Zorua

A Holistic Approach to **Resource Virtualization in GPUs**

Session 2A – Monday, 5:20 PM

Nandita Vijaykumar, Kevin Hsieh, Gennady Pekhimenko, Samira Khan, Ashish Shrestha, Saugata Ghose, Adwait Jog, Phillip B. Gibbons, Onur Mutlu

Overview

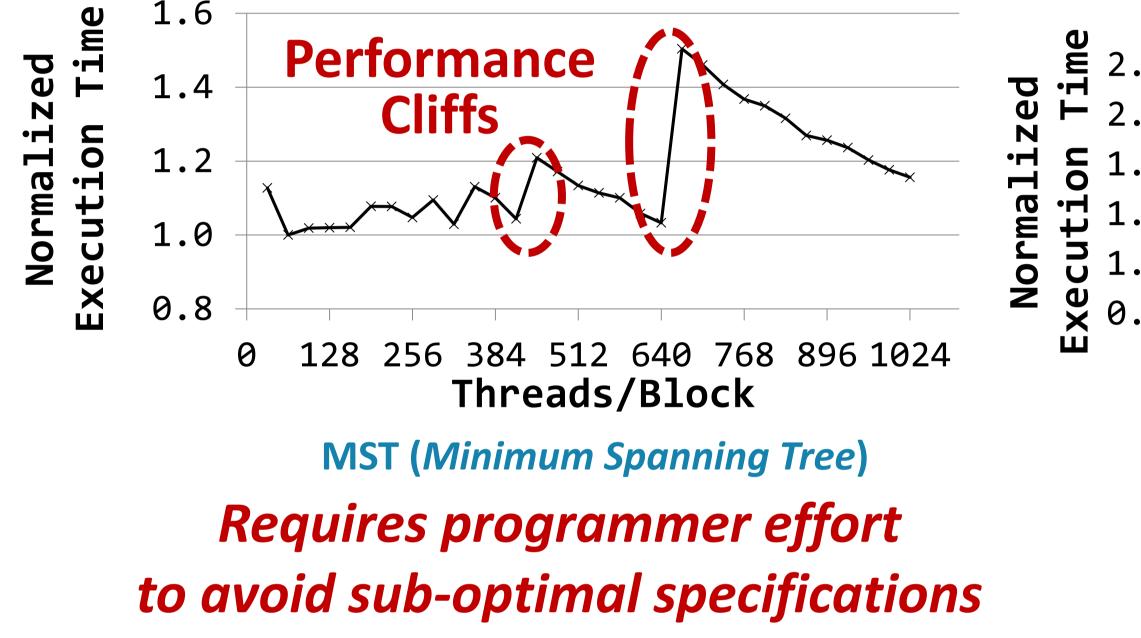
- **Problem:** Major on-chip resources in GPUs are managed by the programmer/software
- Key Issues: Leads to several challenges in obtaining high performance:
- **Programming Ease:** Requires programmer effort to optimize resource usage
- **Performance Portability:** Optimizations do not port well across different GPU architectures
- **Resource Inefficiency:** Underutilized resources even in optimized code

• Our Goal:

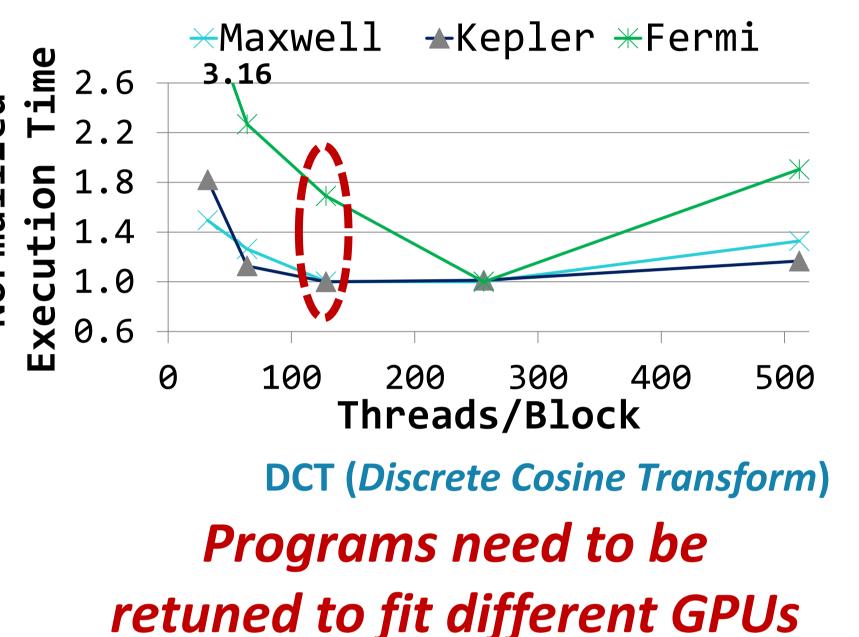
 Reduce dependence of performance on programmer-specified resource usage

Problem: Tight coupling between programmer specified resource usage and hardware allocation **Programmer/Software** <#Threads,#Registers,Scratchpad(B)> per block

Hardware


- Enhance resource efficiency for optimized code
- Our Approach: *Decouple* the programmer-specified resource usage from the allocation in the hardware

Thread Slots	

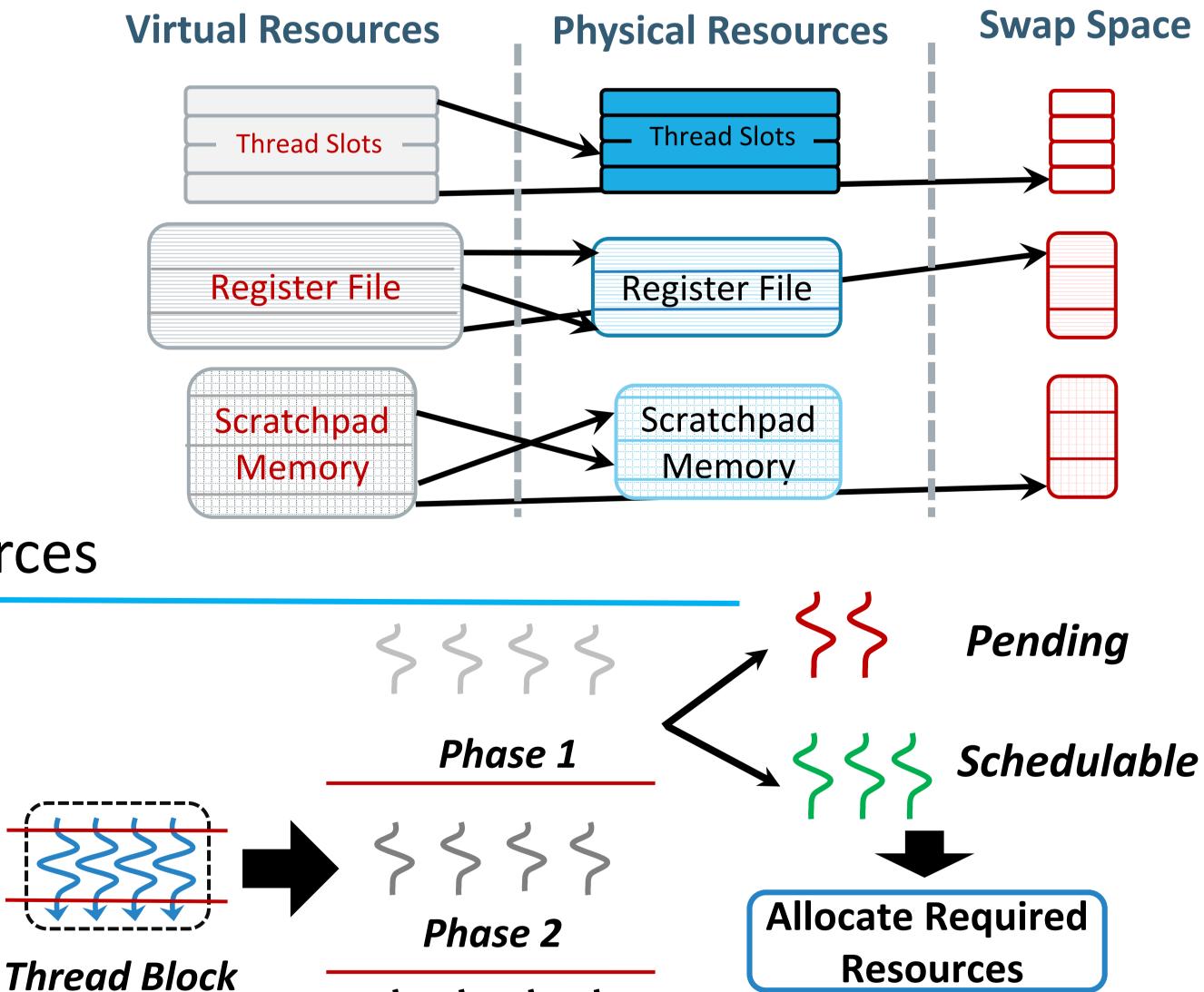

		 	 					 · · · ·	 	 				 			 	 ļ.,
•••		 	 	-	N		-	 	 	 	 	 	 	 		 	 	
								_		~				 •				
				111		177					1		 -	•				111
						~						: .		Δ.				1
		 				0		_				_			Ζ.,			l.,
			 					 	 	 	 	 		 7			 	
		 	 					 	 	 				 			 	 -
																		÷ .
																		÷
		 								 				 				E.
		 	 					 	 	 				 			 	 -
																		1
	1.0																	 ۰.

Tight Coupling Between Resource Specification and Allocation Leads to Several Challenges

Programming Ease

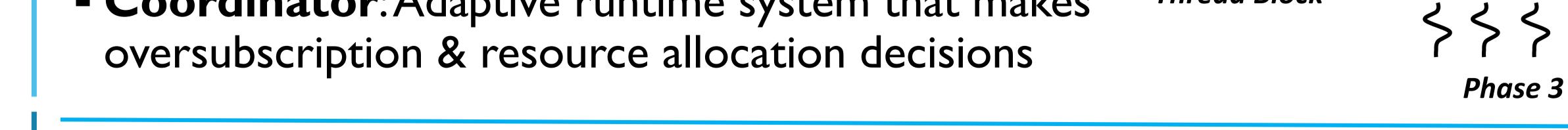
Performance Portability

Resource Efficiency

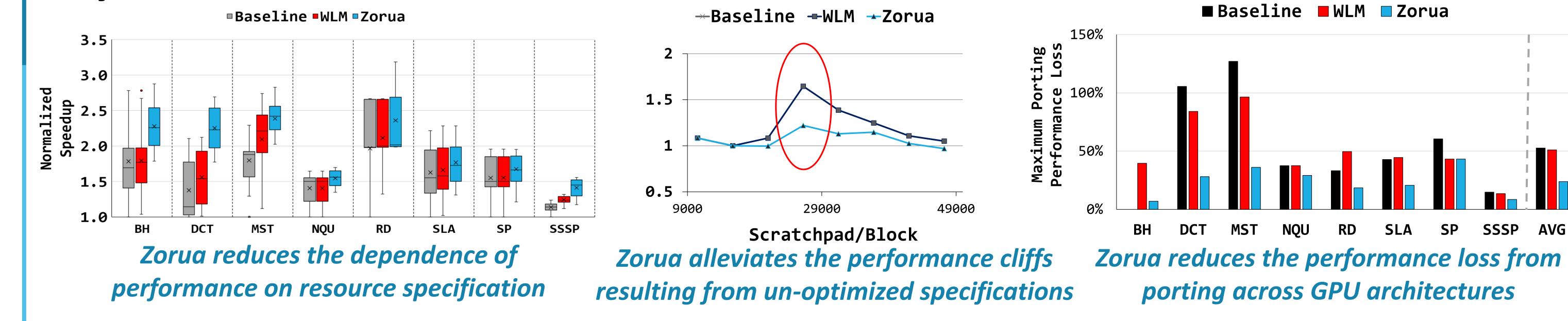

	<pre>global void CUDAkernel2DCT(float *dst, float *src, i int OffsThreadInRow = threadIdx.y * B + threadIdx.x;</pre>	int I){ ↑
	<pre>for(unsigned int i = 0; i < B; i++) bl_ptr[i * X] = src[i * I];</pre>	16 regs
	syncthreads();	1
	<pre> CUDAsubroutineInplaceDCTvector();</pre>	32 regs
	<pre>for(unsigned int i = 0; i < B; i++)</pre>	Ť
	dst[i *I] = bl_ptr[i * X];	16 regs
}	• ••	Ļ
	Resource inefficiency results from	
	worst-case static allocation	

Zorua: Decouple Programmer/Software Resource Specification from Hardware Allocation

- Virtualizing major on-chip GPU resources:
 - Dynamic allocation/deallocation of resources
 - Careful oversubscription of resources using a swap space in the memory hierarchy
- Two design challenges
 - Control the extent of oversubscription
 - **Coordinate** virtualization of **multiple** on-chip resources


Key Components of Zorua

- Compiler: Statically finds program phases, annotates per-phase resource needs
- Coordinator: Adaptive runtime system that makes



Warp

Scheduler

Key Results

