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Exposure: shutter vs. aperture

• Trade-off motion blur vs. depth-of-field 

(also gain/ISO sensitivity)



Imperfect lenses: aberrations, etc.

http://upload.wikimedia.org/wikipedia/commons/e/e5/CCTV_Lens_flare.jpg�


Sensors and color



Schedule Computational Photography and Video

24 Feb Introduction to Computational Photography

3 Mar More on Camera,Sensors and Color Assignment 1

10 Mar Warping, Mosaics and Morphing Assignment 2

17 Mar Blending and compositing Assignment 3

24 Mar High-dynamic range Assignment 4

31 Mar TBD Project proposals

7 Apr Easter holiday – no classes

14 Apr TBD Papers

21 Apr TBD Papers

28 Apr TBD Papers

5 May TBD Project update

12 May TBD Papers

19 May TBD Papers

26 May TBD Papers

2 June Final project presentation Final project presentation



Today’s schedule

• Last week’s recap

• Warping

• Mosaics

• Morphing



Image Warping

image filtering: change range of image
g(x) = T(f(x))
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image warping: change domain of image

g(x) = f(T(x))

today lots of slides from Alexei Efros



Image Warping
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image filtering: change range of image
g(x) = T(f(x))

image warping: change domain of image

g(x) = f(T(x))



Parametric (global) warping

• Examples of parametric warps:

translation rotation aspect

affine
perspective

cylindrical



Parametric (global) warping

• Transformation T is a coordinate-changing machine:

p’ = T(p)

• What does it mean that T is global?
– Is the same for any point p

– can be described by just a few numbers (parameters)

• Let’s represent T as a matrix:

p’ = Mp

T

p = (x,y) p’ = (x’,y’)
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• Scaling a coordinate means multiplying each of its components by a 
scalar

• Uniform scaling means this scalar is the same for all components:

× 2

Scaling



• Non-uniform scaling: different scalars per component:

X × 2,
Y × 0.5

Scaling



• Scaling operation:

• Or, in matrix form:
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scaling matrix SWhat’s inverse of S?

Scaling



θ

(x, y)

(x’, y’)

x’ = x cos(θ) - y sin(θ)
y’ = x sin(θ) + y cos(θ)

2-D Rotation



2-D Rotation
•This is easy to capture in matrix form:

•Even though sin(θ) and cos(θ) are nonlinear functions of θ,
– x’ is a linear combination of x and y

– y’ is a linear combination of x and y

•What is the inverse transformation?
– Rotation by –θ
– For rotation matrices
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• What types of transformations can be 
represented with a 2x2 matrix?
2D Identity?
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2D Scale around (0,0)?
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2x2 Matrices



• What types of transformations can be 
represented with a 2x2 matrix?
2D Rotate around (0,0)?
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2D Shear?

yxshy
yshxx
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2x2 Matrices



• What types of transformations can be 
represented with a 2x2 matrix?
2D Mirror about Y axis?
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2D Mirror over (0,0)?
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2x2 Matrices



• What types of transformations can be 
represented with a 2x2 matrix?

2D Translation?
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Only linear 2D transformations 
can be represented with a 2x2 matrix

NO!

2x2 Matrices



• Linear transformations are combinations of …
– Scale,
– Rotation,
– Shear, and
– Mirror

• Properties of linear transformations:
– Origin maps to origin
– Lines map to lines
– Parallel lines remain parallel
– Ratios are preserved
– Closed under composition
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All 2D Linear Transformations



• Q: How can we represent translation as a 3x3 matrix?
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Homogeneous Coordinates

Homogeneous coordinates
– represent coordinates in 2 dimensions with a 3-vector

homogeneous coords

1

x
x

y
y

 
   →       



• Add a 3rd coordinate to every 2D point
– (x, y, w) represents a point at location (x/w, y/w)

– (x, y, 0) represents a point at infinity

– (0, 0, 0) is not allowed

Convenient coordinate system to 
represent many useful 
transformations

1 2

1

2 (2,1,1) or (4,2,2) or (6,3,3)
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Homogeneous Coordinates



Q: How can we represent translation as a 3x3 matrix?

A: Using the rightmost column:
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Translation
Example of translation
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Basic 2D Transformations

• Basic 2D transformations as 3x3 matrices
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• Affine transformations are combinations of …
– Linear transformations, and

– Translations

• Properties of affine transformations:
– Origin does not necessarily map to origin

– Lines map to lines

– Parallel lines remain parallel

– Ratios are preserved

– Closed under composition

– Models change of basis
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• Projective transformations …
– Affine transformations, and

– Projective warps

• Properties of projective transformations:
– Origin does not necessarily map to origin

– Lines map to lines

– Parallel lines do not necessarily remain parallel

– Ratios are not preserved

– Closed under composition

– Models change of basis
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• Transformations can be combined by 
matrix multiplication
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2D image transformations

These transformations are a nested set of groups
• Closed under composition and inverse is a member



• D'Arcy Thompson 
http://www-groups.dcs.st-and.ac.uk/~history/Miscellaneous/darcy.html

http://en.wikipedia.org/wiki/D'Arcy_Thompson

• Importance of shape and structure in evolution

Slide by Durand and Freeman

Image Warping in Biology 

http://www-groups.dcs.st-and.ac.uk/~history/Miscellaneous/darcy.html�
http://en.wikipedia.org/wiki/D'Arcy_Thompson�


Recovering Transformations

• What if we know f and g and want to recover the 
transform T?

– willing to let user provide correspondences
• How many do we need?

x x’

T(x,y)
y y’

f(x,y) g(x’,y’)

?



Translation: # correspondences?

• How many correspondences needed for 
translation?

• How many Degrees of Freedom?

• What is the transformation matrix?

x x’

T(x,y)

y y’

?
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Euclidian: # correspondences?

• How many correspondences needed for 
translation+rotation?

• How many DOF?

x x’

T(x,y)

y y’

?



Affine: # correspondences?

• How many correspondences needed for affine?

• How many DOF?

x x’

T(x,y)

y y’

?



Projective: # correspondences?

• How many correspondences needed for 
projective?

• How many DOF?

x x’

T(x,y)

y y’

?



Image warping

• Given a coordinate transform (x’,y’) = T(x,y) and a 
source image f(x,y), how do we compute a 
transformed image g(x’,y’) = f(T(x,y))?

x x’

T(x,y)

f(x,y) g(x’,y’)

y y’



f(x,y) g(x’,y’)

Forward warping

• Send each pixel f(x,y) to its corresponding location 

(x’,y’) = T(x,y) in the second image

x x’

T(x,y)

Q:  what if pixel lands “between” two pixels?

y y’



f(x,y) g(x’,y’)

Forward warping

• Send each pixel f(x,y) to its corresponding location 

(x’,y’) = T(x,y) in the second image

x x’

T(x,y)

Q:  what if pixel lands “between” two pixels?

y y’

A:  distribute color among neighboring pixels (x’,y’)
– Known as “splatting”
– Check out griddata in Matlab



f(x,y) g(x’,y’)
x

y

Inverse warping

• Get each pixel g(x’,y’) from its corresponding location 

(x,y) = T-1(x’,y’) in the first image

x x’

Q:  what if pixel comes from “between” two pixels?

y’
T-1(x,y)



f(x,y) g(x’,y’)
x

y

Inverse warping

• Get each pixel g(x’,y’) from its corresponding location 

(x,y) = T-1(x’,y’) in the first image

x x’

T-1(x,y)

Q:  what if pixel comes from “between” two pixels?

y’

A:  Interpolate color value from neighbors
– nearest neighbor, bilinear, Gaussian, bicubic
– Check out interp2 in Matlab



Forward vs. inverse warping

Q:  which is better?

A:  usually inverse—eliminates holes
– however, it requires an invertible warp function—not always possible...



Today’s schedule

• Last week’s recap

• Warping

• Mosaics

• Morphing



Why Mosaic?

• Are you getting the whole picture?
– Compact Camera FOV = 50 x 35°

Slide from Brown & Lowe
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Why Mosaic?

• Are you getting the whole picture?
– Compact Camera FOV = 50 x 35°

– Human FOV                = 200 x 135°

– Panoramic Mosaic        = 360 x 180°

Slide from Brown & Lowe



Mosaics: stitching images together

virtual wide-angle camera



A pencil of rays contains all views

real
camera

synthetic
camera

Can generate any synthetic camera view
as long as it has the same center of projection!



How to do it?

• Basic Procedure
– Take a sequence of images from the same position

• Rotate the camera about its optical center

– Compute transformation between second image and first

– Transform the second image to overlap with the first

– Blend the two together to create a mosaic

– If there are more images, repeat

• …but wait, why should this work at all?
– What about the 3D geometry of the scene?

– Why aren’t we using it?



Aligning images

Translations are not enough to align the images

left on top right on top



mosaic PP

Image reprojection

• The mosaic has a natural interpretation in 3D
– The images are reprojected onto a common plane
– The mosaic is formed on this plane
– Mosaic is a synthetic wide-angle camera



Image reprojection

• Basic question
– How to relate two images from the same camera center?

• how to map a pixel from PP1 to PP2 PP2

PP1

Answer
• Cast a ray through each pixel in PP1
• Draw the pixel where that ray intersects PP2

But don’t we need to know the geometry
of the two planes in respect to the eye?

Observation:
Rather than thinking of this as a 3D reprojection, 
think of it as a 2D image warp from one image to another



Back to Image Warping

Translation

2 unknowns

Affine

6 unknowns

Perspective

8 unknowns

Which t-form is the right one for warping PP1 into PP2?
e.g. translation, Euclidean, affine, projective



Homography

• A: Projective – mapping between any two PPs with the same 
center of projection
– rectangle should map to arbitrary quadrilateral 

– parallel lines aren’t

– but must preserve straight lines

– same as: project, rotate, reproject 

• called Homography

PP2

PP1






















=













1
y
x

***
***
***

w
wy'
wx'

H pp’
To apply a homography H

• Compute p’ = Hp (regular matrix multiply)
• Convert p’ from homogeneous to  image 

coordinates



Image warping with homographies

image plane in front image plane below
black area
where no pixel
maps to



Image rectification

To unwarp (rectify) an image
• Find the homography H given a set of p and p’ pairs
• How many correspondences are needed?
• Tricky to write H analytically, but we can solve for it!
• Find such H that “best” transforms points p into p’ 
• Use least-squares!

p
p’



Computing a homography

Stack matrix representing equations for 4 or more points

Solve through SVD, least-square solution is given by last right singular vector

2 equations/point

Numerically better if image coordinates scaled to [-1,1]

(i.e. smallest singular value)



Panoramas

1. Pick one image (red)

2. Warp the other images towards it (usually, one by one)

3. blend



changing camera center

Does it still work?

synthetic PP

PP1

PP2



Planar scene (or far away)

• PP3 is a projection plane of both centers of 
projection, so we are OK!

• This is how big aerial photographs are made

PP1

PP3

PP2



Planar mosaic



Today’s schedule

• Last week’s recap

• Warping

• Mosaics

• Morphing



Morphing = Object Averaging

• The aim is to find “an average” between two objects
– Not an average of two images of objects…
– …but an image of the average object!
– How can we make a smooth transition in time?

• Do a “weighted average” over time t

• How do we know what the average object looks like?
– We haven’t a clue!
– But we can often fake something reasonable

• Usually required user/artist input



P

Q
v = Q - P

P + 0.5v
=  P + 0.5(Q – P)
=  0.5P + 0.5 Q

P + 1.5v
=  P + 1.5(Q – P)
=  -0.5P + 1.5 Q
(extrapolation)

Linear Interpolation
(Affine Combination):
New point aP + bQ,
defined only when a+b = 1
So aP+bQ = aP+(1-a)Q

Averaging Points

• P and Q can be anything:
– points on a plane (2D) or in space (3D)

– Colors in RGB or HSV (3D)

– Whole images (m-by-n D)… etc.

What’s the average
of P and Q?



Idea #1: Cross-Dissolve

• Interpolate whole images:
Imagehalfway = (1-t)*Image1 + t*image2

• This is called cross-dissolve in film industry

• But what is the images are not aligned?



Idea #2: Align, then cross-disolve

• Align first, then cross-dissolve
– Alignment using global warp – picture still valid



Dog Averaging

• What to do?
– Cross-dissolve doesn’t work

– Global alignment doesn’t work
• Cannot be done with a global transformation (e.g. affine)

– Any ideas?

• Feature matching!
– Nose to nose, tail to tail, etc.

– This is a local (non-parametric) warp



Morphing procedure: 
for every t,
1. Find the average shape (the “mean dog”)

– local warping

2. Find the average color
– Cross-dissolve the warped images

Idea #3: Local warp, then cross-dissolve



Local (non-parametric) Image Warping 

• Need to specify a more detailed warp function
– Global warps were functions of a few (2,4,8) 

parameters

– Non-parametric warps u(x,y) and v(x,y) can be defined 
independently for every single location x,y!

– Once we know vector field u,v we can easily warp each 
pixel (use backward warping with interpolation)



Image Warping – non-parametric

• Move control points to specify a spline warp

• Spline produces a smooth vector field



Warp specification - dense

• How can we specify the warp?
Specify corresponding spline control points

• interpolate to a complete warping function

But we want to specify only a few points, not a grid



Warp specification - sparse

• How can we specify the warp?
Specify corresponding points

• interpolate to a complete warping function

• How do we do it?

How do we go from feature points to pixels?



Triangular Mesh

1. Input correspondences at key feature points

2. Define a triangular mesh over the points
– Same mesh in both images!

– Now we have triangle-to-triangle correspondences

3. Warp each triangle separately from source to destination
– How do we warp a triangle?

– 3 points = affine warp!

– Just like texture mapping



Image Morphing

• We know how to warp one image into the other, 
but how do we create a morphing sequence?

1. Create an intermediate shape (by interpolation)

2. Warp both images towards it

3. Cross-dissolve the colors in the newly warped images



Warp interpolation

• How do we create an intermediate warp at time t?
– Assume t = [0,1]

– Simple linear interpolation of each feature pair

– (1-t)*p1+t*p0 for corresponding features p0 and p1



Morphing & matting

• Extract foreground first to avoid artifacts in the 
background

Slide by Durand and Freeman



Women in Art video

• http://youtube.com/watch?v=nUDIoN-_Hxs

http://youtube.com/watch?v=nUDIoN-_Hxs�


Problem with morphing

• So far, we have performed linear interpolation 
of feature point positions

• But what happens if we try to morph between 
two views of the same object?



View morphing

• Seitz & Dyer
http://www.cs.washington.edu/homes/seitz/vmorph/vmorph.htm

• Interpolation consistent with 3D view interpolation

http://www.cs.washington.edu/homes/seitz/vmorph/vmorph.htm�


Main trick

• Prewarp with a 
homography to "pre-
align" images

• So that the two views are 
parallel
– Because linear 

interpolation works when 
views are parallel



prewarp prewarp

morph morph

homographies

input input
output









Next week

• Image pyramids and graph-cuts
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