
Computational Photography and Video:

Warping, Morphing and Mosaics

Prof. Marc Pollefeys

Today’s schedule

• Last week’s recap

• Warping

• Morphing

• Mosaics

Today’s schedule

• Last week’s recap

• Warping

• Mosaics

• Morphing

Exposure: shutter vs. aperture

• Trade-off motion blur vs. depth-of-field

(also gain/ISO sensitivity)

Imperfect lenses: aberrations, etc.

http://upload.wikimedia.org/wikipedia/commons/e/e5/CCTV_Lens_flare.jpg�

Sensors and color

Schedule Computational Photography and Video

24 Feb Introduction to Computational Photography

3 Mar More on Camera,Sensors and Color Assignment 1

10 Mar Warping, Mosaics and Morphing Assignment 2

17 Mar Blending and compositing Assignment 3

24 Mar High-dynamic range Assignment 4

31 Mar TBD Project proposals

7 Apr Easter holiday – no classes

14 Apr TBD Papers

21 Apr TBD Papers

28 Apr TBD Papers

5 May TBD Project update

12 May TBD Papers

19 May TBD Papers

26 May TBD Papers

2 June Final project presentation Final project presentation

Today’s schedule

• Last week’s recap

• Warping

• Mosaics

• Morphing

Image Warping

image filtering: change range of image
g(x) = T(f(x))

f

x

T
f

x

f

x

T
f

x

image warping: change domain of image

g(x) = f(T(x))

today lots of slides from Alexei Efros

Image Warping

T

T

f

f g

g

image filtering: change range of image
g(x) = T(f(x))

image warping: change domain of image

g(x) = f(T(x))

Parametric (global) warping

• Examples of parametric warps:

translation rotation aspect

affine
perspective

cylindrical

Parametric (global) warping

• Transformation T is a coordinate-changing machine:

p’ = T(p)

• What does it mean that T is global?
– Is the same for any point p

– can be described by just a few numbers (parameters)

• Let’s represent T as a matrix:

p’ = Mp

T

p = (x,y) p’ = (x’,y’)









=








y
x

y
x

M
'
'

• Scaling a coordinate means multiplying each of its components by a
scalar

• Uniform scaling means this scalar is the same for all components:

× 2

Scaling

• Non-uniform scaling: different scalars per component:

X × 2,
Y × 0.5

Scaling

• Scaling operation:

• Or, in matrix form:

byy
axx

=
=
'
'

















=








y
x

b
a

y
x

0
0

'
'

scaling matrix SWhat’s inverse of S?

Scaling

θ

(x, y)

(x’, y’)

x’ = x cos(θ) - y sin(θ)
y’ = x sin(θ) + y cos(θ)

2-D Rotation

2-D Rotation
•This is easy to capture in matrix form:

•Even though sin(θ) and cos(θ) are nonlinear functions of θ,
– x’ is a linear combination of x and y

– y’ is a linear combination of x and y

•What is the inverse transformation?
– Rotation by –θ
– For rotation matrices

() ()
() () 















 −
=








y
x

y
x

θθ
θθ

cossin
sincos

'
'

TRR =−1

R

• What types of transformations can be
represented with a 2x2 matrix?
2D Identity?

yy
xx

=
=
'
'










=





y
x

y
x

10
01

'
'

2D Scale around (0,0)?

ysy
xsx

y

x

*'

*'

=

=
















=








y
x

s
s

y
x

y

x

0
0

'
'

2x2 Matrices

• What types of transformations can be
represented with a 2x2 matrix?
2D Rotate around (0,0)?

yxy
yxx

*cos*sin'
*sin*cos'

Θ+Θ=
Θ−Θ=

















ΘΘ
Θ−Θ

=







y
x

y
x

cossin
sincos

'
'

2D Shear?

yxshy
yshxx

y

x

+=
+=

*'
*'

















=








y
x

sh
sh

y
x

y

x

1
1

'
'

2x2 Matrices

• What types of transformations can be
represented with a 2x2 matrix?
2D Mirror about Y axis?

yy
xx

=
−=

'
'










−=





y
x

y
x

10
01

'
'

2D Mirror over (0,0)?

yy
xx

−=
−=

'
'












−
−=





y
x

y
x

10
01

'
'

2x2 Matrices

• What types of transformations can be
represented with a 2x2 matrix?

2D Translation?

y

x

tyy
txx

+=
+=

'
'

Only linear 2D transformations
can be represented with a 2x2 matrix

NO!

2x2 Matrices

• Linear transformations are combinations of …
– Scale,
– Rotation,
– Shear, and
– Mirror

• Properties of linear transformations:
– Origin maps to origin
– Lines map to lines
– Parallel lines remain parallel
– Ratios are preserved
– Closed under composition

















=








y
x

dc
ba

y
x

'
'




















=





y
x

lk
ji

hg
fe

dc
ba

y
x
'
'

All 2D Linear Transformations

• Q: How can we represent translation as a 3x3 matrix?

y

x

tyy
txx

+=
+=

'
'

Homogeneous Coordinates

Homogeneous Coordinates

Homogeneous coordinates
– represent coordinates in 2 dimensions with a 3-vector

homogeneous coords

1

x
x

y
y

 
   →       

• Add a 3rd coordinate to every 2D point
– (x, y, w) represents a point at location (x/w, y/w)

– (x, y, 0) represents a point at infinity

– (0, 0, 0) is not allowed

Convenient coordinate system to
represent many useful
transformations

1 2

1

2 (2,1,1) or (4,2,2) or (6,3,3)

x

y

Homogeneous Coordinates

Q: How can we represent translation as a 3x3 matrix?

A: Using the rightmost column:

















=
100

10
01

y

x

t
t

ranslationT

y

x

tyy
txx

+=
+=

'
'

Homogeneous Coordinates

Translation
Example of translation
















+
+

=
































=
















11100
10
01

1
'
'

y

x

y

x

ty
tx

y
x

t
t

y
x

tx = 2
ty = 1

Homogeneous Coordinates

Basic 2D Transformations

• Basic 2D transformations as 3x3 matrices
































ΘΘ
Θ−Θ

=
















1100
0cossin
0sincos

1
'
'

y
x

y
x
































=

















1100
10
01

1
'
'

y
x

t
t

y
x

y

x
































=

















1100
01
01

1
'
'

y
x

sh
sh

y
x

y

x

Translate

Rotate Shear
































=

















1100
00
00

1
'
'

y
x

s
s

y
x

y

x

Scale

• Affine transformations are combinations of …
– Linear transformations, and

– Translations

• Properties of affine transformations:
– Origin does not necessarily map to origin

– Lines map to lines

– Parallel lines remain parallel

– Ratios are preserved

– Closed under composition

– Models change of basis
























=













w
y
x

fed
cba

w
y
x

100
'
'

Affine Transformations

• Projective transformations …
– Affine transformations, and

– Projective warps

• Properties of projective transformations:
– Origin does not necessarily map to origin

– Lines map to lines

– Parallel lines do not necessarily remain parallel

– Ratios are not preserved

– Closed under composition

– Models change of basis
























=













w
y
x

ihg
fed
cba

w
y
x

'
'
'

Projective Transformations

• Transformations can be combined by
matrix multiplication


















































ΘΘ
Θ−Θ












=













w
y
x

sy
sx

ty
tx

w
y
x

100
00
00

100
0cossin
0sincos

100
10
01

'
'
'

p’ = T(tx,ty) R(Θ) S(sx,sy) p

Matrix Composition

2D image transformations

These transformations are a nested set of groups
• Closed under composition and inverse is a member

• D'Arcy Thompson
http://www-groups.dcs.st-and.ac.uk/~history/Miscellaneous/darcy.html

http://en.wikipedia.org/wiki/D'Arcy_Thompson

• Importance of shape and structure in evolution

Slide by Durand and Freeman

Image Warping in Biology

http://www-groups.dcs.st-and.ac.uk/~history/Miscellaneous/darcy.html�
http://en.wikipedia.org/wiki/D'Arcy_Thompson�

Recovering Transformations

• What if we know f and g and want to recover the
transform T?

– willing to let user provide correspondences
• How many do we need?

x x’

T(x,y)
y y’

f(x,y) g(x’,y’)

?

Translation: # correspondences?

• How many correspondences needed for
translation?

• How many Degrees of Freedom?

• What is the transformation matrix?

x x’

T(x,y)

y y’

?
















−
−

=
100

'10
'01

yy

xx

pp
pp

M

Euclidian: # correspondences?

• How many correspondences needed for
translation+rotation?

• How many DOF?

x x’

T(x,y)

y y’

?

Affine: # correspondences?

• How many correspondences needed for affine?

• How many DOF?

x x’

T(x,y)

y y’

?

Projective: # correspondences?

• How many correspondences needed for
projective?

• How many DOF?

x x’

T(x,y)

y y’

?

Image warping

• Given a coordinate transform (x’,y’) = T(x,y) and a
source image f(x,y), how do we compute a
transformed image g(x’,y’) = f(T(x,y))?

x x’

T(x,y)

f(x,y) g(x’,y’)

y y’

f(x,y) g(x’,y’)

Forward warping

• Send each pixel f(x,y) to its corresponding location

(x’,y’) = T(x,y) in the second image

x x’

T(x,y)

Q: what if pixel lands “between” two pixels?

y y’

f(x,y) g(x’,y’)

Forward warping

• Send each pixel f(x,y) to its corresponding location

(x’,y’) = T(x,y) in the second image

x x’

T(x,y)

Q: what if pixel lands “between” two pixels?

y y’

A: distribute color among neighboring pixels (x’,y’)
– Known as “splatting”
– Check out griddata in Matlab

f(x,y) g(x’,y’)
x

y

Inverse warping

• Get each pixel g(x’,y’) from its corresponding location

(x,y) = T-1(x’,y’) in the first image

x x’

Q: what if pixel comes from “between” two pixels?

y’
T-1(x,y)

f(x,y) g(x’,y’)
x

y

Inverse warping

• Get each pixel g(x’,y’) from its corresponding location

(x,y) = T-1(x’,y’) in the first image

x x’

T-1(x,y)

Q: what if pixel comes from “between” two pixels?

y’

A: Interpolate color value from neighbors
– nearest neighbor, bilinear, Gaussian, bicubic
– Check out interp2 in Matlab

Forward vs. inverse warping

Q: which is better?

A: usually inverse—eliminates holes
– however, it requires an invertible warp function—not always possible...

Today’s schedule

• Last week’s recap

• Warping

• Mosaics

• Morphing

Why Mosaic?

• Are you getting the whole picture?
– Compact Camera FOV = 50 x 35°

Slide from Brown & Lowe

Why Mosaic?

• Are you getting the whole picture?
– Compact Camera FOV = 50 x 35°

– Human FOV = 200 x 135°

Slide from Brown & Lowe

Why Mosaic?

• Are you getting the whole picture?
– Compact Camera FOV = 50 x 35°

– Human FOV = 200 x 135°

– Panoramic Mosaic = 360 x 180°

Slide from Brown & Lowe

Mosaics: stitching images together

virtual wide-angle camera

A pencil of rays contains all views

real
camera

synthetic
camera

Can generate any synthetic camera view
as long as it has the same center of projection!

How to do it?

• Basic Procedure
– Take a sequence of images from the same position

• Rotate the camera about its optical center

– Compute transformation between second image and first

– Transform the second image to overlap with the first

– Blend the two together to create a mosaic

– If there are more images, repeat

• …but wait, why should this work at all?
– What about the 3D geometry of the scene?

– Why aren’t we using it?

Aligning images

Translations are not enough to align the images

left on top right on top

mosaic PP

Image reprojection

• The mosaic has a natural interpretation in 3D
– The images are reprojected onto a common plane
– The mosaic is formed on this plane
– Mosaic is a synthetic wide-angle camera

Image reprojection

• Basic question
– How to relate two images from the same camera center?

• how to map a pixel from PP1 to PP2 PP2

PP1

Answer
• Cast a ray through each pixel in PP1
• Draw the pixel where that ray intersects PP2

But don’t we need to know the geometry
of the two planes in respect to the eye?

Observation:
Rather than thinking of this as a 3D reprojection,
think of it as a 2D image warp from one image to another

Back to Image Warping

Translation

2 unknowns

Affine

6 unknowns

Perspective

8 unknowns

Which t-form is the right one for warping PP1 into PP2?
e.g. translation, Euclidean, affine, projective

Homography

• A: Projective – mapping between any two PPs with the same
center of projection
– rectangle should map to arbitrary quadrilateral

– parallel lines aren’t

– but must preserve straight lines

– same as: project, rotate, reproject

• called Homography

PP2

PP1






















=













1
y
x

w
wy'
wx'

H pp’
To apply a homography H

• Compute p’ = Hp (regular matrix multiply)
• Convert p’ from homogeneous to image

coordinates

Image warping with homographies

image plane in front image plane below
black area
where no pixel
maps to

Image rectification

To unwarp (rectify) an image
• Find the homography H given a set of p and p’ pairs
• How many correspondences are needed?
• Tricky to write H analytically, but we can solve for it!
• Find such H that “best” transforms points p into p’
• Use least-squares!

p
p’

Computing a homography

Stack matrix representing equations for 4 or more points

Solve through SVD, least-square solution is given by last right singular vector

2 equations/point

Numerically better if image coordinates scaled to [-1,1]

(i.e. smallest singular value)

Panoramas

1. Pick one image (red)

2. Warp the other images towards it (usually, one by one)

3. blend

changing camera center

Does it still work?

synthetic PP

PP1

PP2

Planar scene (or far away)

• PP3 is a projection plane of both centers of
projection, so we are OK!

• This is how big aerial photographs are made

PP1

PP3

PP2

Planar mosaic

Today’s schedule

• Last week’s recap

• Warping

• Mosaics

• Morphing

Morphing = Object Averaging

• The aim is to find “an average” between two objects
– Not an average of two images of objects…
– …but an image of the average object!
– How can we make a smooth transition in time?

• Do a “weighted average” over time t

• How do we know what the average object looks like?
– We haven’t a clue!
– But we can often fake something reasonable

• Usually required user/artist input

P

Q
v = Q - P

P + 0.5v
= P + 0.5(Q – P)
= 0.5P + 0.5 Q

P + 1.5v
= P + 1.5(Q – P)
= -0.5P + 1.5 Q
(extrapolation)

Linear Interpolation
(Affine Combination):
New point aP + bQ,
defined only when a+b = 1
So aP+bQ = aP+(1-a)Q

Averaging Points

• P and Q can be anything:
– points on a plane (2D) or in space (3D)

– Colors in RGB or HSV (3D)

– Whole images (m-by-n D)… etc.

What’s the average
of P and Q?

Idea #1: Cross-Dissolve

• Interpolate whole images:
Imagehalfway = (1-t)*Image1 + t*image2

• This is called cross-dissolve in film industry

• But what is the images are not aligned?

Idea #2: Align, then cross-disolve

• Align first, then cross-dissolve
– Alignment using global warp – picture still valid

Dog Averaging

• What to do?
– Cross-dissolve doesn’t work

– Global alignment doesn’t work
• Cannot be done with a global transformation (e.g. affine)

– Any ideas?

• Feature matching!
– Nose to nose, tail to tail, etc.

– This is a local (non-parametric) warp

Morphing procedure:
for every t,
1. Find the average shape (the “mean dog”)

– local warping

2. Find the average color
– Cross-dissolve the warped images

Idea #3: Local warp, then cross-dissolve

Local (non-parametric) Image Warping

• Need to specify a more detailed warp function
– Global warps were functions of a few (2,4,8)

parameters

– Non-parametric warps u(x,y) and v(x,y) can be defined
independently for every single location x,y!

– Once we know vector field u,v we can easily warp each
pixel (use backward warping with interpolation)

Image Warping – non-parametric

• Move control points to specify a spline warp

• Spline produces a smooth vector field

Warp specification - dense

• How can we specify the warp?
Specify corresponding spline control points

• interpolate to a complete warping function

But we want to specify only a few points, not a grid

Warp specification - sparse

• How can we specify the warp?
Specify corresponding points

• interpolate to a complete warping function

• How do we do it?

How do we go from feature points to pixels?

Triangular Mesh

1. Input correspondences at key feature points

2. Define a triangular mesh over the points
– Same mesh in both images!

– Now we have triangle-to-triangle correspondences

3. Warp each triangle separately from source to destination
– How do we warp a triangle?

– 3 points = affine warp!

– Just like texture mapping

Image Morphing

• We know how to warp one image into the other,
but how do we create a morphing sequence?

1. Create an intermediate shape (by interpolation)

2. Warp both images towards it

3. Cross-dissolve the colors in the newly warped images

Warp interpolation

• How do we create an intermediate warp at time t?
– Assume t = [0,1]

– Simple linear interpolation of each feature pair

– (1-t)*p1+t*p0 for corresponding features p0 and p1

Morphing & matting

• Extract foreground first to avoid artifacts in the
background

Slide by Durand and Freeman

Women in Art video

• http://youtube.com/watch?v=nUDIoN-_Hxs

http://youtube.com/watch?v=nUDIoN-_Hxs�

Problem with morphing

• So far, we have performed linear interpolation
of feature point positions

• But what happens if we try to morph between
two views of the same object?

View morphing

• Seitz & Dyer
http://www.cs.washington.edu/homes/seitz/vmorph/vmorph.htm

• Interpolation consistent with 3D view interpolation

http://www.cs.washington.edu/homes/seitz/vmorph/vmorph.htm�

Main trick

• Prewarp with a
homography to "pre-
align" images

• So that the two views are
parallel
– Because linear

interpolation works when
views are parallel

prewarp prewarp

morph morph

homographies

input input
output

Next week

• Image pyramids and graph-cuts

	Computational Photography and Video:�Warping, Morphing and Mosaics
	Today’s schedule
	Today’s schedule
	Exposure: shutter vs. aperture
	Imperfect lenses: aberrations, etc.
	Sensors and color
	Slide Number 7
	Today’s schedule
	Image Warping
	Image Warping
	Parametric (global) warping
	Parametric (global) warping
	Scaling
	Scaling
	Scaling
	2-D Rotation
	2-D Rotation
	2x2 Matrices
	2x2 Matrices
	2x2 Matrices
	2x2 Matrices
	All 2D Linear Transformations
	Homogeneous Coordinates
	Homogeneous Coordinates
	Homogeneous Coordinates
	Homogeneous Coordinates
	Translation
	Basic 2D Transformations
	Affine Transformations
	Projective Transformations
	Matrix Composition
	2D image transformations
	Image Warping in Biology
	Recovering Transformations
	Translation: # correspondences?
	Euclidian: # correspondences?
	Affine: # correspondences?
	Projective: # correspondences?
	Image warping
	Forward warping
	Forward warping
	Inverse warping
	Inverse warping
	Forward vs. inverse warping
	Today’s schedule
	Why Mosaic?
	Why Mosaic?
	Why Mosaic?
	Mosaics: stitching images together
	A pencil of rays contains all views
	How to do it?
	Aligning images
	Image reprojection
	Image reprojection
	Back to Image Warping
	Homography
	Image warping with homographies
	Image rectification
	Computing a homography
	Panoramas
	changing camera center
	Planar scene (or far away)
	Planar mosaic
	Today’s schedule
	Morphing = Object Averaging
	Averaging Points
	Idea #1: Cross-Dissolve
	Idea #2: Align, then cross-disolve
	Dog Averaging
	Idea #3: Local warp, then cross-dissolve
	Local (non-parametric) Image Warping
	Image Warping – non-parametric
	Warp specification - dense
	Warp specification - sparse
	Triangular Mesh
	Image Morphing
	Warp interpolation
	Morphing & matting
	Women in Art video
	Problem with morphing
	View morphing
	Main trick
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Next week

