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Abstract

Camera networks have gained increased importance in
recent years. Previous approaches mostly used point cor-
respondences between different camera views to calibrate
such systems. However, it is often difficult or even impos-
sible to establish such correspondences. In this paper, we
therefore present an approach to calibrate a static camera
network where no correspondences between different cam-
era views are required. Each camera tracks its own set of
feature points on a commonly observed moving rigid object
and these 2D feature trajectories are then fed into our algo-
rithm. By assuming the cameras can be well approximated
with an affine camera model, we show that the projection of
any feature point trajectory onto any affine camera axis is
restricted to a 13-dimensional subspace. This observation
enables the computation of the camera calibration matri-
ces, the coordinates of the tracked feature points, and the
rigid motion of the object with a non-iterative trilinear fac-
torization approach. This solution can then be used as an
initial guess for iterative optimization schemes which make
use of the strong algebraic structure contained in the data.
Our new approach can handle extreme configurations, e.g.
a camera in a camera network tracking only one single fea-
ture point. The applicability of our algorithm is evaluated
with synthetic and real world data.

1. Introduction
Factorization-based solutions to the structure from mo-

tion problem have been heavily investigated and extended
ever since Tomasis’ and Kanade’s seminal work about rigid
factorizations [15]. Such factorization based approaches en-
joy interesting properties: e.g. given an almost affine cam-
era these techniques provide an optimal, closed-form solu-
tion using only non-iterative techniques from linear algebra.
The factorization approach, which is based on the singular
value decomposition of the data matrix, has been further
extended to multi-body motion segmentation [7], to per-
spective cameras [13], non-rigid objects [4, 16, 2, 3, 19],

and articulated objects [21]. More flexible methods which
can deal with missing data entries in the data matrix have
been proposed in order to overcome shortcomings of singu-
lar value based decompositions which can not cope with
such situations [4, 10, 19, 9]. These approaches are all
based on a method known as the alternating least squares
method which is a well-known algorithm in the multilinear
algebra community. We therefore propose to model the data
as a tensor rather than a matrix because this provides valu-
able insight into the algebraic structure of the factorization
and allows to draw from tensor decomposition techniques
in related fields.

The goal of this paper is to extend rigid factorizations
to the multi-camera setup where the cameras are assumed
to be static w.r.t. each other and to be well approximated
with an affine camera model. Several methods [16, 5] al-
ready extended the factorization approach to a two-camera
setup and Svoboda et al. [14] proposed a projective multi-
camera self-calibration method based on rank-4 factoriza-
tions. Unfortunately, these methods all require feature point
correspondences between the camera views to be known.
Sequences from two camera views have also been inves-
tigated [22] in order to temporally synchronize the cam-
eras or to find correspondences between the camera views.
Non-factorization based methods have been proposed to
deal with non-overlapping camera views, e.g. hand-eye-
calibration [8] or mirror-based [11]. These methods make
strong assumptions about the captured data of each cam-
era since in a first step, a reconstruction for each camera is
usually computed separately. Wolf’s and Zomet’s approach
[20] is most closely related to ours. In this work, a two-
camera setting is investigated where the points tracked by
the second camera are assumed to be expressible as a linear
combination of the points in the first camera. This formu-
lation even covers non-rigid deformations. However, the
available data from the two cameras are treated asymmet-
rically and are not fused uniformly into one consistent so-
lution. Even worse, if the first sequence can not provide
a robust estimate of the whole motion and structure on its
own then this method is doomed to failure. In contrast,



our method readily combines partial observations from any
number of cameras into one consistent solution.

The present paper targets the difficult situation where
no feature point correspondences between different camera
views are available or where it is even impossible to estab-
lish such correspondences due to occlusions: each camera
is thus allowed to track its own set of feature points. 2D
trajectories of feature points on a commonly observed mov-
ing rigid object serve as an input to our algorithm. Sec. 3
derives a rank constraint on such affinely projected rigid
motion trajectories. This analysis allows us to derive a
new rank-13 constraint on the data matrix in Sec. 4. This
rank constraint together with the knowledge of the algebraic
structure contained in the data enables the computation of
suitable basis vectors for the corresponding 13-dimensional
subspace with linear, non-iterative methods (Sec. 4.2). Such
a basis readily reveals the unknown camera matrices, coor-
dinates of the points, and rigid motion. Sec. 5 shortly dis-
cusses minimal configurations in order to find such a linear
solution. Non-linear iterative optimization methods, specif-
ically tailored towards the underlying algebraic structure of
the data, can then refine such an initial guess as provided by
the linear method (Sec. 6). The applicability of our algo-
rithm is shown on synthetic as well as on real world data in
Sec. 7. We even show how to calibrate a camera which only
tracks one single feature point which is not in correspon-
dence with any other point tracked by any other camera.

2. Notation
The following notation will be used throughout the

paper: K is the total number of static cameras, k ∈
{1, · · · ,K} denotes one specific camera, F is the total
number of observed frames and f ∈ {1, · · · , F} labels
one specific frame. The number of tracked feature points
in camera k is given by Nk. The identity matrix of dimen-
sionD×D is denoted as ID. Coordinates in an affine world
coordinate frame will be denoted with a tilde Ã whereas co-
ordinates in an Euclidean frame will simply be stated as a
bold letter A. A matrix which spans the same subspace as
matrix A but which does not comply with the correct under-
lying algebraic structure is denoted with a hat Â. We some-
times make use of Matlab R© matrix indexing notation, so
A(i:j,k:l) corresponds to the submatrix of A which is given
by selecting rows i to j and columns k to l.

Concepts from tensor calculus, specifically the mode-i
product, the Tucker tensor decomposition [17], the Kro-
necker product⊗, and the vec (·)-operator, are used as well.
For example, the Kronecker product A⊗B between matrix
A ∈ R2×2 and matrix B equals the block-structured matrix

A⊗B =
[
A1,1 A1,2

A2,1 A2,2

]
⊗B =

[
A1,1B A1,2B
A2,1B A2,2B

]
. (1)

We define the vec (·)-operator as a column-vector valued

operator which stacks all the columns of a matrix below
each other. The Kronecker product and the vec (·)-operator
enjoy the following property

vec (C) = vec
(
AXBT

)
= (B⊗A) vec (X) , (2)

where A, B, C, and X are matrices. This property is useful
to extract an unknown matrix X in a matrix-equation. Read-
ers unfamiliar with these concepts are referred to [12, 1] for
a short introduction.

3. Rank-Constraint on Motion Trajectories
3.1. Derivation of Rank-13 Constraint

The affine projectionWk,f,n of the nth feature point with
homogeneous coordinates sn ∈ R4×1 undergoing a rigid
motion

[
Rf tf

]
onto an affine camera axis cT

k ∈ R1×4

reads like

Wk,f,n = cT
k

[
Rf tf

0 1

]
sn (3)

= vec
([

Rf tf

0 1

])T [
sn ⊗ ck

]
(4)

=
[
vec (Rf )T tT

f 1
]
S(f)

[
sn ⊗ ck

]
, (5)

where the Kronecker product property of Eq. (2) and
Wk,f,n = WT

k,f,n ∈ R was used in the second step. In
the last line, we introduced the core tensor S ∈ R4×13×4

flattened along the temporal mode in order to get rid of the
zero columns from the vectorized rigid motion. This flat-
tened tensor thus looks like

S(f) =
[
I3 ⊗

[
I3 03×1

]
09×4

04×12 I4

]
∈ R13×16. (6)

The camera axes of all the K cameras can be stacked ver-
tically into a matrix C =

[
⇓k cT

k

]
∈ R2K×4. In a sim-

ilar way, the tracked feature points can be stacked into a
matrix S =

[
⇒n sn

]
∈ R4×

∑
k Nk . By introducing the

motion matrix M =
[
⇓f

[
vec (Rf )T tT

f 1
]]
∈ RF×13

we finally get the equation for the coordinates of the tra-
jectory of the nth feature point projected onto the kth cam-
era axis Wk,:,n = MS(f)(ST

:,n ⊗ Ck,:)T . Fixing a col-
umn ordering scheme ⇒n,k consistent with the Kronecker
product, we derive the equation for a 3rd-order data tensor
W ∈ R2K×F×

∑
k Nk flattened along the temporal mode f

W(f) =
[
⇒n,k Wk,:,n

]
= MS(f)(ST ⊗C)T . (7)

This leads to the following

Observation 1 Any trajectory over F frames of a feature
point on an object which transforms rigidly according to
Rf and tf at frame f and observed by any static affine
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Figure 1. The tensorW can be viewed as a linear combination of
3rd-order tensors each of which equals the outer product of three
vectors (so called simple tensors). The coefficients for this linear
combination are stored in the core tensor S, which in our case
simply consists of only 13 non-zero entries (visualized as black
squares). Stacking all the vectors of these simple tensors according
to their mode next to each other reveals the motion matrix M,
the camera matrix C, and the coordinates of the points S. The
difficulty lies in decomposing the given data tensor into these 13
simple tensors in the presence of missing data entries.

camera axis is restricted to lie in a 13-dimensional subspace
of a F -dimensional linear space. This subspace is spanned
by the columns of the rigid motion matrix

M =
[
⇓f

[
vec (Rf )T tT

f 1
]]
∈ RF×13, (8)

and is independent of both the camera axis and the coordi-
nates of the feature point.

Eq. (7) exactly corresponds to a Tucker decomposition of
the data tensor flattened along the temporal mode with a
core tensor S. The original tensor is therefore given by
consistently reordering the elements of the flattened core
tensor into a 3rd order tensor S ∈ R4×13×4 and by applying
the three mode-i products between the core tensor and the
mode-f , mode-k, and mode-n subspaces M, C, and ST ,
respectively:

W = S ×f M×k C×n ST (9)

Note that f , k, and n are used for readability reasons for la-
beling of the mode-i product along the temporal mode, the
mode of the camera axes, or the mode of the feature points,
respectively. This derivation clearly shows the trilinear na-
ture of the image coordinates of the projected feature trajec-
tories. Fig. 1 depicts this decomposition visually.

3.2. Ambiguities

The Tucker decomposition is known to be non-unique
since a basis transformation applied to the mode-i subspace
can be compensated by the mode-i product of the core ten-
sor with the inverse of this linear transformation

W = (S ×f Qf ×k Qk ×n QT
n ) (10)

×f MQ−1
f ×k CQ−1

k ×n (Q−1
n S)T . (11)

This would obviously result in changing the entries of the
known core tensor (Eq. (6)). However, affine transforma-
tions of the camera matrix and points can be compensated
by a suitable transformation of the motion subspace keep-
ing the known core tensor thus unchanged. Let the last row
of Qk and Qn be equal to

[
0 0 0 1

]
, i.e. Qk and Qn

are affine transformations. Then we can solve for Qf in the
equation S = S ×f Qf ×k Qk ×n QT

n which leads to

Qf = S(f)(Q−T
n ⊗Q−1

k )TST
(f). (12)

The inverse of this transformation is then applied to the mo-
tion matrix M←MQ−1

f which compensates for the affine
transformations of the cameras and points. Note that even
if we are working in an Euclidean reference frame (which
means that the motion matrix fulfills certain rotational con-
straints) and the transformation applied to the camera and
point matrices are Euclidean transformations then the im-
plied motion matrix MQ−1

f still fulfills the rotational con-
straints. This clearly shows that the factorization is only
unique up to two affine resp. two Euclidean transforma-
tions Qn and Qk which should not come as a surprise since
Eq. (3) is a product involving three factors and hence two
ambiguities arise between these factors. Brand [3] mentions
a similar result in the case of deformable objects where the
ambiguity arises from an arbitrary basis transformation of
the subspace of the blend shape weights and an Euclidean
transformation of the camera frame.

4. Rank-13 Factorization

With the previously derived formulation, our problem
can be restated in the following way. Given the knowledge
of certain elements of the 3rd-order tensorW , compute the
underlying mode-f , mode-n, and mode-k subspaces (M,
ST , and C, respectively) which generate the data tensor
according to Eq. (9). Our problem thus essentially boils
down to a multilinear tensor factorization problem. If there
is no missing data, i.e. ∀k, f, n : Wk,f,n is known, the
computation of the Tucker decomposition [17] is straight
forward and the unknown subspaces M, S, and C are di-
rectly revealed by this decomposition. Missing entries in
the data tensor however prevent the application of the stan-
dard Tucker decomposition algorithm.



W = S ×k C×f M×n ST W(f) = MS(f)(ST ⊗C)T W(k) = CS(k)(ST ⊗M)T W(n) = STS(n)(C⊗M)T

Points

Camera Axes

F
ra

m
e

s

2468101214161820
1

2

3

4

5

6

7

8

10

20

30

40

50

60

70

80

90

100

W ∈ R2K×F×
∑

k Nk W(f) ∈ RF×2K
∑
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∑

k Nk W(n) ∈ R
∑

k Nk×2KF

Table 1. If there are no feature point correspondences between different camera views then the data tensor W has many missing data
entries (missing data entries are visualized transparently). Along the third order data tensor itself, its three flattened versions are shown as
well. Note that onlyW(f) has completely known columns which allows to compute a basis of the motion subspace span (M). Due to the
block-diagonal structure of the known data entries, the remaining two flattened tensors cannot be used to compute a consistent subspace
for the camera matrices or the coordinates of the points.

4.1. Missing Correspondences

Let us now consider the setting where each camera k
observes its own set of feature points Sk ∈ R4×Nk and
hence, there are no correspondences available between dif-
ferent camera views. In this case, each camera no longer
observes every point, i.e., there are tuples (k, n) for which
the value Wk,f,n is unknown. Without loss of generality
we can assume that the points in S are given by stacking
the individual Sk next to each other S =

[
⇒k Sk

]
. As

we can see in Tab. 1, only the flattened tensor W(f) along
the temporal mode f contains some columns whose en-
tries are all known, amongst many completely unknown
columns. These known columns however still span the
complete 13-dimensional mode-f subspace. Analogously
to the well-known rank-4 factorization approach, this rank-
13 constraint can be used to robustly decompose the known
2
∑

k Nk columns of the flattened data tensor W(f) with a
singular value decomposition into a product of two rank-13
matrices M̂ = U ∈ RF×13 and Â = ΛVT ∈ R13×2

∑
k Nk

MS(f)

[
⇓k ST

k ⊗Ck

]T = (M̂Q)(Q−1Â). (13)

However, as indicated with an unknown 13-by-13 transfor-
mation matrix Q, the factorization provided by the singu-
lar value decomposition does not conform to the correct al-
gebraic structure of the flattened tensor along the temporal
mode.

4.2. Stratified Corrective Transformation

For that reason we propose to use a stratified approach to
compute the unknown transformation matrix Q

Q = Qaff Q−1
kronQmetric . (14)

Qaff isolates the camera translations from the remaining
columns of Â and thus resembles an affine upgrade. The
correct algebraic Kronecker-structure of an affine version

Ã of A is enforced by Q−1
kron , whereas Qmetric finally

performs a similarity upgrade. The following subsections
present each step in detail.

4.2.1 Affine Upgrade
The first step in computing Q consists in transforming the
last column of the motion matrix M̂ such that it conforms
to the one vector 1 of M. We will call this step the affine
upgrade. Specifically, we solve for qT

aff in 1F×1 = M̂qaff .
A guaranteed non-singular affine upgrade is then given by
Qaff =

[
N (qaff ) qaff

]
, where N (qaff ) denotes an or-

thogonal basis for the nullspace of qaff . We can not gain
any more knowledge by analyzing M̂, yet. We therefore
turn our attention toward Â.

4.2.2 Computing Affine Cameras
As previously mentioned, in this step we look for a transfor-
mation Qkron which ensures the correct algebraic structure
of an affine reconstruction

Ã = QkronQ−1
aff Â = S(f)(⇓k S̃T

k ⊗ C̃k)T . (15)

This is a bilinear problem in the unknowns Qkron , S̃, and C̃.
Since the product between Q−1

kron and Qmetric should not
modify the last column of Qaff anymore, the last column of
Q−1

metricQkron has to be equal to (01×12, 1)T . This together
with the fact that the structure of Qmetric must follow the
structure in Eq. (12) implies that the last column of Qkron

equals (01×12, 1)T and thus only the first twelve columns of
Qkron are actually unknown. By realizing that the last row
of S̃ corresponds to the one vector we see that the last four
rows of Eq. (15) actually describe an over-determined linear
problem in the 4 · 12+2K · 4 unknowns of Qkron,10:13,1:12

and C̃. The resulting system can be solved linearly in the
least-squared sense (see [1] for details).

4.2.3 Enforcing the Kronecker-Structure
Once an affine camera matrix C̃ is known, the originally
bilinear problem reduces to a linear one



Ã = S(f)(⇓k S̃T
k ⊗ C̃k)T = QkronQ−1

aff Â (16)

in the unknowns S̃k and Qkron . This is again an over-
determined linear problem with 3

∑
k Nk +9 ·12 unknowns

since the last four rows and the last column of Qkron are
already known and the last column of S̃ should equal the
constant one vector (the technical report [1] again provides
details on how to set up and solve this system).

4.2.4 Metric Upgrade
There is not enough information contained in S(f)(S̃T ⊗
C̃)T = QkronQ−1

aff Â to perform the metric upgrade and
we thus have to turn our attention again to the rigid motion
matrix M̂. However, in contrast to Sec. 4.2.1, an affine re-
construction with a valid Kronecker structure of the rigid
motion is now available. Thus, the metric correction ma-
trix Qmetric must fulfill the algebraic structure derived in
Eq. (12). We are therefore looking for affine transforma-
tions Qn and Qk such that

M =⇓f

[
(vec (Rf ))T tT

f 1
]

(17)

= ⇓f

[
(vec

(
R̃f

)
)T t̃T

f 1
]

︸ ︷︷ ︸
M̃=M̂Qaff Q−1

kron

S(f)(QT
n ⊗Qk)TST

(f)︸ ︷︷ ︸
Qmetric

conforms to an Euclidean rigid motion matrix. Let

Qn =
[
T−1

n tn

01×3 1

]
and Qk =

[
Tk tk

01×3 1

]
. (18)

Using the Kronecker product property of Eq. (2), the above
equation Eq. (17) is equivalent to the set of equations

Rf = TkR̃fT−1
n (19)

tf = TkR̃ftn + Tkt̃f + tk (20)

for f ∈ {1 . . . F}. Eq. (19) is equivalent to TkR̃f =
RfTn. Since Rf is a rotation matrix we have(

TkR̃f

)T (
TkR̃f

)
= (RfTn)T (RfTn) (21)

= R̃T
f TT

k TkR̃f =TT
nTn. (22)

This set of equations is linear in symmetric TT
k Tk and

TT
nTn and can be solved by similar techniques as the one

presented in [2, 3] for the rigid case. Each frame provides
6 constraints on the 12 unknowns (every dot product be-
tween columns of R̃f provides one constraint) and a so-
lution for TT

k Tk and TT
nTn can be found given sufficient

frames are available. A final eigenvalue decomposition of
these symmetric matrices finally yields the matrices Tn and
Tk. These matrices are then used to render Eq. (20) linear in

the unknowns, i.e., the translations tn, tk, and tf . This pro-
vides 3F constraints on the 3F+6 unknowns. The resulting
linear system therefore has a six dimensional solution space
which accounts for the six degrees of freedoms for choosing
tk and tn. Note that we have not made use of any orthogo-
nality constraints on the camera axes. These orthogonality
constraints implicitly imply a scaled orthographic camera
model, whereas our factorization algorithm can deal with
general affine cameras.

5. Minimal Configurations

Our algorithm requires the union of all the feature tra-
jectories spanning the 13-dimensional motion space. This
poses constraints on the minimal number of camera axes,
feature points, and on the rigid motion. In typical situa-
tions, the number of frames F is much larger than 13 and
we can assume the rigid motion being general enough such
that the whole 13 dimensional motion subspace gets ex-
plored. On the other hand, the constraints on the minimal
number of camera axes and feature points are more inter-
esting. Tab. 2 shows a summary which minimal cases meet
these constraints. Note that for some cases, even though the
rank of their mode-f subspace is 13, the computation of the
affine cameras (Sec. 4.2.2) still fails because the points do
not provide enough linear independent constraints for solv-
ing the linear system of Eq. (15).

Let us shortly discuss why a single affine camera is insuf-
ficient to capture the whole 13-dimensional motion space.
If the camera is considered as static and the rigid object as
moving, the rigid factorization approach [15] provides two
axes of the rigid rotation and rigid translations along two
axes at every frame. The rotation matrix can obviously be
completed by taking the cross product of the known axes.
Furthermore, the last column of the motion matrix M is
known to be equal to the constant one-vector. One single
camera can therefore reconstruct 9 + 2 + 1 = 12 dimen-
sions of the underlying motion space. The missing dimen-
sion corresponds to the rigid translation along the z-axis of
the camera. This is is not surprising since affine cameras
suffer from a depth-ambiguity. The complete motion space
is therefore only determined with at least two camera views
with non-parallel image planes (three linearly independent
camera axes would actually be sufficient).

The derivation of Eq. (9) assumed a rank-4 structure ma-
trix S. This assumption is violated if the observed object
is planar. Our algorithm currently can not handle such situ-
ations and thus planar objects represent degenerated cases.
Note however that each camera is allowed to track feature
points which lie in a plane, as long as they are not con-
tained in a common plane and the combined structure ma-
trix

[
⇒k Sk

]
is thus non-planar (see also the evaluation of

the real data sequence in Sec. 7.2).



# points per camera (3, 4) (4, 4) (1, 3, 3) (2, 3, 3) (2, 2, 4) (2, 2, 2, 2) (2, 2, 2, 3) (2, 2, 2, 2, 2)

rank (A) ?= 13 12 6= 13 13 = 13 13 = 13 13 = 13 13 = 13 13 = 13 13 = 13 13 = 13
Eq. (15) solvable 7 3 7 3 7 7 3 3
Sec. 4.2 applicable 7 3 7 3 7 7 3 3

Table 2. Minimal cases: This table lists the number of points per camera (for example, (N1, N2) means the first camera observes N1

points whereas the second tracks N2 points) and whether the linear algorithm of Sec. 4.2 succeeds in computing a valid factorization or
not (summarized in the last row). The first condition states that the observed points should span the complete 13-dimensional mode-f
subspace. The second condition ensures that valid affine camera matrices are computable (see Sec. 4.2.2). Note that any additional data
can only support the algorithm (e.g. if (N1, N2) works then (N ′

1, N ′
2, N3) with N ′

1 ≥ N1 and N ′
2 ≥ N2 works as well, even if N3 = 1).

6. Iterative Optimization
The solution given by the linear algorithm described in

Sec. 4.2 is suboptimal w.r.t. the trilinear nature of the data
because sequentially solving linear problems might transfer
errors from a previous step to the next step. This is espe-
cially true for data which originates from projective cam-
eras. However, as our experiments with synthetic and real
world data showed, the above mentioned solution still pro-
vides an accurate initial guess for an iterative non-linear
optimization scheme. [6] recently analyzed several itera-
tive algorithms for bilinear matrix factorization problems
with missing entries, amongst others the Alternating Least
Squares (ALS) method and the Wiberg algorithm. The ex-
tension of the ALS algorithm to our setting is apparent once
we realize that the data can be modeled as a third order ten-
sor. This tensor can then be flattened along its three modes
in alternation. A linear closed form solution is found for the
subspace which has been exposed by flattening the tensor
while keeping the remaining two subspace estimates fixed
and by only considering the known entries. The Wiberg al-
gorithm can be adapted to the matrix factorization ofW(f)

where the gradient is taken with respect to the unknown
mode-k subspace C and mode-n subspace S. In all our ex-
periments, both the ALS and Wiberg optimization methods
converged after just very few iterations (roughly 5 to 10 iter-
ations) in a minimum if initialized with the linear solution.
The linear solution as provided by the algorithm described
in Sec. 4.2 thus seems to suit perfectly as an initial guess for
an iterative refinement.

7. Evaluation
The steps described in Sec. 4.2.1, Sec. 4.2.2, and

Sec. 4.2.3 were applied sequentially to synthetically gen-
erated data and to a real data sequence in order to get an
initial estimate for an iterative non-linear refinement. The
ALS scheme was then iterated up to 10 times, with the pre-
viously computed solution as an initial guess. This already
provided a very good reconstruction which could be even
further improved by performing a couple of Wiberg itera-
tions with the ALS solution as initialization. Finally, the
metric upgrade was performed as described in Sec. 4.2.4.

Because the metric upgrade step is based on a least squares
formulation, only soft constraints are enforced on the rota-
tion matrices of the rigid motion and the resulting motion
is thus not perfectly rigid. Perfectly rigid motions can be
enforced if required in a supplemental step. We computed
a polar decomposition of the matrix Rf = RP at every
frame, replaced Rf by R and ignored the non-rotational
part P 1.

7.1. Synthetic Data

For the synthetic data experiments, the cameras were
modeled as similar to the ones used for the real data exper-
iments as possible (pixel density of 1080pixels

4.035mm , image res-
olution of 1920 × 1080 ). We chose a magnification fac-
tor of m = 61mm

5m which corresponds to a focal length of
61mm with an average distance between camera and rigid
object of 5m . K = 4 cameras were placed randomly 7.5m
apart from the scene each of which tracked Nk = 10 fea-
ture points over 100 frames. The rigid motion was gen-
erated by specifying 5 keyframes and interpolating in be-
tween. We randomly picked 5 axes of rotation and rotation
angles (which were limited to a maximum of 45 degrees).
The translation vector of the rigid motions and the feature
points were drawn from a normal distribution with a stan-
dard deviation of 5cm .

Firstly, the robustness with respect to isotropic Gaus-
sian noise on the coordinates of the projected feature points
was investigated. The synthetic data was generated with
an affine camera model for this experiment. Inspecting
Fig. 2(a) shows that our algorithm with soft metric con-
straints even slightly overfits the ground truth. This is
mainly due to the fact, that only soft constraints on the
rigidity of the motion were imposed. Enforcing truly
rigid motions using polar decompositions increased the root
mean squared error of the reprojected moving points (RMS)
slightly.

Secondly, the influence of the distance between cameras
and rigid object was investigated. In order to keep the mag-
nification factor constant, the focal length of the cameras

1The polar decomposition A = RP provides the optimal approxi-
mation R ≈ A of a matrix A with an orthogonal matrix R w.r.t. the
Frobenius-norm R = arg minQ ‖A−Q‖F subject to QT Q = I.
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Figure 2. Synthetic data experiments: The green line corresponds
to the error between ground truth and noisy projections, the red
line is the error of our algorithm (with soft constraints on rigid
motion) whereas the blue line shows the resulting error if rigid
rotations are enforced with a polar decomposition. The orange
line shows the error of the optimal affine camera approximation to
the projective cameras in the absence of noise.

was updated accordingly while changing the distance. In
this second experiment the data was generated with projec-
tive camera models and noise with a standard deviation of
σ = 10 pixels was added to the projections in order to make
the experiment more realistic (Fig. 2(b)).

7.2. Real Data Sequence

We evaluated our algorithm on a real sequence of a ro-
tating rigid box. The cameras recorded in a resolution
of 1920 × 1080 pixels. In order to ease the tracking we
used a template based tracking algorithm [18] which pro-
vides 5 points per template (the 4 vertices and the middle
point). The cameras were not aware of the fact that they
might have tracked the very same feature points (i.e., no
correspondences were established between different cam-
era views). Each camera tracked 2 templates which were
located on the same side of the box and hence, the struc-
ture of the points tracked by one single camera was actu-
ally planar. As the results show, our algorithm can handle
this configuration without problems. Fig. 3 shows the accu-
racy of the reconstruction. Cameras 1, 4, and 6 tracked the
templates on the front facing plane of the box (these tem-
plates are drawn in cyan, magenta, and red color), cameras
2 and 5 tracked the templates on another side of the box
(blue and yellow), whereas camera 3 was the only camera
which tracked the templates on the opposite side (green).
Note that a template which was tracked by more than two
cameras gets reconstructed at almost the very same location
in space, even though the algorithm is intentionally unaware

1st Camera 2nd Camera 3rd Camera

C1

C2

C3

C4

C5

C6

(b) 3D view of reconstruction (c) Closeup view

Figure 3. Resulting reconstruction of the real data sequence. The
top three images show the reprojection of feature points (red cir-
cles) into three camera views along with the ground truth (blue
crosses) for one specific frame (the frames are cropped in order to
fit in the figure). Fig. 3(b) shows a 3D view of the reconstructed
camera poses together with the points of the box at one specific
frame. Fig. 3(c) shows a closeup view of the reconstructed points
at this frame.

of such correspondences. Since affine camera poses suffer
from a depth ambiguity along the z-axis, all the cameras
are drawn with the same distance to the scene. The size of
the image plane however encodes the scaling factor of the
cameras (the larger the image plane, the further away the
camera) and together with a known focal length this would
determine the distance along the z-axis. In our experiments,
cameras 2 and 5 (4 and 6) have an almost parallel image
plane, but camera 5 (6) was placed slightly further away
from the box. A RMS of about 12.3 pixels resulted by using
our linear algorithm to initialize 5 iterations of the ALS al-
gorithm. Additional 5 iterations with the Wiberg optimiza-
tion finally gave a RMS of about 2.6 pixels. Enforcing true
rigid motions as a last step increased the RMS of the recon-
struction to about 8.5 pixels. All the results shown in Fig. 4
and Fig. 3 are based on the reconstruction which enforces
true rigid motions.

In a second experiment, we tried how robust our algo-
rithm can handle a camera which only tracks one single
feature point. We therefore excluded all but one feature
trajectory in camera 3 and run the same algorithm again.
The resulting reconstruction again had a RMS of about 2.6
pixels, respectively 8.5 pixels with enforced rotation matri-
ces. Fig. 4 compares this reconstruction with the previous
reconstruction which used all the 10 feature points per cam-
era. This result shows that the new rank-13 constraint can
really be used in practice to calibrate cameras which only
track one single point which is not in correspondence with
any other point tracked by the remaining cameras.



Figure 4. Comparison between two reconstructions of the real data
sequence: All the 10 feature points per camera view are used
for the first reconstruction (feature points are drawn as dots). In
contrast, for the second reconstruction (feature points drawn as
circles), the rightmost camera 3 only tracked one single feature
point (black arrow). The pose and the tracked feature point of the
third camera nonetheless got reconstructed very accurately. The
cameras of the first (second) reconstruction are visualized semi-
transparently in blue (red) color. The areas of overlap thus appear
in violet color.

8. Conlusion and Future Work
In this paper, we have presented an approach to the

structure-from-motion problem for multiple static affine
cameras where no point correspondences are available be-
tween different camera views. The cameras are only as-
sumed to track feature points on a commonly observed
moving rigid object. Tensorial notation provided us with
the necessary insight to derive a non-iterative linear solu-
tion. We have shown how to further improve such an ini-
tial solution with iterative methods. Our proposed method
can deal with extreme situations where a camera might only
track one single feature point. The algorithm was evaluated
on synthetic data and has been shown to work in practice on
a real data sequence.

A drawback of our current method is that the linear
method assumes the feature tracks of each camera to be
complete, i.e. the camera succeeds in tracking its fea-
ture points at every single frame of the sequence (see also
Tab. 1). This prevents large rotations of the rigid object due
to possible occlusions. As future work, we plan to inves-
tigate the potential of iterative factorization methods which
can deal with missing data. Another topic for further im-
provement is the robustness of our algorithm w.r.t. outlier
trajectories. Furthermore, we intend to study motion sub-
spaces with higher ranks (non-rigid or multi-body motions)
in the multi-camera setting.
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