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Overview
• Problem: Major on-chip resources in GPUs are managed by the 

programmer/software

• Key Issues: Leads to several challenges in obtaining high performance:
– Programming Ease: Requires programmer effort to optimize resource usage
– Performance Portability: Optimizations do not port well across different GPUs 
– Resource Inefficiency: Underutilized resources even in optimized code 

• Our Goal: 
– Reduce dependence of performance on programmer-specified resource usage
– Enhance resource efficiency for optimized code 

• Our Approach: Decouple the programmer-specified resource usage from the 
allocation in the hardware

• Zorua: A Holistic Resource Virtualization Framework for GPUs

• Key Results: Zorua enhances programming ease, performance portability and 
performance for optimized code



GPUs today are used across many 
classes of applications …
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On-Chip Resources in GPUs
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Thread Slots

Register File
Scratchpad

Memory

Thread 
Block

Work 
Group

<#Threads,#Registers><#Threads,#Registers,Scratchpad(KB)><#Threads>

Thread Slots

Every thread in a thread block needs to be allocated
enough (worst-case) resources to execute and complete



Abstraction of On-Chip Resources
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Thread Slots

Scratchpad
Memory

Hardware

Programmer/Software

<#Threads,#Registers,Scratchpad(KB)> per blockTight coupling between 
resource specification and allocation



Key Issues

1. Static Underutilization

2. Dynamic Underutilization
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1. Static Underutilization
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Thread Slots in 
Hardware

20

Thread Block

10 threads

<#Threads,#Registers,Scratchpad(KB)>

Parallelism: 
1 thread block 

11 threads
11 threads

Parallelism: 
2 thread blocks 

20 threads

Static underutilization may lead to 
loss in parallelism



To make things worse…

•Same problem exists for other on-chip resources
– registers, scratchpad memory, thread  blocks

•The programmer needs to get it right for               
all of them at the same time
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Performance 
Cliffs

MST (Minimum Spanning Tree)

Requires programmer effort 
to avoid sub-optimal specifications
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11DCT (Discrete Cosine Transform)

Programs need to be 
retuned to fit different GPUs



Key Issues

1. Static Underutilization

2. Dynamic Underutilization
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2. Dynamic Underutilization
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__global__ void CUDAkernel2DCT(float *dst, float *src, int I){
int OffsThreadInRow = threadIdx.y * B + threadIdx.x;
... 
for(unsigned int i = 0; i < B; i++)

bl_ptr[i * X] = src[i * I];

__syncthreads();
... 
CUDAsubroutineInplaceDCTvector(…);

for(unsigned int i = 0; i < B; i++)
dst[i *I] = bl_ptr[i * X]; 

}

16 regs

32 regs

16 regs

Resource requirements of a thread vary throughout execution

Implication: 
Resource inefficiency due to
worst-case static allocation



Our Goal

• Reduce the dependence of performance on 
resource specification
– Programming Ease 
– Performance Portability 

• Improve efficiency of resource utilization
– Higher performance for optimized code 
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Outline
•Problem: Tight Coupling

•Key Implications

•Our Goal

•Our Approach: Zorua
– Virtualization Strategy
– Design Challenges
– Design Ideas

• Evaluation
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Register File

Our Approach
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Register File

Thread Slots

Scratchpad
Memory

Hardware Resources

Programmer/Software
Thread Slots

Scratchpad
Memory

Virtual Resources

Decouple resource specification from 
allocation

Virtualize multiple on-chip resourcesZorua: A Holistic Virtualization Approach 
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How do we design a virtualization strategy
to effectively address the key issues?



1. Static Underutilization
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Thread Slots in 
Hardware

20

<#Threads,#Registers,Scratchpad(KB)>

Parallelism: 
1 thread block 

11 threads

11 threads

Parallelism: 
2 thread blocks 

22 threads

Flexibility in available resources 
helps restore parallelism



Addressing Key Issues

1. Static Underutilization

2. Dynamic Underutilization
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Provide an illusion of a flexible amount
of resources

Enable dynamic allocation/deallocation 
of resources



Outline
•Problem: Tight Coupling

•Key Implications

•Our Goal

•Our Approach: Zorua
– Virtualization Strategy
– Design Challenges
– Design Ideas

• Evaluation
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Zorua: Virtualization Strategy 
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Memory

Fine-grained dynamic allocation provides
resource efficiency



Zorua: Virtualization Strategy 
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Virtual Resources

Register 
File
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Scratchpad
Memory

Swap Space
(in the mem. 
hierarchy)

Careful oversubscription using a swap space provides 
flexibility in the amount of resources



Outline
•Problem: Tight Coupling

•Key Implications

•Our Goal

•Our Approach: Zorua
– Virtualization Strategy
– Design Challenges
– Design Ideas

• Evaluation
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Zorua: Design Challenges

• Challenge 1: Controlling the extent of oversubscription
– Spills are expensive

• Challenge 2: Coordinating virtualization of multiple            
on-chip resources

– Resources are independently virtualized
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Resource requirements vary during execution 



Zorua Design: Key Questions

•How do we determine the variation in resource 
requirements?

•How do we use this knowledge to:
– control how much we oversubscribe at run time? 

– coordinate allocation of multiple resources to maximize 
parallelism within the oversubscription budget?
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Outline
•Problem: Tight Coupling

•Key Implications

•Our Goal

•Our Approach: Zorua
– Virtualization Strategy
– Design Challenges
– Design Ideas

• Evaluation
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Component 1: The Compiler 
• Leverage software to determine variation in resource requirements 

• Variation in resource requirements tends to occur in fine-grained phases

27

__global__ void CUDAkernel2DCT(float *dst, float *src, int I){
int OffsThreadInRow = threadIdx.y * B + threadIdx.x;
for(unsigned int i = 0; i < B; i++)

bl_ptr[i * X] = src[i * I];
__syncthreads();

... 
CUDAsubroutineInplaceDCTvector(…);

for(unsigned int i = 0; i < B; i++)
dst[i *I] = bl_ptr[i * X]; 

}

16 regs

32 regs

16 regs

Use the compiler to:
• Statically partition the program into phases 

• Add annotations with per-phase resource requirements



Zorua Design: Key Questions

•How do we determine the variation in resource 
requirements?

•How do we use this knowledge to:
– control how much we oversubscribe at run time? 

– coordinate allocation of multiple resources to maximize 
parallelism within the oversubscription budget?
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Component 2: Hardware Runtime System
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Warp  
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Allocate Required
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Putting It All Together

Zorua:  A hardware-software cooperative framework

• The compiler: annotates the program to partition it into phases
and specify the resource needs of each phase 

• The coordinator: a hardware runtime system that makes 
oversubscription decisions and allocates/deallocates resources

• Hardware virtualization support:
– Mapping tables for each resource (1.85kB ≈ 0.134% of the die area)

– Machinery to swap data between on-chip hardware & swap space
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Outline
•Problem: Tight Coupling

•Key Implications

•Our Goal

•Our Approach: Zorua
– Virtualization Strategy
– Design Challenges
– Design Ideas

• Evaluation
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Methodology
• Evaluation Infrastructure:  Real GPUs (Fermi/Kepler/Maxwell), 

GPGPUSim, GPUWattch

• Workloads 
– Lonestar, CUDA SDK

• System Parameters
– 15 SMs, 32 threads/warp
– Warps/SM: Fermi: 48, Kepler/Maxwell: 64
– Registers: Fermi: 32768, Kepler/Maxwell: 65536
– Scratchpad: Fermi/Kepler: 48KB, Maxwell: 64KB
– Core: 1.4GHz, GTO scheduler , 2 schedulers/SM
– Memory: 177.4GB/s BW, 6 GDDR5 Memory controllers

• Overheads of Zorua
– 2-cycle latency for mapping table lookup for each resource
– Memory requests for swap space accesses
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Effect on Performance Variation
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Zorua reduces the dependence of 
performance on resource specification

Maximum

Minimum

Average
Performance variation across 
different specification points 

Lower Quartile

Upper Quartile

Baseline WLM Zorua

* Xiang et al., HPCA ‘14



Effect on Performance Cliffs
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Effect on Performance Portability

35

0%

50%

100%

150%

BH DCT MST NQU RD SLA SP SSSP AVG

M
a
x
i
m
u
m
 
P
o
r
t
i
n
g
 

P
e
r
f
o
r
m
a
n
c
e
 
L
o
s
s
 

Baseline WLM Zorua

53%

24%



Other Uses

• Resource sharing in multi-programmed 
environments

• Low latency preemption of kernels

• Dynamic parallelism

• … 
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Conclusion
• Problem: The tight coupling between programmer-specified resource 

usage and allocation of on-chip resources leads to challenges in: 
– programming ease, performance portability, resource efficiency

• Our Approach: Decouple specification and management of on-chip 
resources

• Our Solution:  Zorua: A holistic approach to virtualizing multiple on-chip 
resources in GPUs

• Key Results: 
– Zorua reduces dependence of performance on programmer-specified 
resource usage 
• Zorua enhances programming ease and performance portability

– Zorua improves performance with more efficient resource utilization 

• Future Work: Zorua enables several other use cases
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A Walkthrough
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Effect on schedulable warps
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Effect on energy consumption
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Summary of applications
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