 8. WARM endurance capacity, normalized to Baseline.

In contrast, the endurance capacity for all of our other
workloads mainly comes from the hot pool, despite the size
of the hot pool being significantly smaller than that of the
cold pool. WARM in essence “converts” blocks from normal
internal retention time (those in the cold pool) into relaxed
internal retention time (hot pool) for the write-hot portion
of data. Blocks with a relaxed retention time can tolerate a
much larger number of writes (as shown in Figure 1). As
Figure 3 shows, the vast majority of overall writes are to a
small fraction of pages that are write-hot. This allows WARM
to improve the overall flash endurance capacity by using a
small number of blocks with a relaxed retention time to house
the write-hot pages. We conclude that WARM can effectively
improve endurance capacity even when applied on its own.

6.4. Reduction of Refresh Operations
Figure 9 breaks down the percentage of endurance (P/E

cycles) used for the host’s write requests, for management
operations, and for refresh requests during the refresh phase.
Two bars are shown side by side for each application. The
first bar shows the number of total writes for FCR, normalized
to 100%. The second bar shows a similar breakdown for
WARM+FCR, normalized to the number of writes for FCR. Al-
though the two synthetic workloads (iozone and postmark)
do not show much reduction in total write frequency (because
host writes dominate their flash endurance usage, as shown
in Figure 2), the number of writes across all sixteen of our
workloads is reduced by an average of 5.3%.

io
zo

ne

po
st

m
ar

k

fin
an

ci
al

ho
m

es

w
eb

-v
m hm pr
n

pr
oj

pr
xy

rs
rc

h

sr
c

st
g ts us
r

w
de

v

w
eb

0%

20%

40%

60%

80%

100%

W
rit

es
/D

ay

FCR_host
FCR_gc

FCR_ref
WARM_host_hot

WARM_host_cold
WARM_gc

WARM_ref
WARM_hot2cold

Fig. 9. Flash writes for FCR (left bar) and WARM+FCR (right bar), broken
down into host writes to the hot/cold pool (host_hot/host_cold), garbage
collection writes (gc), refresh writes (ref), and writes generated by WARM
for migrations from the hot pool to the cold pool (hot2cold).

From the breakdown of the write requests, we can see that
the reduction in write count mainly comes from the decreased
number of refresh requests after applying WARM. In contrast,
the additional overhead in WARM due to migrating data
from the hot pool to the cold pool is minimal (shown as
WARM hot2cold). This suggests that the write locality be-
havior within many of the hot pool pages lasts throughout the
lifetime of the application, and thus these pages do not need
to be evicted from the hot pool.3 We conclude that WARM+FCR,
by providing refresh-free retention time relaxation for hot
data, can reduce a significant fraction of unnecessary refresh
writes, and that WARM+FCR can utilize the flash endurance
more effectively during the refresh phase.

6.5. Impact on Performance
As we discussed in Section 4.3, WARM has the potential

to generate additional write operations. First, when a page is
demoted from the hot pool to the cold pool (which happens
when another page is being promoted into the hot pool), an
extra write will be required to move the page into a block
in the cold pool.4 Second, as one of the pools may have
fewer blocks available in its free list (which is dependent on
how our partitioning algorithm splits up the flash blocks into

3Migrations from the cold pool to the hot pool are not broken down
separately, as such migrations are performed during the host write request
itself and do not incur additional writes, as explained in Section 4.1.

4In contrast, promoting a page from the cold pool to the hot pool does
not incur additional writes, as promotion only occurs when that page is being
written. Since a write was needed regardless, the promotion is free.

10

the hot and cold pools), garbage collection may need to be
invoked more frequently when a new page is required. To
understand the impact of these additional writes, we evaluate
how WARM affects the average response time of the FTL.

Figure 10 shows the average response time for WARM,
normalized to the Baseline response time. Across all of our
workloads, the average performance reduces by only 1.3%.
Even in the worst case (homes), WARM only has a performance
penalty of 5.8% over Baseline. The relatively significant
overhead for homes is due to the write-hot portion of its data
changing frequently over time within the trace. This is likely
because the user operates on different files, which effectively
shifts the write locality to an entirely different set of pages
whenever a new file is operated on. The shifting of the write-
hot page set evicts all of the write-hot pages from the hot pool,
which as we stated above incurs several additional writes.

98%

100%

102%

104%

106%

N
o

rm
. a

vg
. r

es
p

. t
im

e

Fig. 10. WARM average response time, normalized to Baseline.

For most of the workloads, any performance degradation
is negligible (<2%), and is a result of the increased garbage
collection that occurs in the hot pool due to its small free list
size. For some other workloads, such as prxy, we find that the
performance actually improves slightly with WARM, because
of the reduction in data movement induced by garbage
collection. This savings is thanks to grouping write-cold data
together, which greatly lessens the degree of fragmentation
within the majority of the flash blocks (those within the cold
pool). Overall, we conclude that across all of our workloads,
the performance penalty of using WARM is minimal.

6.6. Sensitivity Studies
Figure 11 compares the flash memory lifetime under

different capacity over-provisioning assumptions. In high-
end server-class flash drives, the amount of capacity over-
provisioning is higher than that in consumer-class flash drives
to provide an overall longer lifetime and higher reliability. In
this figure, we evaluate the lifetime improvement of the same
six configurations using 30% of the flash blocks for over-
provisioning to represent a server-class flash drive (all other
parameters from Table 1 remain the same). We also show
the lifetime of the six configurations on a consumer-class
flash drive with 15% over-provisioning (which we assumed
in our evaluations until now). We show that the lifetime
improvement of WARM become more significant as over-
provisioning increases. The lifetime improvement delivered
by WARM over Baseline, for example, increases to 4.1×,
while the improvement of WARM+ARFCR over Baseline in-
creases to 14.4×. We conclude that WARM delivers higher
lifetime improvements as over-provisioning increases.

Figure 12 compares the flash memory lifetime improve-
ment for WARM+FCR over FCR under different refresh rate

0

1

2

4

8

16

15% Capacity Over-provisioning 30% Capacity Over-provisioning

N
o

rm
al

iz
ed

 L
if

et
im

e
Im

p
ro

ve
m

e
n

t

Baseline WARM FCR
WARM+FCR ARFCR WARM+ARFCR

Fig. 11. Flash memory lifetime improvement for WARM, FCR, WARM+FCR,
ARFCR, and WARM+ARFCR configurations under different amounts of over-
provisioning, normalized to the Baseline lifetime for each over-provisioning
amount. Note that the y-axis uses a log scale.

assumptions. Our evaluation has so far assumed a three-
day refresh period for FCR. In this figure, we change this
assumption to three-month and three-week refresh periods,
and compare the corresponding lifetime improvement. As we
see from this figure, the lifetime improvement delivered by
WARM+FCR drops significantly as the refresh period becomes
longer. This is because a smaller fraction of the endurance
is consumed by refresh operations as the rate of refresh
decreases (as shown in Figure 2), which is where our major
savings come from. Figure 13 illustrates how WARM+FCR
reduces the fraction of P/E cycles consumed by refresh
operations, over FCR only, as we sweep over longer refresh
periods. Note that the x-axis in the figure uses a log scale.
The solid lines in the figure illustrate the fraction of P/E
cycles consumed by refresh for FCR only, as was shown in
Figure 2. The figure shows that for as the refresh interval
increases, WARM+FCR is effective at reducing the number of
writes that are consumed by refresh, but that these make up
a smaller portion of the total P/E cycles, hence the smaller
improvements over FCR alone. As flash memory becomes
denser and less reliable, we expect it to require more frequent
refreshes in order to maintain a useful lifetime, at which
point WARM can deliver greater improvements. We conclude
that WARM+FCR delivers higher lifetime improvements as the
refresh rate increases.

0%

5%

10%

15%

20%

25%

30%

35%

3-month 3-week 3-day

Li
fe

ti
m

e
Im

p
ro

ve
m

e
n

t

Fig. 12. Flash memory lifetime improvements for WARM+FCR over FCR under
different refresh rate assumptions.

11

105 106 107 108 109 1010 1011

Workload Write Frequency (Writes/Day)

10
20
30
40
50
60
70
80
90

100
%

 o
f P

/E
 C

yc
le

s
Co

ns
um

ed
 b

y
Re

fre
sh 3-day refresh w/o WARM

iozone
postmark
financial
homes
web-vm
hm
prn
proj

prxy
rsrch
src
stg
ts
usr
wdev
web

105 106 107 108 109 1010 1011

Workload Write Frequency (Writes/Day)

10
20
30
40
50
60
70
80
90

100

%
 o

f P
/E

 C
yc

le
s

Co
ns

um
ed

 b
y

Re
fre

sh 3-week refresh w/o WARM

iozone
postmark
financial
homes
web-vm
hm
prn
proj

prxy
rsrch
src
stg
ts
usr
wdev
web

105 106 107 108 109 1010 1011

Workload Write Frequency (Writes/Day)

10
20
30
40
50
60
70
80
90

100

%
 o

f P
/E

 C
yc

le
s

Co
ns

um
ed

 b
y

Re
fre

sh 3-month refresh w/o WARM

iozone
postmark
financial
homes
web-vm
hm
prn
proj

prxy
rsrch
src
stg
ts
usr
wdev
web

Fig. 13. Fraction of P/E cycles consumed by refresh operations after
applying WARM+FCR for a 3-day (top), 3-week (middle), and a 3-month
(bottom) refresh period. Solid trend lines show the fraction consumed by
FCR only, from Figure 2, for comparison. Note that the x-axis uses a log
scale.

7. Related Work
This is the first paper, to our knowledge, that uses the

inherent write-hotness disparity within applications to extend
the lifetime of NAND flash memory through the management
of retention behavior. We also propose a novel hot/cold data
partitioning mechanism that takes advantage of the dynamic
hot pool and cold pool sizes at runtime to increase the

effectiveness of WARM while reducing its overhead. Related
work primarily falls into five categories: (1) lifetime improve-
ment mechanisms using refresh operations, (2) FTLs that
separate hot data from cold data to assist flash management,
(3) other hot/cold data separation algorithms, (4) flash lifetime
improvement schemes, and (5) DRAM refresh reduction.

Lifetime improvement mechanisms using refresh op-
erations. In enterprise environments, the power supply is
almost always turned on. Prior work proposes to exploit this
always-on behavior by performing periodic refresh operations
to trade off internal flash memory retention time for en-
durance [9,10,34,42] or programming speed [42]. Our work,
in contrast, proposes to exploit write-hotness in the workload
to more efficiently improve flash lifetime. We have already
shown that our work is orthogonal to refresh mechanisms,
and that it can even be used alongside more complex refresh
mechanisms such as adaptive-rate FCR [9, 10]. Compared
to those works, our proposed mechanism identifies new
opportunities to exploit in workload behavior (write-hotness)
and provides new insights to help improve flash lifetime.

Another approach for refreshing data within flash memory
is to use rewriting codes, which do not require flash block
erasure [30, 31]. However, such rewriting mechanisms come
with the expense of more complex encoding and decoding
circuitry, which must be added to the flash device.

Flash translation layer schemes that separate hot and
cold data. Prior work has proposed to separate write-hot and
write-cold data within the FTL for a number of purposes.
Some of this work has used high-overhead structures, such
as multi-level hash tables [28, 48], a sorted tree [13], and
even migration within the log buffer itself [29], to track which
pages are hot and which are cold. Other works have used mul-
tiple statically-sized queues to perform the hot/cold partition-
ing [12, 14, 23]. In contrast, we propose a new dynamically-
sized hot/cold data identification mechanism that exploits
temporal locality to greatly minimize the hotness tracking
overhead and complexity, without sacrificing the effectiveness
of the resulting mechanism. Unlike our work, which aims to
reduce refresh overheads, these past mechanisms that separate
hot and cold data target other optimizations within flash,
such as FTL algorithm latency [28, 48], garbage collection
efficiency [12, 14, 23, 29], and wear-leveling [13]. Such opti-
mizations are complementary to WARM, and can be used in
conjunction with it.

Prior work also proposes to use the update frequency
of a flash page to dynamically predict the hotness of the
data [43, 45, 49]. Update frequency can be estimated either
by using the re-reference distance (the time between the
last two writes to a page) [45, 49], or by using multiple
Bloom filters across tracking intervals [43]. Update frequency
based techniques have three major drawbacks when applied
to mitigate refresh overhead: (1) The update frequencies are
estimations, and are thus prone to false positives (as are
Bloom filters). False positives can allow misidentified hot
pages to move back and forth between the hot and cold
pools, reducing mechanism efficiency. In contrast, our work
minimizes unnecessary data movement through window size
tuning (see Section 4.1.3). (2) To access update frequency
information during garbage collection, prior techniques re-
quire a reverse translation from the physical block ID to the

12

logical page number, incurring additional performance and/or
storage overhead. Our technique, in contrast, directly encodes
the hotness information using the block ID, and thus requires
minimal storage overhead (see Section 4.3). (3) Such prior
techniques require a mechanism to dynamically determine
the hot pool size, but the details of such mechanisms are
absent in several of these works [43,45]. WARM requires the
ability to accurately set the hot pool size, in order to avoid
data corruption and minimize wear-out. Past mechanisms,
however, are designed to reduce write traffic due to garbage
collection [43, 45] or to manage both spatial and temporal
locality within the limited-capacity SSD write buffer [49],
and thus are not well suited for our purpose.

Similar to our work, the Smart Retirement FTL (SR-FTL)
exploits the observation that placing write-hot data in worn-
out blocks gains extra SSD endurance due to relaxed retention
time [19]. Unlike our work, SR-FTL assumes an SSD without
refresh, and instead places write-hot pages within worn-out
blocks with lower retention time guarantees than the SSD
specification. Limited by the number of worn-out blocks in
the flash drive, the SR-FTL hot pool tracking mechanism is
not designed to adjust the hot pool dynamically based on the
amount of hot data in the workload.

Other hot and cold data separation algorithms. Our
work aims to eliminate as many redundant refresh operations
as possible for pages with frequent writes, and designs other
flash management policies to take advantage of these refresh-
based optimizations. Since we want to capture all pages
that are written to more frequently than our refresh interval,
we must be able to dynamically adjust the hot pool size.
Maintaining a fixed hot pool size (i.e., the hottest N pages are
considered to be hot, even if some of these pages require a
refresh) can make our mechanism ineffective or incorrect. An
oversized hot pool can result in data loss, since a colder page
requiring a refresh will no longer be refreshed and remapped
by garbage collection before its retention time elapses, leading
to data corruption. A significantly undersized hot pool, on
the other hand, can experience thrashing, because hot pages
will fall into a cycle where they are evicted and moved into
the cold pool due to capacity issues in the hot pool, and
then placed back in the hot pool after subsequent writes
occur to that page. This will unnecessarily consume more
program/erase cycles within the cold pool, leading to greater
wear-out. Our dynamic hot/cold pool partitioning algorithm
avoids these issues and enables an effective mechanism.

In contrast, a majority of the prior work on hot/cold data
partitioning uses multiple queues or lists of fixed length to
identify hot and cold data [12, 14, 21–23, 38, 50], so they
can identify the hottest N pages. As these techniques cannot
adapt to different hot data sizes, they are not well-suited
to identifying the set of hot pages whose write frequencies
are higher than the refresh rate, since the size of this set
changes often during program execution. Our work provides
a mechanism that can tune the sizes of our two queues
based on workload behavior, thereby ensuring the correctness
and effectiveness of our retention management mechanism.
Prior works are instead designed to optimize other flash and
memory overheads, such as cache eviction policies [22,38,50]
and garbage collection [12, 14, 21, 23], and thus are not
applicable for our purpose.

Other flash lifetime improvement schemes. Flash life-
time can also be improved by using stronger or better ECC
correction [11, 16], as well as more intelligent flash read
mechanisms [8]. Other proposed mechanisms to increase
flash lifetime include using neighboring cells to assist in
error correction [11], adapting the read reference voltage
based predicted program interference [8], on threshold voltage
shifts [5], and on data retention age [7], and tuning the
pass-through voltage to minimize the impact of read disturb
errors [6]. These works are complementary to WARM since
they exploit opportunities other than retention time relaxation.

DRAM refresh reduction schemes. Today’s DRAM
chips require refresh operations much more frequently than
any flash memory, which leads to significant performance and
energy overhead. Prior works propose various different meth-
ods to mitigate these overheads by reducing the frequency of
DRAM refreshes [17, 20, 33, 36, 44, 47]. For example, Smart
Refresh proposes to skip refreshes for the data which is
recently written or read [17]. These mechanisms, however, are
designed for DRAM and for use in main memory subsystems,
and they have issues specific to DRAM as discussed in prior
work [25, 32, 44]. Flash memory, however, is different from
DRAM, and is typically used as a storage device.

8. Conclusion
We introduce WARM, a write-hotness aware retention

management policy for NAND flash memory that is designed
to extend its lifetime. We find that pages with different
degrees of write-hotness have widely ranging retention time
requirements. WARM allows us to relax the flash retention
time for write-hot data without the need for refresh, by
exploiting the high write frequency of this data. On its own,
WARM improves the lifetime of flash by an average of 3.24×
over a conventionally-managed flash device, across a range
of real I/O workload traces. When combined with refresh
mechanisms, WARM eliminates redundant refresh operations
to recently written data. In conjunction with an adaptive
refresh mechanism, WARM extends the average flash lifetime
by 12.9×, which represents a 1.21× increase over using the
adaptive refresh mechanism alone. We conclude that WARM
is an effective policy for improving overall flash lifetime with
or without refresh mechanisms.

Acknowledgments
We thank Xubin He and the anonymous reviewers for

their helpful feedback. We also thank Jae Won Choi for
his assistance. This work is partially supported by the Intel
Science and Technology Center for Cloud Computing, the
CMU Data Storage Systems Center, and NSF grants 0953246,
1065112, 1212962, and 1320531.

References
[1] M. Abraham, “NAND Flash Architecture and Specification Trends,”

in Flash Memory Summit, 2012.
[2] N. Agrawal, V. Prabhakaran, and T. Wobber, “Design Tradeoffs for

SSD Performance,” in USENIX ATC, 2008.
[3] J. S. Bucy, J. Schindler, S. W. Schlosser, and G. R. Ganger, “The

DiskSim Simulation Environment Version 4.0 Reference Manual,”
Carnegie Mellon Univ. Parallel Data Lab, Tech. Rep. CMU-PDL-08-
101, 2008.

13

[4] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Error Patterns in MLC
NAND Flash Memory: Measurement, Characterization, and Analysis,”
in DATE, 2012.

[5] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Threshold Voltage
Distribution in MLC NAND Flash Memory: Characterization, Analy-
sis and Modeling,” in DATE, 2013.

[6] Y. Cai, Y. Luo, S. Ghose, E. F. Haratsch, K. Mai, and O. Mutlu, “Read
Disturb Errors in MLC NAND Flash Memory: Characterization and
Mitigation,” in DSN, 2015.

[7] Y. Cai, Y. Luo, E. F. Haratsch, K. Mai, and O. Mutlu, “Data Retention
in MLC NAND Flash Memory: Characterization, Optimization, and
Recovery,” in HPCA, 2015.

[8] Y. Cai, O. Mutlu, E. F. Haratsch, and K. Mai, “Program Interference
in MLC NAND Flash Memory: Characterization, Modeling, and
Mitigation,” in ICCD, 2013.

[9] Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, A. Cristal, O. Unsal, and
K. Mai, “Flash Correct and Refresh: Retention Aware Management
for Increased Lifetime,” in ICCD, 2012.

[10] Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, A. Cristal, O. Unsal, and
K. Mai, “Error Analysis and Retention-Aware Error Management for
NAND Flash Memory,” Intel Technology Journal (ITJ), 2013.

[11] Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, O. Unsal, A. Cristal, and
K. Mai, “Neighbor-Cell Assisted Error Correction in MLC NAND
Flash Memories,” in SIGMETRICS, 2014.

[12] L.-P. Chang and T.-W. Kuo, “An Adaptive Striping Architecture for
Flash Memory Storage Systems of Embedded Systems,” in RTAS,
2002.

[13] L.-P. Chang, “On Efficient Wear Leveling for Large-Scale Flash-
Memory Storage Systems,” in SAC, 2007.

[14] M.-L. Chiang, P. C. H. Lee, , and R.-C. Chang, “Using Data Clustering
to Improve Cleaning Performance for Flash Memory,” in Software:
Practice & Experience, 1999.

[15] R. Frickey, “Data Integrity on 20nm SSDs,” in Flash Memory Summit,
2012.

[16] R. G. Gallager, “Low-Density Parity-Check Codes,” IRE Trans. Infor-
mation Theory, 1962.

[17] M. Ghosh and H.-H. S. Lee, “Smart Refresh: An Enhanced Memory
Controller Design for Reducing Energy in Conventional and 3D Die-
Stacked DRAMs,” in MICRO, 2007.

[18] J. Heidecker, “Flash Memory Reliability: Read, Program, and Erase
Latency Versus Endurance Cycling,” Jet Propulsion Lab, Tech. Rep.
10-19, 2010.

[19] P. Huang, G. Wu, X. He, and W. Xiao, “An Aggressive Worn-
out Flash Block Management Scheme to Alleviate SSD Performance
Degradation,” in EuroSys, 2014.

[20] C. Isen and L. John, “ESKIMO – Energy Savings Using Semantic
Knowledge of Inconsequential Memory Occupancy for DRAM Sub-
system,” in MICRO, 2009.

[21] J. A. Joao, O. Mutlu, and Y. N. Patt, “Flexible Reference-Counting-
Based Hardware Acceleration for Garbage Collection,” in ISCA, 2009.

[22] T. Johnson and D. Shasha, “2Q: A Low Overhead High Performance
Buffer Management Replacement Algorithm,” in VLDB, 1994.

[23] T. Jung, Y. Lee, J. Woo, and I. Shin, “Double Hot/Cold Clustering for
Solid State Drives,” in CSA, 2013.

[24] J. Katcher, “Postmark: A New File System Benchmark,” Network
Appliance, Tech. Rep. TR3022, 1997.

[25] S. Khan, D. Lee, Y. Kim, A. Alameldeen, C. Wilkerson, and O. Mutlu,
“The Efficacy of Error Mitigation Techniques for DRAM Retention
Failures: A Comparative Experimental Study,” in SIGMETRICS, 2014.

[26] Y. Koh, “NAND Flash Scaling Beyond 20nm,” in IMW, 2009.

[27] R. Koller and R. Rangaswami, “I/O Deduplication: Utilizing Content
Similarity to Improve I/O Performance,” ACM Trans. Storage (TOS),
2010.

[28] H.-S. Lee, H.-S. Yun, and D.-H. Lee, “HFTL: Hybrid Flash Translation
Layer Based on Hot Data Identification for Flash Memory,” IEEE
Trans. Consumer Electronics (TCE), 2009.

[29] S. Lee, D. Shin, Y.-J. Kim, and J. Kim, “LAST: Locality-Aware Sector
Translation for NAND Flash Memory-Based Storage Systems,” ACM
SIGOPS Operating Systems Review (OSR), 2008.

[30] Y. Li, A. Jiang, and J. Bruck, “Error Correction and Partial Information
Rewriting for Flash Memories,” in ISIT, 2014.

[31] Y. Li, Y. Ma, E. E. Gad, M. Kim, A. Jiang, and J. Bruck, “Implement-
ing Rank Modulation,” in NVMW, 2015.

[32] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu, “An Experi-
mental Study of Data Retention Behavior in Modern DRAM Devices:
Implications for Retention Time Profiling Mechanisms,” in ISCA,
2013.

[33] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “RAIDR: Retention-Aware
Intelligent DRAM Refresh,” in ISCA, 2012.

[34] R.-S. Liu, C.-L. Yang, C.-H. Li, and G.-Y. Chen, “DuraCache: A
Durable SSD Cache Using MLC NAND Flash,” in DAC, 2013.

[35] R. Liu, C. Yang, and W. Wu, “Optimizing NAND Flash-Based SSDs
via Retention Relaxation,” in FAST, 2012.

[36] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker:
Saving DRAM Refresh-Power Through Critical Data Partitioning,” in
ASPLOS, 2011.

[37] A. Maislos, “A New Era in Embedded Flash Memory,” in Flash
Memory Summit, 2011.

[38] N. Megiddo and D. S. Modha, “ARC: A Self-Tuning, Low Overhead
Replacement Cache,” in FAST, J. Chase, Ed., 2003.

[39] V. Mohan, S. Sankar, and S. Gurumurthi, “reFresh SSDs: Enabling
High Endurance, Low Cost Flash in Datacenters,” Univ. of Virginia,
Tech. Rep. CS-2012-05, 2012.

[40] D. Narayanan, A. Donnelly, and A. Rowstron, “Write Off-Loading:
Practical Power Management for Enterprise Storage,” ACM Trans.
Storage (TOS), 2008.

[41] W. D. Norcott and D. Capps, “IOzone Filesystem Benchmark.”
http://www.iozone.org

[42] Y. Pan, G. Dong, Q. Wu, and T. Zhang, “Quasi-Nonvolatile SSD:
Trading Flash Memory Nonvolatility to Improve Storage System
Performance for Enterprise Applications,” in HPCA, 2012.

[43] D. Park and D. H. Du, “Hot Data Identification for Flash-Based
Storage Systems Using Multiple Bloom Filters,” in MSST, 2011.

[44] M. K. Qureshi, D.-H. Kim, S. Khan, P. J. Nair, and O. Mutlu,
“AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for
DRAM Systems,” in DSN, 2015.

[45] R. Stoica and A. Ailamaki, “Improving Flash Write Performance by
Using Update Frequency,” in VLDB, 2013.

[46] Univ. of Massachusetts, “Storage: UMass Trace Repository.”
http://tinyurl.com/k6golon

[47] R. K. Venkatesan, S. Herr, and E. Rotenberg, “Retention-Aware
Placement in DRAM (RAPID): Software Methods for Quasi-Non-
Volatile DRAM,” in HPCA, 2006.

[48] C.-H. Wu and T.-W. Kuo, “An Adaptive Two-Level Management for
the Flash Translation Layer in Embedded Systems,” in ICCAD, 2006.

[49] G. Wu, B. Eckart, and X. He, “BPAC: An Adaptive Write Buffer
Management Scheme for Flash-based Solid State Drives,” in MSST,
2010.

[50] Y. Zhou, J. Philbin, and K. Li, “The Multi-Queue Replacement
Algorithm for Second Level Buffer Caches,” in USENIX ATC, 2001.

14

