Zorua: A Holistic Approach to
Resource Virtualization in GPUs

Nandita Vijaykumar
Kevin Hsieh, Gennady Pekhimenko, Samira Khan,
Ashish Shrestha, Saugata Ghose, Adwait Jog, Phillip B. Gibbons, Onur Mutlu

Villcgle M WILLIAM
University Research Y TRONIA. (MARY m Ziirich

Overview

* Problem: Major on-chip resources in GPUs are managed by the
programmer/software

* Key Issues: Leads to several challenges in obtaining high performance:
— Programming Ease: Requires programmer effort to optimize resource usage

— Performance Portability: Optimizations do not port well across different GPUs
— Resource Inefficiency: Underutilized resources even in optimized code

* Our Goal:
— Reduce dependence of performance on programmer-specified resource usage

— Enhance resource efficiency for optimized code

* Our Approach: Decouple the programmer-specified resource usage from the
allocation in the hardware

e Zorua: A Holistic Resource Virtualization Framework for GPUs

* Key Results: Zorua enhances programming ease, performance portability and

performance for optimized code 2

GPUs today are used across many
classes of applications ...

C t
Machine I Qmpu =r
- N / Vision

Biomedical
lmaging

Scientific /

Simulation

On-Chip Resources in GPUs

=)

Register File

- =

-

Compute Units Thread Slots

Register File

Every thread in a thread block needs to be allocated
enough (worst-case) resources to execute and complete

> Inread
Block

Work
Group

-
[4
1
<
o
<
r
(]
Ao
S
Q
\zE
v
’--n--‘q

<— Thread Slots —> 5

Abstraction of On-Chip Resources

Programmer/Software

Tight coupling between
resource specification and allocation

g \
- Register File A hpad
~ >

Thread Slots

Key Issues

1. Static Underutilization

2. Dynamic Underutilization

| 1. Static Underutilization

<#Threads) #Registers,Scratchpad(KB) >

Static underutilization may lead to
Ioss in parallellsm

- 5 Sl Wl Wl W ew

______________ Hardware

i' E Parallelism:
i i » » 1 thread block

______________ 11 threads g
€ 11 threads =>

To make things worse...

Same problem exists for other on-chip resources
registers, scratchpad memory, thread blocks

The programmer needs to get it right for
all of them at the same time

Implication 1: Programming Ease

.on

1.6 -

Al N

Requires programmer effort
to avoid sub optlmal specifications

1 \ =X X /

\~¢, \/.
0.9
0.8

Performance
C|IffS

Normal

%) 128 256 384 512 640 768 896 1024
Threads/Block

MST (Minimum Spanning Tree)

10

Implication 2: Performance Portability

--~Maxwell -~Kepler -Fermi

Programs need to be
retuned to fit different GPUs

/ /

.E io 2 I e\

"o 1 x\H W

§ 0.8 l

= 9 128 256 384 512
Threads/Block

DCT (Discrete Cosine Transform) 11

| Key Issues

1. Static Underutilization

[2. Dynamic Underutilization}

12

2. Dynamic Underutilization

Resource requirements of a thread vary throughout execution

Implication:
Resource inefficiency due to
worst-case static allocation

¥

for(unsigned int i = @; i < B; i++) T
dst[i *I] = bl_ptr[i * X]; 16 regs

} |

13

Our Goal

* Reduce the dependence of performance on
resource specification

— Programming Ease

— Performance Portability

* Improve efficiency of resource utilization
— Higher performance for optimized code

14

Outline
* Problem: Tight Coupling

* Key Implications
|+ Our Goal |

| < Our Approach: Zorua |
— Virtualization Strategy
— Design Challenges
— Design ldeas

* Evaluation

15

Our Approach

Virtual Resources

Thread Slots

Programmer/Software

Register File

)

Zorua: A Holistic Virtualization Approach

- J
Thread Slots

kS

J

16

How do we design a virtualization strategy
to effectively address the key issues?

17

| 1. Static Underutilization

(gzéreads, Registers,Scratchpad(KB) >

Flexibility in available resources
helps restore parallelism

"""""""") S
<€ 11 threads =>» Thread Slots in B parallelism:
Hardware 1 thread block

11 threads
18

Addressing Key Issues

1. Static Underutilization

Provide an illusion of a flexible amount
of resources

2. Dynamic Underutilization

Enable dynamic allocation/deallocation
of resources

19

Outline
* Problem: Tight Coupling

* Key Implications
* Our Goal

* Our Approach: Zorua
| — Virtualization Strategy |
— Design Challenges
— Design Ideas

* Evaluation

20

Zorua: Virtualization Strategy

Virtual Resources Physical Resources

Fine-grained dynamic allocation provides
resource efficiency

21

Zorua: Virtualization Strategy swap space

(in the mem.
Virtual Resources Physical Resources hierarchy)

ﬁ

Careful oversubscription using a swap space provides
flexibility in the amount of resources

22

Outline
Problem: Tight Coupling

Key Implications
Our Goal

Our Approach: Zorua
Virtualization Strategy

| — Design Challenges |
Design Ideas

Evaluation

23

Zorua: Design Challenges

* Challenge 1: Controlling the extent of oversubscription
— Spills are expensive

* Challenge 2: Coordinating virtualization of multiple
on-chip resources

— Resources are independently virtualized

Resource requirements vary during execution

24

Zorua Design: Key Questions

* How do we determine the variation in resource
requirements?

* How do we use this knowledge to:
— control how much we oversubscribe at run time?

— coordinate allocation of multiple resources to maximize
parallelism within the oversubscription budget?

25

Outline
Problem: Tight Coupling

Key Implications
Our Goal

Our Approach: Zorua
Virtualization Strategy
Design Challenges

| — Design Ideas |

Evaluation

26

Component 1: The Compiler

F A [] [[] ()
o |l fviAavrarrA e~ riAava +A NntAvrrminA v Aari FiAnn 1N racAlivr~A rantiirarmante

Use the compiler to:

 Statically partition the program into phases
Add annotations with per-phase resource requirements

CUDAsubroutineInplaceDCTvector(..); 32 regs

for(unsigned int 1 = @; i < B; i++)
dst[i *I] = bl_ptr[i * X]; 16 regs

' | 27

Zorua Design: Key Questions

requirements?
.

[. . . .)
* How do we determine the variation in resource

J

- How do we use this knowledge to:
— control how much we oversubscribe at run time?

\ parallelism within the oversubscription budget?

\

— coordinate allocation of multiple resources to maximize

J

28

| Component 2: Hardware Runtime System

%% Pending

Schedulable

Phase 1

——————————

A Y

: o
e Al =l
Resources
Phase 3 Warp
Scheduler 29

Putting It All Together

Zorua: A hardware-software cooperative framework

* The compiler: annotates the program to partition it into phases
and specify the resource needs of each phase

* The coordinator: a hardware runtime system that makes
oversubscription decisions and allocates/deallocates resources

* Hardware virtualization support:
— Mapping tables for each resource (1.85kB = 0.134% of the die area)
— Machinery to swap data between on-chip hardware & swap space

30

Outline
Problem: Tight Coupling

Key Implications
Our Goal

Our Approach: Zorua
Virtualization Strategy
Design Challenges
Design Ideas

[Evaluation]

31

Methodology

* Evaluation Infrastructure: Real GPUs (Fermi/Kepler/Maxwell),
GPGPUSIim, GPUWattch

* Workloads
— Lonestar, CUDA SDK

* System Parameters

— 15 SMs, 32 threads/warp

— Warps/SM: Fermi: 48, Kepler/Maxwell: 64

— Registers: Fermi: 32768, Kepler/Maxwell: 65536

— Scratchpad: Fermi/Kepler: 48KB, Maxwell: 64KB

— Core: 1.4GHz, GTO scheduler, 2 schedulers/SM

— Memory: 177.4GB/s BW, 6 GDDR5 Memory controllers

* Overheads of Zorua
— 2-cycle latency for mapping table lookup for each resource

— Memory requests for swap space accesses

32

| Effect on Performance Variation

B Baseline B WLM @ Zorua

3.5‘
/7~ N\

Zor(:j redluces the dependence of

erformance on resource specification
p f _—PeHBPRIdAHEdBation across p f

g ¥ . tiffeYER?Becification points
1.5 I Lower Quartile
Minimum

1.0
BH DCT MST NQU RD SLA SP SSSP
* Xiang et al., HPCA ‘14

33

| Effect on Performance Cliffs

~Baseline =WLM -+Zorua --Baseline -=WLM -+Zorua

n

Zorua alleviates the performance cliffs
resulting from un-optimized specifications

I -

1024 9000 29000 49000

Normal:

Threads/Block Scratchpad/Block

MST NQU 34

Maximum Porting
Performance Loss

Effect on Performance Portability

B Baseline HWLM M Zorua
150%

100%

53%

24%

507%

BH DCT MST NQU RD SLA SP SSSP AVG

0%
35

Other Uses

Resource sharing in multi-programmed
environments

Low latency preemption of kernels
Dynamic parallelism

36

Conclusion

* Problem: The tight coupling between programmer-specified resource
usage and allocation of on-chip resources leads to challenges in:
— programming ease, performance portability, resource efficiency

* Our Approach: Decouple specification and management of on-chip
resources

* Our Solution: Zorua: A holistic approach to virtualizing multiple on-chip
resources in GPUs

* Key Results:

— Zorua reduces dependence of performance on programmer-specified
resource usage

* Zorua enhances programming ease and performance portability
— Zorua improves performance with more efficient resource utilization

* Future Work: Zorua enables several other use cases 37

Zorua: A Holistic Approach to
Resource Virtualization in GPUs

Nandita Vijaykumar
Kevin Hsieh, Gennady Pekhimenko, Samira Khan,
Ashish Shrestha, Saugata Ghose, Adwait Jog, Phillip B. Gibbons, Onur Mutlu

Villcgle M WILLIAM
University Research Y TRONIA. (MARY m Ziirich

" AWalkthrough

Coordinator
4 $ ™ $
:l \: $ $9 $ Warp
i\ A g 1 Scheduler
T N . / Acquire

Thread $ Thread Scratchpad Register

Block queue queue queue resources
Scheduler - ~

Register Scratchpad Thread
Release Mapping Mapping Mapping
Table Table Table
resources - Y,

| Effect on schedulable warps

B Zorua

|
|
|
|
|
|
|
|
|
—— - — — o e — o — — — ———— - — o — — —— — —— - - ——r———— —
|
|
|
|
1
|
|
|
|
|
|
1

BH

OWLM

D O W O
N O OH Hd ® 0 ®
sduem 21qe1npayls
poZTTEewJopN

MST NQU RD SLA SP S55P GM

DCT

41

Normalized Energy

Effect on energy consumption

COWLM B Zorua

@ & ®@ © O BB
i v ~ 00 W @

BH DCT MST NQU RD SLA SP

S55P

GM

42

Summary of applications

Name (Abbreviation)

(R: Register, S: Scratchpad,
T: Thread block) Range

Barnes-Hut (BH) [8]

R:28-44 x T:128-1024

Discrete Cosine Transform (DCT) [52]

R:20-40 =< T: 64-512

Minimum Spanning Tree (MST) [8]

R:28-44 x T: 256-1024

Reduction (RD) [52]

R:16-24 x T:64-1024

N-Queens Solver (NQU) [11] [5]

5:10496-47232 (T:64-288)

Scan Large Array (SLA) [52]

R:24-36 x T:128-1024

Scalar Product (SP) [52]

5:2048-8192 x T:128-512

Single-Source Shortest Path (SSSP) [8]

R:16-36 x T:256-1024

43

