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Abstract. Multiple-view geometry and structure-from-motion are well
established techniques to compute the structure of a moving rigid ob-
ject. These techniques are all based on strong algebraic constraints im-
posed by the rigidity of the object. Unfortunately, many scenes of in-
terest, e.g. faces or cloths, are dynamic and the rigidity constraint no
longer holds. Hence, there is a need for non-rigid structure-from-motion
(NRSfM) methods which can deal with dynamic scenes. A prominent
framework to model deforming and moving non-rigid objects is the fac-
torization technique where the measurements are assumed to lie in a
low-dimensional subspace. Many different formulations and variations for
factorization-based NRSfM have been proposed in recent years. However,
due to the complex interactions between several subspaces, the distin-
guishing properties between two seemingly related approaches are often
unclear. For example, do two approaches just vary in the optimization
method used or is really a different model beneath?
In this paper, we show that these NRSfM factorization approaches are
most naturally modeled with tensor algebra. This results in a clear pre-
sentation which subsumes many previous techniques. In this regard, this
paper brings several strings of research together and provides a unified
point of view. Moreover, the tensor formulation can be extended to the
case of a camera network where multiple static affine cameras observe
the same deforming and moving non-rigid object. Thanks to the insights
gained through this tensor notation, a closed-form and an efficient iter-
ative algorithm can be derived which provide a reconstruction even if
there are no feature point correspondences at all between different cam-
eras. An evaluation of the theory and algorithms on motion capture data
show promising results.

1 Introduction and Related Work

Factorization-based methods for structure-from-motion problems are the focus
of this paper. Since this paper builds heavily upon previous factorization formu-
lations, references to prior work in this area will often be given at the appropriate
places throughout the text. Here, only a short overview of the most important
developments in the area of factorizations for rigid and non-rigid structure-from-
motion problems will be presented.

http://www.cvg.ethz.ch/
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Numerous extensions of the classical low-rank factorization approach for rigid
structure-from-motion have been proposed ever since Tomasi and Kanade’s sem-
inal work [1]. In their work, 2D feature point tracks of a single rigidly moving
object observed by an affine camera have been shown to be restricted to a 4-
dimensional subspace. In a similar way, trajectories of multiple independently
moving objects also give rise to a low-dimensional data matrix [2]. This time
however, the trajectories originate from multiple independent subspaces and the
SfM-problem gets combined with a motion segmentation problem [3]. Articu-
lated objects can also be modeled with low-rank factorizations and multiple
subspaces. In contrast to multiple independent rigid objects, the subspaces of
articulated objects are not independent anymore and can intersect each other
[4,5]. In this paper, we focus on non-articulated deformable objects. In con-
trast to the previously mentioned approaches, non-rigid structure-from-motion
(NRSfM) enjoys less strict algebraic constraints: the low-rank assumption only
holds approximatively. The classical way to model these kind of deformations
is the basis-shape model [6] which will be presented in detail in Sec. 3.2. Basis-
shape factorization approaches suffer from the fact that the initial factorization
must be corrected with a so-called corrective transformation in order to account
for the algebraic Kronecker-structure prescribed by the basis-shape model. Later
work addressed this issue in detail [7] and presented a closed-form linear solu-
tion [8] or a more robust non-linear solution [9]. Another line of research for
NRSfM are piecewise approaches which depart from the classical factorization
framework. With piecewise NRSfM we mean non-factorization based approaches
which build a patch-based representation of non-rigid deformable shapes and
glue these patches together using heuristics such as smoothness assumptions of
motion and shape. Even though piecewise approaches for NRSfM present an
interesting line of future research, in this paper we solely focus on factorization
approaches for NRSfM and refer to [10] and references therein for piece-wise
NRSfM.

As already mentioned, this paper presents a unified view of low-rank models
for 3D point trajectories of non-rigidly moving 3D point clouds, such as basis-
shape approaches [11], implicit low-rank shape models [12], or such as the more
recent representations using a Discrete Cosine Transform (DCT) basis [13,14]. A
tensor-based formulation is derived which seamlessly handles the case of multi-
ple cameras, subsuming earlier models for binocular NRSfM [15]. Factorizations
for camera networks have gained renewed interests in the last couple of years
[16,17]. Our approach builds heavily upon our previous work [16] and the result-
ing formulation allows to give a clear and intuitive description of the algebraic
constraints encapsulated in 2D feature point trajectories seen in different cam-
eras. Equipped with this deeper understanding, a factorization-based algorithm
which provides the solution in closed form can be derived. Alternatively, an it-
erative multi-linear optimization can be used which can handle partial feature
tracks. In contrast to recently presented NRSfM algorithms for multiple cameras
[18,19,17], our algorithms do not require feature point correspondences between
different cameras. This is analogous to [16] where similar results have been de-
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Symbol Meaning

a Vectors.
A Matrices.
A Tensors.

vec (A) Column-wise vectorization, in Matlab notation A(:).

A = S ×1 A ×2 B ×3 C Three-mode Tucker-tensor decomposition with core tensor S.
A(i) Flattening of tensor A along mode i.

[⇓i Ai] Vertical stacking of matrices Ai ∈ Rmi×n below each other.
Sometimes the range of the index i will be indicated for clarity
reasons in the following way [⇓

I
i=1 Ai].

[⇒i Ai] Horizontal stacking of matrices Ai ∈ Rm×ni next to each other.
[⇘i Ai] Block-diagonal stacking of matrices Ai ∈ Rmi×ni .
A⊗B Kronecker product.
Am×n The size of a matrix is sometimes indicated in subscripts.
Im Identity matrix of dimension m

k ∈ {1, . . . ,K} Index of camera.
f ∈ {1, . . . , F} Index of frame.
n ∈ {1, . . . ,N} Index of point.
b ∈ {1, . . . ,B} Index of basis shape.

Table 1: Formulations used throughout this paper

rived for rigidly moving objects. In summary, the main contributions of this
paper are:

i) A unified formulation for low-rank non-rigid deforming shapes which clearly
reveals the interactions of all the involved subspaces and enables an intu-
itive reasoning about these subspaces thereby avoiding getting lost in shuf-
fling around indices. As we will see, this also facilitates the development of
algorithms.

ii) A closed-form factorization algorithm or a non-linear iterative algorithm
which compute the 3D reconstruction given 2D feature tracks in multiple
cameras. No feature point correspondences between different cameras need
to be known.

2 Notation

The notational conventions used in this paper are summarized in Tab. 1. The
paper makes use of the following Kronecker product properties between matrices
A, B, C and D of appropriate sizes

ACB = D⇔ [BT ⊗A]vec (C) = vec (D) (1)

[A⊗B] [C⊗D] = [AC⊗BD] . (2)

Tensor algebra and especially the Tucker tensor decomposition will be used in
later sections. Due to space limitations, the interested reader is referred to the
tensor tutorial [20] or to our previous work [16].
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3 Low-Rank Non-Rigid Deformations

3.1 Redundancy in trajectories

Wolf and Zomet’s work [15] considers the case of two cameras observing a non-
rigid object. They assume that every 3D point tracked in the second camera
can be expressed as a linear combination of some of the 3D points tracked by
the first camera. This approach can be generalized by assuming that any point
xn,f ∈ R3 in 3D-space can be expressed as a linear combination xn,f = Yfsn of
dS time-varying basis points Yf ∈ R3×dS . Stacking the data from multiple points
over multiple frames into one matrix gives

X = [⇓f⇒n xf,n] = [⇓f Yf ] [⇒n sn] = YS ∈ R3F×N . (3)

This representation reveals two important facts: Firstly, the matrix X is highly
redundant as it factorizes into two lower-rank matrices (given dS < min(3F,N))
and secondly, the temporally varying part Y is split from the temporally static
part S. This low-rank factorization due to redundancies in trajectories lies at
the heart of all bilinear non-rigid shape models. This representation has also
been suggested in [12] where this low-rank model for 3D trajectories is called
3D-implicit low-rank shape model. As will be seen in Sec. 4, this low-rank model
leads to severe ambiguities in the 3D structure for monocular image sequences:
For any regular 3-by-3 matrices Hf , X and [⇘f Hf ]X will fulfill the same low-
rank constraint leaving the dynamic 3D structure ambiguous. Hence, in monoc-
ular sequences there is a need for additional constraints, such as a Kronecker
structure due to a basis-shape model (see Sec. 3.2) or smoothness priors on
Yf and as-rigid-as-possible assumption on S as done in [12]. Note for multiple
cameras however, the low-rank assumption itself is sufficient and no additional
constraints are necessary (see also Sec. 5.2). Related to the above formulation
is the implicit model of [21] where the low-rank model has not been applied
directly to the 3D trajectory matrix X but rather to the observed 2D image
trajectories. Specifically, the observed image trajectories were given by W = AS
where A = [⇘f Cf ]2F×3F Y is a combination between the time-varying basis
points Y and the affine camera matrices Cf of a single moving camera. How-
ever, [21] did not enforce the correct algebraic structure on A and therefore this
low-rank model regularizes the 2D feature tracks but does not provide any 3D
reconstruction of the moving points.

3.2 Basis-Shapes

Traditionally, the 3D shape Xf ∈ R3×N of a deformable object at frame f is

modeled as a linear combination Xf = ∑B
b=1 Ωf,bSb = [Ωf,∶ ⊗ I3] [⇓b Sb] of B

temporally static basis shapes Sb ∈ R3×N with b = 1,⋯,B, weighted by time-
varying weights Ωf,b ∈ R [6]. Collecting the data over all frames leads to

X = [⇓f Xf ] = [Ω⊗ I3] [⇓b Sb] . (4)

Hence, the basis shape approach follows from Eq. (3) by choosing Y = Ω⊗ I3.
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3.3 Smooth Trajectories With Discrete Cosine Transform

Now, assume that the 3D shape Xf deforms smoothly over time, which implies
that the x-, y-, and z-coordinates of the time-varying basis points can be rep-
resented in a truncated Discrete Cosine Transform (DCT) basis Y = [D⊗ I3]
where D ∈ RF×B is the truncated DCT basis. We notice that this is of the same
algebraic form as the previous basis shape formulation. The semantic connection
is that a smooth trajectory motion in the basis shape model implies that the
basis shape weights vary smoothly as well and can therefore be represented in
a truncated DCT basis Ω = DQ where Q ∈ RB×B is the change-of-basis matrix.
Inserting this into Eq. (4) and using the Kronecker product property of Eq. (1)
we get the chain of equations X = [DQ⊗ I3] [⇓b Sb] = [D⊗ I3] [Q⊗ I3] [⇓f Sb].
The change of basis of the basis shapes weights thus lead to new basis shapes
[Q⊗ I3] [⇓b Sb]. Each column of this new basis shape matrix corresponds to one
smoothly moving 3D point of the deformable object and captures the collection
of coefficients for its three separate F -dimensional trajectories in x-, y, and z-
direction expressed in a truncated DCT basis. This representation clearly reveals
that a linear transformation of the basis shape coefficients implies a change of
the basis shapes (and the other way around) due to the bilinearity of the shape
representation in Eq. (4). A slightly different derivation of this observation has
first appeared in [13,14]1 where it was called duality of the shape and trajec-
tory basis. It is important to highlight that from an algebraic point of view, the
trajectory space approach is completely equivalent to the basis shape approach.

4 Projecting Low-Rank Non-Rigid Deformations

Having established the low-dimensional structure of deforming 3D points in the
previous section, this section presents an analysis of the resulting 2D trajectories
observed in affine cameras. We will see that the image observations originate from
three interacting subspaces which are most naturally modeled in a multilinear
algebra framework.

4.1 General Low-Rank Non-Rigid Motion

In preparation for multiple cameras, the bilinear models for non-rigid trajectories
of the previous section are slightly reformulated: the rigid component of the non-
rigid motion is modeled explicitly with a temporally varying rotation Rf and
translation tf . This has two advantages: firstly, the non-rigid deformation does
not need to explain the rigid component of the motion which is advantageous
especially for large rigid transformations, and secondly it facilitates the extension
of the model with a camera rig observing the deformable object.

1 In [13], the basis I3 ⊗D has been used which is a column and row permutation of
D⊗I3 (This has also been noted in [22]). As our derivation shows, the latter version
is more natural and has also been used in [14].
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In the most general case, the non-rigid trajectories are given by

(xf,n

1
) = [ Rf tf

01×3 1
] [ Yf 03×1

01×dS
1

] [sn
1
] = [RfYf tf

01×dS
1
] [sn

1
] . (5)

The following derivations mostly follow similar steps as done in [16]. By
making use of the Kronecker-product property of Eq. (1), the projection of point
n into affine camera axis cTk ∈ R1×4 at frame f is given by

Wk,f,n = cTk (xf,n

1
) = cTk [RfYf tf

01×dS
1
](sn

1
) = vec([RfYf tf

01×dS
1
])

T

[(sn
1
)⊗ cTk ] (6)

= [vec (RfYf)T tTf 1]S(f) [(
sn
1
)⊗ cTk ] (7)

with the flattened core tensor

S(f) = [IdS
⊗ [I3 03×1] 03dS×4
04×4dS

I4
] ∈ R3dS+4×4dS+4. (8)

Stacking the dynamic part row-wise and the temporally non-varying part column-
wise leads to a flattened data tensor along the temporal mode

W(f) = [⇓f⇒n,k Wk,f,n] = MS(f)(ST ⊗C)T ∈ RF×2KN (9)

with M = [⇓f (vec (RfYf)T , tTf ,1)] ∈ RF×3dS+4 (10)

S = [⇒n (sn
1
)] ∈ RdS+1×N (11)

C = [⇓k cTk ] ∈ R2K×4. (12)

M, S, and C capture the motion, structure, and camera subspaces respectively.
The flattened data tensor along the temporal modeW(f) must be of rank 3dS+4
due to the revealed factorization. Reshaping this matrix into a third-order data
tensor2 gives W = S ×k C ×f M ×n S with core tensor S ∈ R4×3dS+4×dS+1. The
rigid motion case presented in [16] results by choosing dS = 3 and every Yf as
the identity matrix.

4.2 Basis-Shape Model

In the more specific basis shape representation (or equivalently in the trajectory
basis representation), a property of the Kronecker product (see Eq. (2)) leads
to an interesting result if the model of Eq. (4) is again extended with a rigid
transformation

[ Xf

11×N
] = [ Rf tf

01×3 1
] [Ωf,∶ ⊗ I3 03×1

01×3B 1
] [⇓b Sb

11×N
] = [Ωf,∶ ⊗Rf tf

01×3B 1
] [⇓b Sb

11×N
] ∈ R4×N .

(13)

2 Such a tensor representation is known as Tucker tensor decomposition [20].
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The rigid rotation Rf interacts with the non-rigid dynamic part Ω through a
Kronecker product. Inserting Eq. (13) in Eq. (5), we immediately see that the
basis shape approach follows from the previous formulation in Eq. (9) by setting
dS = 3B and choosing

M = [⇓f (vec (Ωf,∶ ⊗Rf)T , tTf ,1)] ∈ RF×9B+4, S = [⇓b Sb

11×N
] ∈ R3B+1×N . (14)

This representation might seem rather unconventional, however it clearly
reveals all the multilinear relationships encoded in the data. This representation
not only seamlessly handles the case of multiple cameras, but also facilitates the
exposure of the unknown matrices for an iterative optimization algorithm. In
order to exemplify this fact, we arrange the entries of the tensor in a better-known
form revealing a matrix of rank 3B + 1 which exposes the basis shape matrix S.
This arrangement actually corresponds to the transpose of the flattening of the
tensor along the mode of the points

WT
(n) =W(f,k) = [C⊗M]T ST(n)S = [⇓f C [Ωf,∶ ⊗Rf tf

01×3B 1
]]S. (15)

Note that flattening a tensor along a mode is a purely algebraic operation and
can easily be done by strictly following some rules. In previous work, usually only
one single camera with orthogonal camera axes with non-varying scale has been
considered. This corresponds to choosing C = [I2,02×2] in the above formulation
which leads to the standard monocular NRSfM basis shape equation

WT
(n) = [⇓f [Ωf,∶ ⊗Rf,1∶2,∶, tf,1∶2]] [

⇓b Sb

11×N
] . (16)

At this point it is interesting to put this formulation in relation to Torresani
et.al.’s work [23]. Based on the basis-shape model in Eq. (15), [23] proposes a
low-rank constraint for optical flow of non-rigid shapes and a 3D reconstruction
algorithm for basis-shapes (i.e. merging [6] with Irani’s rigid optical flow con-
straints [24]). Even though presented originally in a completely different way, the
optical flow constraint actually is a consequence of consideringW(f) whereas the
3D reconstruction is based on a block-coordinate descent algorithm derived from
WT
(n). [23] even formulated an extension of their 3D reconstruction algorithm for

multiple cameras with the simplification that the data is centered, i.e. transla-
tions are not modeled. Based on the same formulation, Del Bue and Agapito
showed experimentally [18] that a stereo setup indeed improves the reconstruc-
tion accuracy of a basis shape model. More recently, Lladó et.al.[19] drew the
same conclusion in an iterative Ransac-framework for a binocular stereo setup
with perspective cameras. However, similar to [17], all these approaches require
feature point correspondences between different cameras to be known because
the exact relation between W(f) and W(n) has not been established. By making
use of this relation, Sec. 5.2 presents an algorithm which can handle cases where
no correspondences between different cameras are available.
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The interested reader is also referred to Hartley and Vidal’s work [25] which
presents a solution for the monocular basis-shape model with perspective rather
than affine cameras. We leave it as an open question whether there exists a similar
solution to the perspective multi-camera basis-shape model3. The supplemental
material [26] contains additional insights relating to the stability and uniqueness
of basis-shape factorizations, the ambiguities of the basis-shape model, and the
orthogonality constraints used for finding a corrective transformation after a low-
rank factorization of the data matrix WT

(n) (establishing connections to [27,8,9]

amongst others).

5 Results

Since the unified tensor formulation is one of the main contributions, practical as
well as theoretical results of this formulation will be presented in the upcoming
sections.

5.1 Theoretical Result: Degenerate Low-Rank Non-Rigid Motion

As a theoretical result of the proposed tensor formulation, degenerate motions
will be investigated more closely in this section. In the previous derivations
we have implicitly assumed that if rank ([⇓f RfYf ] ∈ R3F×N) = dS then r =
rank ([⇓f vec (RfYf)T ] ∈ RF×3N) = 3dS . For general matrices, the algebraic

rank of such a reshaped matrix indeed fulfills this equality. However, in spe-
cial cases or in practical cases where the rank is estimated based on a robust

rank estimator it might be that [⇓f vec (RfYf)T ] is again redundant and can be

factorized even further into two lower-rank matrices [⇓f vec (RfYf)T ] = M̃Q

and we get r < 3dS . Such a rank reduction happens for example if the tra-
jectories in x-direction are highly correlated with the trajectories in y- and
z-direction which is actually not that uncommon. In such cases, the matrix
Q = [Q1,⋯,QdS

] ∈ Rr×3dS can be absorbed by S(f)

MS(f) = [M̃Q, [⇓f tTf ] ,1F×1]S(f) = [M̃, [⇓f tTf ] ,1F×1] [
[⇒dS

b=1 [Qb,0r×1]] 0r×4
04×4dS

I4
]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=S̃(f)∈Rr+4×4dS+4

,

which increases the complexity of the factorization since the core tensor is then
also (partially) unknown. This complexity on the other hand might lead to
greater robustness since the motion subspace can be of any rank r not nec-
essarily equal to 3dS . Fig. 1 exemplifies this observation further.

Aware of these degenerate situations, we leave it as future work how to deal
with such degenerate motions algorithmically. In the next section, we will assume
general non-degenerate motions such as presented in Sec. 4.1.

3 Note however that even the much simpler extension of the multi-camera rigid model
[16] to perspective cameras proves to be rather challenging.
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Fig. 1: This figure shows the problem of implicitly choosing the dimensionality
of the motion too high. For Fig. 1a-Fig. 1d a sequence of a non-rigidly de-
forming structure xf,n with dS = 7 was generated. The motion actually corre-
sponds to two realistically independently moving rigid objects and hence the
overall structure is perceived as non-rigid. The logarithms of the resulting singu-

lar values of X(f) = [⇓f⇒n xT
f,n] = MS(f) [S⊗ [I3,03×1]T ] ∈ RF×3N and X(n) =

[⇓f⇒n xf,n]T = SS(n) [M⊗ [I3,03×1]]T ∈ RN×3F are visualized in blue resp. red.

Fig. 1a with no noise shows the true underlying ranks rank (X(n)) = dS + 1 = 8

and rank (X(f)) = 3dS + 3 = 24. It can be clearly seen that only a minor in-
crease of Gaussian distributed noise already corrupts the rank-24 approximation
of X(f) considerably. However, the numerical rank of X(n) is considerably more
robust w.r.t. noise. This is a clear indication that a tensor-formulation taking
the multi-rank of the tensor into account provides increased robustness. Fig. 1e
shows the same analysis for the CMU facial motion capture sequence used in
[11].

5.2 Algorithms

From a practical point of view, the tensor framework also facilitates the develop-
ment of algorithms. Here, we present a closed-form and an iterative algorithm.

Closed-From Factorization Algorithm Let us consider a multi-camera setup
with affine cameras where each camera tracks its own set of feature points: there
are no feature point correspondences between different cameras. In order to ap-
ply matrix factorizations, the trajectories must be known completely, i.e. from
the first to the last frame. Furthermore, a non-degenerate motion according to
Sec. 4.1 is assumed. In this case, a closed-form factorization algorithm can be
derived following along similar lines as in [16]. In that work, we presented a fac-
torization algorithm for multiple cameras observing a rigidly moving object, i.e.
exactly the same setup as considered here except that the motion was rigid. The
formulation and derivations in Sec. 4 highlighted a close similarity between the
rigid and non-rigid case: a rigid motion corresponds to choosing dS = 3 for the di-
mensionality of the structure coefficients sn ∈ RdS×1 in Eq. (5). It follows that for
deformable objects where dS > 3, the algorithm in [16] can be adapted by chang-
ing the dimensionality of the motion matrix and structure matrix accordingly.
The intuition of the resulting algorithm is that instead of using point correspon-
dences between different cameras, we make use of the motion correspondence:
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all the cameras observe the same non-rigid deforming object and this motion
correspondence enables the registration of all the cameras in one consistent co-
ordinate frame. Self-calibration can be applied to the camera matrices in order
to get a representation of the non-rigid deformation in a similarity coordinate
frame. More detailed derivations are provided in [26], and the interested reader is
also referred to [16]. According to our knowledge, this is the first closed-form re-
construction algorithm for multiple affine cameras which track feature points on
a low-rank non-rigid object without correspondences between different cameras.
The existence of such an algorithm is quite surprising since

i) without correspondences between different cameras, no feature points can
be triangulated using the rigidity of the object when observed from multiple
cameras at the same point in time.

ii) there is no rigidity constraint between successive frames and hence, a feature
point tracked in just one camera can not be directly triangulated by standard
multiple-view techniques either.

iii) an independent reconstruction per camera is not possible without further
assumptions.

Iterative Refinement The previously described algorithm follows several se-
quential steps and is thus not optimal in the sense that errors in early steps
are propagated and maybe even amplified in subsequent steps. However, this
algorithm can serve as an initialization for an iterative optimization for

min
M,S,C

1

2
∥H⊙ [MS(f) [S⊗CT ] −W(f)]∥

2

F
, (17)

where H masks the unobserved entries and ⊙ denotes the Hadamard (element-
wise) product. We implemented an alternating least squares (ALS) method which
is a straight-forward and efficient algorithm for optimizing multilinear problems
of this form. One has to keep in mind however, that the number of unknowns
is quite large and the Kronecker-structure in the Jacobians must be used wisely
otherwise performance suffers too much. For the sake of completeness, the Jaco-
bians are provided in the supplemental material [26]. Note that ALS is known
to flatline rather quickly when not properly initialized requiring lots of random
multiple restarts. Based on our experiments with random intialization, this is
indeed also the case in the above trilinear problem of Eq. (17). With the initial-
ization provided by the closed-form algorithm however, ALS converged in very
few iteration and we never had to randomly reinitialize ALS. This showcases the
quality and accuracy of the solution provided by the closed-form algorithm.

In the presence of incomplete trajectories, this iterative optimization can
obviously also be used, even though the initialization is slightly more tricky
since the closed-form algorithm can no longer be applied. As a simplification or
initialization, the motion subspace can be fixed to a truncated DCT-basis in the
case of smooth motions.
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Comparison to [17] At this point, a comparison with Zaheer et.al.’s recently
proposed algorithm [17] is suitable. Their work addresses the same setup of mul-
tiple affine cameras observing a non-rigid scene. In a nutshell, the algorithm
proposed in [17] reads in our tensor formulation like (we also refer to the sup-
plemental material [26] for further details):

1. Impute missing 2D trajectory entries with a truncated DCT interpolation of
the known entries.

2. Compute an orthogonal basis M for the dominant subspace of the completed
trajectories by factorizing W(f).

3. FactorizeW(k) [IN ⊗M] in rank-3 matrices in order to extract the first three
columns of the camera matrices.

The last two steps actually correspond to a partial first iteration of the Higher-
Order SVD algorithm [20] where the dominant subspaces of a tensor are alter-
natingly exposed by reshaping the tensor in matrix form and performing PCA to
extract the dominant subspaces. Zaheer et.al.’s algorithm assumes all the corre-
spondences between cameras to be known, or if some entries are missing, these
entries must be interpolated in the first step. Otherwise, the factorization in the
third step can not be performed. Furthermore, the input data is assumed to be
centered, hence the translations are not modeled and the camera matrices are of
rank 3. Subtracting the column means in a centering step factors out the plane at
infinity and results automatically in a reconstruction w.r.t. an affine coordinate
frame. A standard rank 4 factorization including translations would result in a
projective reconstruction asking for more complex auto-calibration techniques.
In contrast, even though our formulation explicitly models the translations, the
resulting reconstruction is still in an affine frame. Our work is different in many
aspects and refines the results in [17] considerably. Using the tensor formula-
tion, we see that the derivation of [17] is missing an important algebraic relation
(specifically the algebraic relation between Eq. (2) and (9) in their paper). As
seen in the previous sections, thanks to the tensor formulation a closed-form or
an iterative algorithm can be derived where no correspondences between differ-
ent cameras need to be known. This is obviously a considerably stronger result.
Of course, if correspondences between cameras are available, then these algo-
rithms derived from the tensor formulation can and should make use of them.
Moreover, our presentation assumes no centered data which corrects for the fact
that the translational part can not be eliminated by subtracting the column
mean in the presence of missing data. This has been overseen in [17] and hence
the derivation and their algorithm only hold if all the data is known in the cen-
tering step and entries are only deleted afterward. Our algorithms are therefore
applicable whenever [17] is but cover additional settings as well (e.g. missing
correspondences between cameras and correct handling of translation in case of
incomplete trajectories).

5.3 Experiments

The CMU facial motion capture sequence, which has also been used in [11], is
used for practical evaluation because this is a widely used dataset for NRSfM.
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The facial mocap sequence is projected into K = 3 affine cameras spaced 45
degrees apart from each other where the middle one is facing the face directly
from the front and is equal to the camera used by [11]. Each camera observed
all of the 40 points, however no correspondences between the different cameras
have been enforced. The closed-form algorithm has been used for initializing 20
iterations of ALS. The results are summarized in Fig. 2. An interesting obser-
vation we made was that the reprojection error directly after the closed-form
algorithm was sometimes quite high (up to roughly 10% of the camera resolu-
tion). However, after one single iteration of ALS, the error often dropped below
1%. We explain this observation by referring to Fig. 1: the closed-form algorithm
is based on several sequential steps. The initial step is a low-rank factorization
of the data tensor flattened along the temporal mode W(f). This corresponds
to the blue points in these figures. Since the low-rank model holds only approx-
imatively, a considerable amount of noise might mix in which then propagates
to the subsequent steps. This sometimes leads to inaccurate structure estimates
S, the cameras and the majority of the motion matrix were usually estimated
quite accurately. A few ALS iterations can correct for this error propagation, as
shown in the results.

The algorithm can also handle the extreme minimal case where a camera
only tracks one single feature point which is not in correspondence with any of
the other feature points tracked by the other cameras. As long as all the cameras
together provide sufficient data to estimate the motion space M, one trajectory
is sufficient to reconstruct the camera pose and the 3D motion of this trajectory.
In order to validate this, a single point was selected from camera 3 and all the
remaining ones of camera 3 were omitted in the algorithm. With dS = 10, for an
almost rigidly moving point an overall relative 3D error of 0.021 resulted and
restricting to only the selected point, the relative 3D error of this trajectory was
0.044. For a largely non-rigidly moving point on the mouth, the overall relative
3D error was 0.025 and the relative 3D error of the trajectory was 0.061. We
refer to Fig. 2 for the reprojection error of this non-rigid point in camera 3.

6 Conclusion and Future Work

This paper presented a unified formulation based on tensor algebra for factorization-
based NRSfM approaches thereby expressing monocular, binocular, and camera
network approaches for NRSfM in a common framework. We have shown that
the natural way to capture such multilinear interactions between a motion sub-
space, camera subspace, and a structure subspace is a Tucker-tensor decompo-
sition. This new understanding of how the subspaces interact with each other
enabled us to come up with a closed-form and an iterative algorithm which can
handle the case where no feature point correspondences between different cam-
eras are available. Experiments validated the presented algorithms on motion
capture data.

As future work, we plan to address the dimensionality selection problem
for the motion and structure subspaces. Sec. 5.1 already presented some first
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Fig. 2: Results of facial mocap sequence: Fig. 2a shows the relative 3D error of
the reconstructed 3D trajectories as a function of the structure dimensionality.
Compared to [11], our approach achieves only slightly better results: an indicator
that both Torresani et.al.’s and our approach succeed in an accurate reconstruc-
tion, even though using completely different presuppositions ([11] works in a
monocular blend-shape setting with strong smoothness prior on shape and mo-
tion). Fig. 2b shows the ground truth in blue and reprojections in red for the
three cameras at frame f = 132 for dS = 15. Fig. 2c shows the reprojection error
in camera 3 of the single-point reconstruction experiment. The reprojection error
for this camera is roughly 3 pixels for an image of resolution 1200 × 1200.

theoretical insights but we are currently lacking an algorithm to handle these
situations in a principled manner. A first idea might be to impose trace norm
regularization terms on the reshaped tensors W(f) and W(n) thereby automati-
cally favoring low-dimensional motion and structure subspaces. Another thrust
for future research is the application of the low-rank constraints amongst differ-
ent cameras for optical flow: the flow field of each camera is constrained by one
joint motion subspace. From an optimization point of view, the robust handling
of outliers in the measurement remains an open issue.
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