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Overview

* Problem: Major on-chip resources in GPUs are managed by the
programmer/software

* Key Issues: Leads to several challenges in obtaining high performance:
— Programming Ease: Requires programmer effort to optimize resource usage

— Performance Portability: Optimizations do not port well across different GPUs
— Resource Inefficiency: Underutilized resources even in optimized code

* Our Goal:
— Reduce dependence of performance on programmer-specified resource usage

— Enhance resource efficiency for optimized code

* Our Approach: Decouple the programmer-specified resource usage from the
allocation in the hardware

e Zorua: A Holistic Resource Virtualization Framework for GPUs

* Key Results: Zorua enhances programming ease, performance portability and

performance for optimized code 2



GPUs today are used across many
classes of applications ...
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On-Chip Resources in GPUs
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Register File

Every thread in a thread block needs to be allocated
enough (worst-case) resources to execute and complete
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Abstraction of On-Chip Resources

Programmer/Software

Tight coupling between
resource specification and allocation
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Key Issues

1. Static Underutilization

2. Dynamic Underutilization



| 1. Static Underutilization
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To make things worse...

Same problem exists for other on-chip resources
registers, scratchpad memory, thread blocks

The programmer needs to get it right for
all of them at the same time



Implication 1: Programming Ease
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Implication 2: Performance Portability
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Programs need to be
retuned to fit different GPUs
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| Key Issues

1. Static Underutilization

[ 2. Dynamic Underutilization}
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2. Dynamic Underutilization

Resource requirements of a thread vary throughout execution

Implication:
Resource inefficiency due to
worst-case static allocation

¥

for(unsigned int i = @; i < B; i++) T
dst[i *I] = bl_ptr[i * X]; 16 regs

} |
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Our Goal

* Reduce the dependence of performance on
resource specification

— Programming Ease

— Performance Portability

* Improve efficiency of resource utilization
— Higher performance for optimized code

14



Outline
* Problem: Tight Coupling

* Key Implications
|+ Our Goal |

| < Our Approach: Zorua |
— Virtualization Strategy
— Design Challenges
— Design ldeas

* Evaluation
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Our Approach

Virtual Resources

Thread Slots

Programmer/Software
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Zorua: A Holistic Virtualization Approach
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How do we design a virtualization strategy
to effectively address the key issues?
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| 1. Static Underutilization
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Addressing Key Issues

1. Static Underutilization

Provide an illusion of a flexible amount
of resources

2. Dynamic Underutilization

Enable dynamic allocation/deallocation
of resources
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Outline
* Problem: Tight Coupling

* Key Implications
* Our Goal

* Our Approach: Zorua
| — Virtualization Strategy |
— Design Challenges
— Design Ideas

* Evaluation
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Zorua: Virtualization Strategy

Virtual Resources Physical Resources

Fine-grained dynamic allocation provides
resource efficiency
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Zorua: Virtualization Strategy  swap space

(in the mem.
Virtual Resources Physical Resources hierarchy)

ﬁ

Careful oversubscription using a swap space provides
flexibility in the amount of resources
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Outline
Problem: Tight Coupling

Key Implications
Our Goal

Our Approach: Zorua
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Zorua: Design Challenges

* Challenge 1: Controlling the extent of oversubscription
— Spills are expensive

* Challenge 2: Coordinating virtualization of multiple
on-chip resources

— Resources are independently virtualized

Resource requirements vary during execution
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Zorua Design: Key Questions

* How do we determine the variation in resource
requirements?

* How do we use this knowledge to:
— control how much we oversubscribe at run time?

— coordinate allocation of multiple resources to maximize
parallelism within the oversubscription budget?
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Component 1: The Compiler
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Use the compiler to:

 Statically partition the program into phases
Add annotations with per-phase resource requirements

CUDAsubroutineInplaceDCTvector(..); 32 regs

for(unsigned int 1 = @; i < B; i++)
dst[i *I] = bl_ptr[i * X]; 16 regs
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Zorua Design: Key Questions
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| Component 2: Hardware Runtime System
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Putting It All Together

Zorua: A hardware-software cooperative framework

* The compiler: annotates the program to partition it into phases
and specify the resource needs of each phase

* The coordinator: a hardware runtime system that makes
oversubscription decisions and allocates/deallocates resources

* Hardware virtualization support:
— Mapping tables for each resource (1.85kB = 0.134% of the die area)
— Machinery to swap data between on-chip hardware & swap space
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Methodology

* Evaluation Infrastructure: Real GPUs (Fermi/Kepler/Maxwell),
GPGPUSIim, GPUWattch

* Workloads
— Lonestar, CUDA SDK

* System Parameters

— 15 SMs, 32 threads/warp

— Warps/SM: Fermi: 48, Kepler/Maxwell: 64

— Registers: Fermi: 32768, Kepler/Maxwell: 65536

— Scratchpad: Fermi/Kepler: 48KB, Maxwell: 64KB

— Core: 1.4GHz, GTO scheduler, 2 schedulers/SM

— Memory: 177.4GB/s BW, 6 GDDR5 Memory controllers

* Overheads of Zorua
— 2-cycle latency for mapping table lookup for each resource

— Memory requests for swap space accesses
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| Effect on Performance Variation
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| Effect on Performance Cliffs
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Maximum Porting
Performance Loss

Effect on Performance Portability
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Other Uses

Resource sharing in multi-programmed
environments

Low latency preemption of kernels
Dynamic parallelism
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Conclusion

* Problem: The tight coupling between programmer-specified resource
usage and allocation of on-chip resources leads to challenges in:
— programming ease, performance portability, resource efficiency

* Our Approach: Decouple specification and management of on-chip
resources

* Our Solution: Zorua: A holistic approach to virtualizing multiple on-chip
resources in GPUs

* Key Results:

— Zorua reduces dependence of performance on programmer-specified
resource usage

* Zorua enhances programming ease and performance portability
— Zorua improves performance with more efficient resource utilization

* Future Work: Zorua enables several other use cases 37
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| Effect on schedulable warps
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Normalized Energy

Effect on energy consumption
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Summary of applications

Name (Abbreviation)

(R: Register, S: Scratchpad,
T: Thread block) Range

Barnes-Hut (BH) [8]

R:28-44 x T:128-1024

Discrete Cosine Transform (DCT) [52]

R:20-40 =< T: 64-512

Minimum Spanning Tree (MST) [8]

R:28-44 x T: 256-1024

Reduction (RD) [52]

R:16-24 x T:64-1024

N-Queens Solver (NQU) [11] [5]

5:10496-47232 (T:64-288)

Scan Large Array (SLA) [52]

R:24-36 x T:128-1024

Scalar Product (SP) [52]

5:2048-8192 x T:128-512

Single-Source Shortest Path (SSSP) [8]

R:16-36 x T:256-1024
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