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Executive Summary

Different memory technologies have different strengths
A hybrid memory system (DRAM-PCM) aims for best of both

Problem: How to place data between these heterogeneous
memory devices?

Observation: PCM array access latency is higher than
DRAM’s — But peripheral circuit (row buffer) access latencies
are similar

Key Idea: Use row buffer locality (RBL) as a key criterion for
data placement

Solution: Cache to DRAM rows with low RBL and high reuse

Improves both performance and energy efficiency over
state-of-the-art caching policies 2



Demand for Memory Capacity

1. Increasing cores and thread contexts
— Intel Sandy Bridge: 8 cores (16 threads)
— AMD Abu Dhabi: 16 cores
— IBM POWER?7: 8 cores (32 threads)
— Sun T4: 8 cores (64 threads)
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Demand for Memory Capacity

1. Increasing cores and thread contexts
— Intel Sandy Bridge: 8 cores (16 threads)
— AMD Abu Dhabi: 16 cores
— IBM POWER?7: 8 cores (32 threads)
— Sun T4: 8 cores (64 threads)

2. Modern data-intensive applications operate
on increasingly larger datasets

— Graph, database, scientific workloads



Emerging High Density Memory

* DRAM density scaling becoming costly
* Promising: Phase change memory (PCM)

+ Projected 3-12x denser than DRAM [Mohan HPTS'09]
+ Non-volatile data storage

* However, cannot simply replace DRAM

— Higher access latency (4-12x DRAM) [Lee+ ISCA’09]
— Higher dynamic energy (2-40x DRAM) [Lee+ ISCA’09]

— Limited write endurance (~108 writes) [Lee+ ISCA’09]

- Employ both DRAM and PCM



Hybrid Memory

 Benefits from both DRAM and PCM

— DRAM: Low latency, dyn. energy, high endurance
— PCM: High capacity, low static energy (no refresh)

DRAM J L PCM




Hybrid Memory

* Design direction: DRAM as a cache to PCM

[Qureshi+ ISCA’09]
— Need to avoid excessive data movement

— Need to efficiently utilize the DRAM cache

DRAM J L PCM




Hybrid Memory

e Key question: How to place data between the
heterogeneous memory devices?
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Outline

* Motivation: Row Buffers and Implications on
Data Placement



Hybrid Memory: A Closer Look

Memory channel
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Row Buffers and Latency
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Key Observation

e Row buffers exist in both DRAM and PCM

— Row hit latency similar in DRAM & PCM [Lee+ IScA’09]
— Row miss latency small in DRAM, large in PCM

 Place data in DRAM which

— is likely to miss in the row buffer (low row buffer
locality)=> miss penalty is smaller in DRAM

AND

— is reused many times = cache only the data

worth the movement cost and DRAM space
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RBL-Awareness: An Example

Let’s say a processor accesses four rows

Row A

Row B

Row C

Row D
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RBL-Awareness: An Example

Let’s say a processor accesses four rows
with different row buffer localities (RBL)
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|| RowA | RowB. | RowC RowD |
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Low RBL High RBL
(Frequently miss (Frequently hit
in row buffer) in row buffer)

Case 1: RBL-Unaware Policy (state-of-the-art)
Case 2: RBL-Aware Policy (RBLA)
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Case 1: RBL-Unaware Policy

A row buffer locality-unaware policy could
place these rows in the following manner

Row C

Row D

DRAM

(High RBL)

Row A

. RowB

PCM

(Low RBL)
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Case 1: RBL-Unaware Policy

Access pattern to main memory:
A (oldest), B, C,C,C, A, B, D, D, D, A, B (youngest)

I
DRAM (HighrBL) . € € C D DD

|
PCM (LowRBL) { A LBl A LBl A B

I€ >l
RBL-Unaware: Stall time is 6 PCM device accesses

time :
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Case 2: RBL-Aware Policy (RBLA)

A row buffer locality-aware policy would
place these rows in the opposite manner

Row A Row C
... RowB Row D
(Low RBL) (High RBL)
- Access data at lower row - Access data at low row

buffer miss latency of DRAM buffer hit latency of PCM
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Case 2: RBL-Aware Policy (RBLA)

Access pattern to main memory:
A (oldest), B, C,C,C, A, B, D, D, D, A, B (youngest)

I I
DRAM (HighrBL) . € € C D DD !

PCM (LowRBL) | A LBl A LBl A B
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RBL-Unaware:: Stall time is 6 PCM device:accesses :
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| o — 1 Saved cycles
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RBL-Aware:.StaII time is 6 DRAM devicé accesses
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Outline

 Mechanisms: Row Buffer Locality-Aware
Caching Policies
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Our Mechanism: RBLA

1. For recently used rows in PCM:

— Count row buffer misses as indicator of row buffer
locality (RBL)

2. Cache to DRAM rows with misses > threshold

— Row buffer miss counts are periodically reset (only
cache rows with high reuse)

20



Our Mechanism: RBLA-Dyn

1. For recently used rows in PCM:

— Count row buffer misses as indicator of row buffer
locality (RBL)

2. Cache to DRAM rows with misses > threshold

— Row buffer miss counts are periodically reset (only
cache rows with high reuse)

3. Dynamically adjust threshold to adapt to
workload/system characteristics

— Interval-based cost-benefit analysis 21



Implementation: “Statistics Store™

* Goal: To keep count of row buffer misses to
recently used rows in PCM

 Hardware structure in memory controller
— Operation is similar to a cache

* Input: row address
e Output: row buffer miss count

— 128-set 16-way statistics store (9.25KB) achieves
system performance within 0.3% of an unlimited-
sized statistics store
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Outline

 Evaluation and Results
 Conclusion
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Evaluation Methodology

* Cycle-level x86 CPU-memory simulator

— CPU: 16 out-of-order cores, 32KB private L1 per
core, 512KB shared L2 per core

— Memory: 1GB DRAM (8 banks), 16GB PCM (8
banks), 4KB migration granularity

* 36 multi-programmed server, cloud workloads
— Server: TPC-C (OLTP), TPC-H (Decision Support)
— Cloud: Apache (Webserv.), H.264 (Video), TPC-C/H

* Metrics: Weighted speedup (perf.), perf./Watt
(energy eff.), Maximum slowdown (fairness) y



Comparison Points

e Conventional LRU Caching

FREQ: Access-frequency-based caching

— Places “hot data” in cache [Jiang+ HPCA’10]

— Cache to DRAM rows with accesses > threshold
— Row buffer locality-unaware

FREQ-Dyn: Adaptive Freq.-based caching
— FREQ + our dynamic threshold adjustment
— Row buffer locality-unaware

RBLA: Row buffer locality-aware caching
RBLA-Dyn: Adaptive RBL-aware caching
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System Performance
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Average Memory Latency

B FREQ-Dyn mRBLA ®ERBLA-Dyn

®FREQ

=
N

|14%

o
oo

o
~

Normalized Avg Memory Latency
o o
N (@))

o

Server Cloud Avg
Workload 57



Memory Energy Efficiency
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Thread Fairness
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Compared to AlI-PCM/DRAM
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Other Results 1n Paper

 RBLA-Dyn increases the portion of PCM row
buffer hit by 6.6 times

 RBLA-Dyn has the effect of balancing memory
request load between DRAM and PCM

— PCM channel utilization increases by 60%.
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Summary

Different memory technologies have different strengths
A hybrid memory system (DRAM-PCM) aims for best of both

Problem: How to place data between these heterogeneous
memory devices?

Observation: PCM array access latency is higher than
DRAM’s — But peripheral circuit (row buffer) access latencies
are similar

Key Idea: Use row buffer locality (RBL) as a key criterion for
data placement

Solution: Cache to DRAM rows with low RBL and high reuse

Improves both performance and energy efficiency over
state-of-the-art caching policies 32



Thank you! Questions?
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Appendix
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Cost-Benefit Analysis (1/2)

 Each quantum, we measure the first-order
costs and benefits under the current threshold

— Cost = cycles expended for data movement

— Benefit = cycles saved servicing requests in DRAM

versus PCM
* Cost = Migrations X 1:migration
* Benefit = Readspgam X (tread,pem ~ tread, pram)

+ Writesppam X (twrite,PCM - twrite,DRAM)



Cost-Benefit Analysis (2/2)

* Dynamic Threshold Adjustment Algorithm

NetBenefit = Benefit - Cost
if (NetBenefit < 0)
MissThresh++
else if (NetBenefit > PreviousNetBenefit)
if (MissThresh was previously incremented)
MissThresh++
else
MissThresh--
else
if (MissThresh was previously incremented)
MissThresh--
else
MissThresh++
PreviousNetBenefit = NetBenefit



Simulator Parameters

 Core model
— 3-wide issue with 128-entry instruction window

— Private 32 KB per core L1 cache
— Shared 512 KB per core L2 cache

* Memory model
— 1 GB DRAM (1 rank), 16 GB PCM (1 rank)
— Separate memory controllers, 8 banks per device
— Row buffer hit: 40 ns
— Row buffer miss: 80 ns (DRAM); 128, 368 ns (PCM)
— Migrate data at 4 KB granularity



Row Buffer Locality
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PCM Channel Utilization
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DRAM Channel Utilization
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Compared to AlI-PCM/DRAM
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Memory Lifetime
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DRAM Cache Hit Rate
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