

Computational Photography and Video: Time-Lapse Video Analysis & Editing

Prof. Marc Pollefeys Dr. Gabriel Brostow

Last Time

Schedule	Computational Photography and Video	
24 Feb	Introduction to Computational Photography	
3 Mar	More on Camera, Sensors and Color	Assignment 1
10 Mar	Warping, Mosaics and Morphing	Assignment 2
17 Mar	Blending and compositing	Assignment 3
24 Mar	High-dynamic range	Assignment 4
31 Mar	Video Synthesis	Project proposals
7 Apr	Easter holiday – no classes	
14 Apr	Intrinsic Images	Papers
21 Apr	Time-Lapse Video	Papers
28 Apr	TBD	Papers
5 May	Project update	Project update
12 May	TBD	Papers
19 May	Papers	Papers
26 May	Papers	Papers
2 June	Final project presentation	Final project presentation

ETH

Today's schedule

• Factored Time-Lapse Video

Sunkavalli, Matusik, Pfister, Rusinkiewicz, Siggraph
2007

- Computational Time-Lapse Video
 - Bennett & McMillan, Siggraph 2007
- Video Synopsis & Indexing,
 Pritch, Rav-Acha, Peleg, ICCV 2007

Time-lapse Photography

• Definition: when frames are captured at a lower rate than the rate at which they will ultimately be played back.

- Compare to
 - Slow-motion
 - Bullet-time

Examples

Time-lapse Filmmaker's Challenges

Time-lapse Filmmaker's Challenges

- Lighting changes (strobing)
- High frequency motion (missed action)
 Saturation & exposure
- Camera motion: intentional or not
- Triggering / data storage / camera safety

• Useful? Editable?

Factored Time-Lapse Video

Sunkavalli, Matusik, Pfister, Rusinkiewicz SIGGRAPH 2007

Project web page

Remember Intrinsic Images from Video?

Reagan image

Einstein image

first frame

last frame

ML Reagan

ML Einstein

min filter

median filter

Weiss ICCV'01

Outdoors: More Than Just Color vs Illumination?

Original

No Shadows

Given: Daytime, under clear-sky conditions

Outdoors: More Than Just Color vs Illumination?

Original

No Shadows

Given: Daytime, under clear-sky conditions

Outdoors: More Than Just Color vs Illumination?

Original

No Shadows

Lighting due to sun? sky? Surface Normals?

Formulation

$$\mathbf{F}(t) = \mathbf{I}_{sky}(t) + \mathbf{S}_{sun}(t) * \mathbf{I}_{sun}(t)$$

- size: width x height x time
- **F**: xyt volume of frames over time

- **I**_{sky}: Accumulated intensity due to sky-light
- \mathbf{I}_{sun} : Accumulated intensity due to sun-light
- **S**_{sun}: Binary; is a pixel in shadow

Intuition

Separate Sky first

$$\mathbf{F}(t) = \mathbf{I}_{sky}(t) + \mathbf{S}_{sun}(t) * \mathbf{I}_{sun}(t)$$

- Photoshop!
 - Just to pick "non-surfaces"

When is sun's contribution == 0?
Leaving just sky's contribution

 "Definitely" shadow: median of darkest 20%, then threshold at 1.5x

Bilateral Filter "Definitely" Shadow

How Did Skylight Change?

$$\mathbf{F}(t) = \mathbf{I}_{sky}(t) + \mathbf{S}_{sun}(t) * \mathbf{I}_{sun}(t)$$

$$\mathbf{I}_{sky,i}(t) \approx \mathbf{W}_{sky,i} \, \mathbf{H}_{sky}(t)$$

- **I**_{skv}: Accumulated intensity due to sky-light
- W_{skv}: Sky-light image
- **H**_{skv}: Sky-light basis curve (1D function!!)

H_{sky}: Эку-пынк — — Whole scene got brighter/darker together

Factorization

$$\mathbf{I}_{sky,i}(t) \approx \mathbf{W}_{sky,i} \, \mathbf{H}_{sky}(t)$$

- Decompose appearance into
 - per-pixel \mathbf{W}
 - H curve
- Alternating Constrained Least Squares (ACLS):
 - H(t) is held fixed while W is optimized using least squares, then vice versa

ACLS: Alternating Constrained Least Squares

- Inverse shade trees for non-parametric material representation and editing,
 - Lawrence et al., Siggraph 2006, code online

Algorithm	Properties:			
Groups	Linear	Positive	Sparse	
SVD / ICA	Yes	No	No	
Homomorphic	No	Yes	No	
Clustering	No	Yes	Yes	
NMF / pLSI	Yes	Yes	No	
Our Method: ACLS	Yes	Yes	Yes	

Table 1: Comparison of matrix factorization algorithms. Existing methods do not satisfy the three properties of linearity, positivity, and control over sparsity, which are critical for a meaningful editable decomposition.

Original and $I_{\mbox{\it sky}}$

$I_{\mbox{\scriptsize sky}}$ and Reconstruction

Explained Sky...

 $\mathbf{F}(t) = \mathbf{I}_{sky}(t) + \mathbf{S}_{sun}(t) * \mathbf{I}_{sun}(t)$

$\mathbf{I}_{sky,i}(t) \approx \mathbf{W}_{sky,i} \, \mathbf{H}_{sky}(t)$

Now Decompose Sun's Contributions

 $\mathbf{F}(t) = \mathbf{I}_{sky}(t) + \mathbf{S}_{sun}(t) * \mathbf{I}_{sun}(t)$ $\mathbf{I}_{sun,i}(t) \approx \mathbf{W}_{sun,i} \, \mathbf{H}_{sun}(t + \Phi_i)$

- \mathbf{I}_{sun} : Accumulated intensity due to sun-light
- W_{sun}: Sun-light image, per-pixel weights
- **H**_{sun}: Sun-light basis curve
- Φ_i : Shift-map; per pixel offset in time

$\mathbf{F}(t) = \mathbf{I}_{sky}(t) + \mathbf{S}_{sun}(t) * \mathbf{I}_{sun}(t)$

- **I**_{sun}: Accumulated intensity due to sun-light
- **W**_{sun}: Sun-light image, per-pixel weights
- **H**_{sun}: Sun-light basis curve
- Φ_i : Shift-map; per pixel offset in time

- **I**_{sun}: Accumulated intensity due to sun-light
- **W**_{sun}: Sun-light image, per-pixel weights
- **H**_{sun}: Sun-light basis curve
- Φ_i : Shift-map; per pixel offset in time

Total sunlight contribution

Sunlight image (like on moon)

Shift map

Sunlight

Factorize Again!

- For each image, subtract off $\mathbf{I}_{skv}(t)$
- S_{sun}: Sky-light mask, serves as C, confidence map

• ACLS again

- But add 3rd update phase, searching for Φ_i that minimizes reconstruction error of scaled + offset $\mathbf{H}(t)$ vs. $\mathbf{F}(t)$

Green: sunlight curve (same one, but time-shifted)

 $\mathbf{I}_{sun}(t)$

W_{sun}

 Φ_i

Reconstruction

Does It Work?

Video: FactoredTimeLapseV

What have we gained?

- Can
 - Remove shadows
 - Change albedo
 - Change amount of global illumination
- Compression
- Render new shadows:

– We have 1 component of the per-pixel Normals, ${\bf N}$

Estimated Normals (1D)

Recap: Manipulating Normals

Does the old definition of time-lapse still hold?

Today's schedule

• Factored Time-Lapse Video

Sunkavalli, Matusik, Pfister, Rusinkiewicz, Siggraph
2007

- Computational Time-Lapse Video
 - Bennett & McMillan, Siggraph 2007
- Video Synopsis & Indexing,
 Pritch, Rav-Acha, Peleg, ICCV 2007

Still 1 frame at a time

Examine <u>parts</u> of frames

(Quick Overview of) Computational Time-Lapse Video

Bennett & McMillan Siggraph 2007

(Project web page)

Uniform Sampling

Uniform Sampling With Motion Tails

Non-Uniform Sampling

Non-Uniform Sampling With Motion Tails

Frame n-1

Frame n

Frame n+1

Sampling in 1D

- Uniform
- Interpolate linearly+ piece-wise

- Same # of samples, but where needed!
- Optimum polygonal approximation of digitized curves, Perez & Vidal, PRL'94

– Use dynamic programming to find global min.

Completely User-controllable: Min-Change, Min-Error, Median, etc

Street Corner Uniform Sampling Min-Error (Cars) Min-Change (Clouds)	
Burning Candle Uniform Sampling Min-Error (Wax)	
Reefer Madness Uniform Sampling Min-Change	╊╴╋┽╴╋┽╴╫┥╴┥╴╴╢╴╫┥┥┥┥╴┥╴┥╴┥╴┥╴┥╴┥╴┥╴┥╴┥╴┥╴┥╴┥╴┥
Cookie Baking Uniform Sampling Min-Change	
Crowded Sidewalk Uniform Sampling Min-Error	

Video

Virtual Shutter

(View Results of) Video Synopsis & Indexing

Pritch, Rav-Acha, Peleg ICCV 2007, PAMI 2008

(Project web page)

What to do with blob-tracks?

HDR Time-Lapse

- Essentially started in 2006 (manually at first)
- <u>More</u> are popping up online

Discussion

