
Zorua: A Holistic Approach to
Resource Virtualization in GPUs

Nandita Vijaykumar
Kevin Hsieh, Gennady Pekhimenko, Samira Khan,

Ashish Shrestha, Saugata Ghose, Adwait Jog, Phillip B. Gibbons, Onur Mutlu

2

Overview
• Problem: Major on-chip resources in GPUs are managed by the

programmer/software

• Key Issues: Leads to several challenges in obtaining high performance:
– Programming Ease: Requires programmer effort to optimize resource usage
– Performance Portability: Optimizations do not port well across different GPUs
– Resource Inefficiency: Underutilized resources even in optimized code

• Our Goal:
– Reduce dependence of performance on programmer-specified resource usage
– Enhance resource efficiency for optimized code

• Our Approach: Decouple the programmer-specified resource usage from the
allocation in the hardware

• Zorua: A Holistic Resource Virtualization Framework for GPUs

• Key Results: Zorua enhances programming ease, performance portability and
performance for optimized code

GPUs today are used across many
classes of applications …

GPU

Machine
Learning

Scientific
Simulation

Biomedical
Imaging

Computer
Vision

. . .

3

On-Chip Resources in GPUs

4
Compute Units Thread Slots

Register File

Scratchpad
Memory

5

Thread Slots

Register File
Scratchpad

Memory

Thread
Block

Work
Group

<#Threads,#Registers><#Threads,#Registers,Scratchpad(KB)><#Threads>

Thread Slots

Every thread in a thread block needs to be allocated
enough (worst-case) resources to execute and complete

Abstraction of On-Chip Resources

6

Register File

Thread Slots

Scratchpad
Memory

Hardware

Programmer/Software

<#Threads,#Registers,Scratchpad(KB)> per blockTight coupling between
resource specification and allocation

Key Issues

1. Static Underutilization

2. Dynamic Underutilization

7

1. Static Underutilization

8

Thread Slots in
Hardware

20

Thread Block

10 threads

<#Threads,#Registers,Scratchpad(KB)>

Parallelism:
1 thread block

11 threads
11 threads

Parallelism:
2 thread blocks

20 threads

Static underutilization may lead to
loss in parallelism

To make things worse…

•Same problem exists for other on-chip resources
– registers, scratchpad memory, thread blocks

•The programmer needs to get it right for
all of them at the same time

9

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

0 128 256 384 512 640 768 896 1024

N
o
r
m
a
l
i
z
e
d

E
x
e
c
u
t
i
o
n

T
i
m
e

Threads/Block

Implication 1: Programming Ease

10

Performance
Cliffs

MST (Minimum Spanning Tree)

Requires programmer effort
to avoid sub-optimal specifications

0.8
1

1.2
1.4
1.6
1.8

2
2.2
2.4

0 128 256 384 512N
o
r
m
a
l
i
z
e
d

E
x
e
c
u
t
i
o
n

T
i
m
e

Threads/Block

Maxwell Kepler Fermi

Implication 2: Performance Portability

11DCT (Discrete Cosine Transform)

Programs need to be
retuned to fit different GPUs

Key Issues

1. Static Underutilization

2. Dynamic Underutilization

12

2. Dynamic Underutilization

13

__global__ void CUDAkernel2DCT(float *dst, float *src, int I){
int OffsThreadInRow = threadIdx.y * B + threadIdx.x;
...
for(unsigned int i = 0; i < B; i++)

bl_ptr[i * X] = src[i * I];

__syncthreads();
...
CUDAsubroutineInplaceDCTvector(…);

for(unsigned int i = 0; i < B; i++)
dst[i *I] = bl_ptr[i * X];

}

16 regs

32 regs

16 regs

Resource requirements of a thread vary throughout execution

Implication:
Resource inefficiency due to
worst-case static allocation

Our Goal

• Reduce the dependence of performance on
resource specification
– Programming Ease
– Performance Portability

• Improve efficiency of resource utilization
– Higher performance for optimized code

14

Outline
•Problem: Tight Coupling

•Key Implications

•Our Goal

•Our Approach: Zorua
– Virtualization Strategy
– Design Challenges
– Design Ideas

• Evaluation
15

Register File

Our Approach

16

Register File

Thread Slots

Scratchpad
Memory

Hardware Resources

Programmer/Software
Thread Slots

Scratchpad
Memory

Virtual Resources

Decouple resource specification from
allocation

Virtualize multiple on-chip resourcesZorua: A Holistic Virtualization Approach

17

How do we design a virtualization strategy
to effectively address the key issues?

1. Static Underutilization

18

Thread Slots in
Hardware

20

<#Threads,#Registers,Scratchpad(KB)>

Parallelism:
1 thread block

11 threads

11 threads

Parallelism:
2 thread blocks

22 threads

Flexibility in available resources
helps restore parallelism

Addressing Key Issues

1. Static Underutilization

2. Dynamic Underutilization

19

Provide an illusion of a flexible amount
of resources

Enable dynamic allocation/deallocation
of resources

Outline
•Problem: Tight Coupling

•Key Implications

•Our Goal

•Our Approach: Zorua
– Virtualization Strategy
– Design Challenges
– Design Ideas

• Evaluation
20

Zorua: Virtualization Strategy

21

Register File

Thread Slots

Physical Resources

Thread Slots

Virtual Resources

Register File

Scratchpad
Memory

Scratchpad
Memory

Fine-grained dynamic allocation provides
resource efficiency

Zorua: Virtualization Strategy

22

Register File

Thread Slots

Physical Resources

Thread Slots

Virtual Resources

Register
File

Scratchpad
Memory

Scratchpad
Memory

Swap Space
(in the mem.
hierarchy)

Careful oversubscription using a swap space provides
flexibility in the amount of resources

Outline
•Problem: Tight Coupling

•Key Implications

•Our Goal

•Our Approach: Zorua
– Virtualization Strategy
– Design Challenges
– Design Ideas

• Evaluation
23

Zorua: Design Challenges

• Challenge 1: Controlling the extent of oversubscription
– Spills are expensive

• Challenge 2: Coordinating virtualization of multiple
on-chip resources

– Resources are independently virtualized

24

Resource requirements vary during execution

Zorua Design: Key Questions

•How do we determine the variation in resource
requirements?

•How do we use this knowledge to:
– control how much we oversubscribe at run time?

– coordinate allocation of multiple resources to maximize
parallelism within the oversubscription budget?

25

Outline
•Problem: Tight Coupling

•Key Implications

•Our Goal

•Our Approach: Zorua
– Virtualization Strategy
– Design Challenges
– Design Ideas

• Evaluation
26

Component 1: The Compiler
• Leverage software to determine variation in resource requirements

• Variation in resource requirements tends to occur in fine-grained phases

27

__global__ void CUDAkernel2DCT(float *dst, float *src, int I){
int OffsThreadInRow = threadIdx.y * B + threadIdx.x;
for(unsigned int i = 0; i < B; i++)

bl_ptr[i * X] = src[i * I];
__syncthreads();

...
CUDAsubroutineInplaceDCTvector(…);

for(unsigned int i = 0; i < B; i++)
dst[i *I] = bl_ptr[i * X];

}

16 regs

32 regs

16 regs

Use the compiler to:
• Statically partition the program into phases

• Add annotations with per-phase resource requirements

Zorua Design: Key Questions

•How do we determine the variation in resource
requirements?

•How do we use this knowledge to:
– control how much we oversubscribe at run time?

– coordinate allocation of multiple resources to maximize
parallelism within the oversubscription budget?

28

Component 2: Hardware Runtime System

29
Phase 3

Pending

Schedulable

Warp
Scheduler

Allocate Required
Resources

Phase 2

Phase 1

Deallocate Dead
Resources

Putting It All Together

Zorua: A hardware-software cooperative framework

• The compiler: annotates the program to partition it into phases
and specify the resource needs of each phase

• The coordinator: a hardware runtime system that makes
oversubscription decisions and allocates/deallocates resources

• Hardware virtualization support:
– Mapping tables for each resource (1.85kB ≈ 0.134% of the die area)

– Machinery to swap data between on-chip hardware & swap space

30

Outline
•Problem: Tight Coupling

•Key Implications

•Our Goal

•Our Approach: Zorua
– Virtualization Strategy
– Design Challenges
– Design Ideas

• Evaluation
31

Methodology
• Evaluation Infrastructure: Real GPUs (Fermi/Kepler/Maxwell),

GPGPUSim, GPUWattch

• Workloads
– Lonestar, CUDA SDK

• System Parameters
– 15 SMs, 32 threads/warp
– Warps/SM: Fermi: 48, Kepler/Maxwell: 64
– Registers: Fermi: 32768, Kepler/Maxwell: 65536
– Scratchpad: Fermi/Kepler: 48KB, Maxwell: 64KB
– Core: 1.4GHz, GTO scheduler , 2 schedulers/SM
– Memory: 177.4GB/s BW, 6 GDDR5 Memory controllers

• Overheads of Zorua
– 2-cycle latency for mapping table lookup for each resource
– Memory requests for swap space accesses

32

Effect on Performance Variation

33

Zorua reduces the dependence of
performance on resource specification

Maximum

Minimum

Average
Performance variation across
different specification points

Lower Quartile

Upper Quartile

Baseline WLM Zorua

* Xiang et al., HPCA ‘14

Effect on Performance Cliffs

34

0.5

1

1.5

2

256 512 768 1024N
o
r
m
a
l
i
z
e
d

E
x
e
c
u
t
i
o
n

T
i
m
e

Threads/Block

Baseline WLM Zorua

0.5

1

1.5

2

9000 29000 49000

Scratchpad/Block

Baseline WLM Zorua

MST NQU

Zorua alleviates the performance cliffs
resulting from un-optimized specifications

Effect on Performance Portability

35

0%

50%

100%

150%

BH DCT MST NQU RD SLA SP SSSP AVG

M
a
x
i
m
u
m

P
o
r
t
i
n
g

P
e
r
f
o
r
m
a
n
c
e

L
o
s
s

Baseline WLM Zorua

53%

24%

Other Uses

• Resource sharing in multi-programmed
environments

• Low latency preemption of kernels

• Dynamic parallelism

• …

36

37

Conclusion
• Problem: The tight coupling between programmer-specified resource

usage and allocation of on-chip resources leads to challenges in:
– programming ease, performance portability, resource efficiency

• Our Approach: Decouple specification and management of on-chip
resources

• Our Solution: Zorua: A holistic approach to virtualizing multiple on-chip
resources in GPUs

• Key Results:
– Zorua reduces dependence of performance on programmer-specified
resource usage
• Zorua enhances programming ease and performance portability

– Zorua improves performance with more efficient resource utilization

• Future Work: Zorua enables several other use cases

Zorua: A Holistic Approach to
Resource Virtualization in GPUs

Nandita Vijaykumar
Kevin Hsieh, Gennady Pekhimenko, Samira Khan,

Ashish Shrestha, Saugata Ghose, Adwait Jog, Phillip B. Gibbons, Onur Mutlu

39

A Walkthrough

40

Thread

queue

Coordinator

Scratchpad

queue

Register

queue
Thread
Block

Scheduler

Register
Mapping
Table

Scratchpad
Mapping
Table

Thread
Mapping
Table

Acquire

resources

Warp
Scheduler

Release

resources

Effect on schedulable warps

41

Effect on energy consumption

42

Summary of applications

43

