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Abstract

We introduce a novel approach to on-line structure from motion, using a
pipelined pair of extended Kalman filters to improve accuracy with a min-
imal increase in computational cost. The two filters, a leading and a fol-
lowing filter, run concurrently on the same measurements in a synchronized
producer-consumer fashion, but offset from each other in time. The leading
filter estimates structure and motion using all of the available measurements
from an optical flow based 2D tracker, passing the best 3D feature estimates,
covariances, and associated measurements to the following filter, which runs
several steps behind. This pipelined arrangement introduces a degree of non-
causal behavior, effectively giving the following filter the benefit of decisions
and estimates made several steps ahead. This means that the following filter
works with only the best features, and can begin full 3D estimation from the
very start of the respective 2D tracks. We demonstrate a reduction of more
than 50% in mean reprojection errors using this approach on real data.

1 Introduction
Structure from motion (SfM) is a well studied problem in computer vision. Most ap-
proaches begin with a set of salient 2D image features that are tracked from frame to
frame using optical flow or wide baseline feature matching. Feature selection, deter-
mining which features to use in the structure from motion, is critical to the accuracy of
results. Common approaches include RANSAC [8], robust regression [11] and filter-
ing approaches which use a camera motion model to determine outliers in systems using
Kalman or particle filter based 3D trackers [6, 7].

Our novel approach combines two extended Kalman filters that run concurrently on
the same measurements in a synchronized producer-consumer fashion, but offset from
each other in time. The leading filter generates initial estimates of sparse scene structure
and the camera motion by identifying 2D tracks called inliers in the total set of 2D fea-
ture tracks. The subset of inliers determined by the leading filter provide better informa-
tion about the camera pose. The leading filter passes their 3D estimates and covariances



(which have been improved by the influence of many measurements) to the following
filter, which operates only on these good feature tracks with reliable initial 3D estimates.

In the experimental evaluation we demonstrate our pipelined approach on real data
where it reduces the reprojection errors of the estimated 3D points in the following filter
by more than 50%. This reduction in reprojection error reflects the fact that the pipelined
two-filter approach only employs measurements that have been found to be consistent
with the camera motion in the immediate future. While the improved estimates are de-
layed in time compared to the newest frame, which might be a concern for on-line appli-
cations, the approach allows the user to trade off this delay for improved performance.

In contrast to our approach which uses all temporal correspondence information over
multiple frames (chains of matches), typical previous SfM approaches only employ cor-
respondences from a single pair of frames. This is a result of the correlation of their
computational cost with the probability of correct correspondences. As the probability of
a chain of correspondences is significantly lower than for a single correspondence, previ-
ous approaches are often not efficient on chains of correspondences. (For a more complete
overview of robust estimation in computer vision we suggest [10].) Our approach is effi-
cient in that a naive approach to looking ahead w frames for inliers would run with O(wh)
complexity where h is the cost of one complete structure from motion estimation over all
of the frames, while our two-stage filtering approach requires only O(h) time.

In the next section we will discuss work related to the pipelined filter. Section 3 de-
scribes the pipelined filter architecture in detail and section 4 presents some experimental
results that demonstrate the improvement in reprojection errors by our two-stage (leading-
following) pipelined multi-filter approach.

2 Related Work
A key component of any structure from motion system is the estimation of the camera
motion in 3D space from 2D feature tracks. Typically the obtained tracks contain a fair
number of outliers. Hence the estimator has to simultaneously estimate the camera mo-
tion and to classify the tracks into outliers and inliers. Robust estimators are successfully
applied to solve this problem in many computer vision applications. The most common
technique to deal with outliers is the RANSAC algorithm [8, 20]. It solves the two prob-
lems of computing a relation that best fits the data and classifying the data as inliers
(correct matches) and outliers. The classification is done by employing a cost function
together with a threshold which depends on the expected measurement noise. The re-
lation is then selected as the one with the highest number of inliers or the largest robust
likelihood [8]. An inlier with respect to an error function has an error less than a threshold.

When the expected noise is not known beforehand it is difficult to determine the appro-
priate threshold. Then often robust regression methods are used to estimate the relation of
the images and the classification of the data into inliers and outliers [11]. These methods
achieve the greatest success when the data belong to a single signal corrupted with random
outliers. Miller and Stuart [12] extended the MINPRAN robust regression method [18] to
account for data that belong to multiple signals. The MINPRAN operator [18] tolerates a
large number of outliers and identifies regions composed completely of outliers.

Tang et al. [19] proposed a tensor voting based approach that poses the problem of esti-
mating the epipolar geometry (the focus of the paper which can be extended to many other



estimation problems) as one of finding the most salient hyperplane in a multi-dimensional
space. Another popular technique is the Least Median of Squares (LMS) estimation [16].
LMS has been very successful when applied to a lone signal corrupted with outliers but
fails completely if the outlier rate is higher than 50%. LMS searches a space of hypothe-
sized fits using an objective function based on the median squared residual.

Another class of estimators adds a camera motion model to assist in detecting outliers.
This measurement selection approach is based on a smooth motion model and consensus
and is used with a Kalman filter in [1, 3] and a real-time particle filter in [7]. Davison
presents a real time extended Kalman filter based visual simultaneous localization and
mapping (SLAM) system in [6]. He uses a top down approach to measurement selection,
searching for 2D features only in the region they are expected to be in the image based on
estimation uncertainty, to minimize computational cost per frame.

Finally, we note that ideas for fixed point and fixed lag smoothing within a single
Kalman filter were introduced by Rauch et al. [13, 14, 15]. The basic idea is to recursively
estimate the state at some past time, either at some particular point in time, or following
the current time with a fixed delay, using all of the available measurements. By separating
the estimation into two pipelined filters we are able to prevent outliers from negatively
affecting the second (following) filter, while simultaneously providing the following filter
with non-causal initial estimates of the 3D points and covariances. In effect, we obtain
some of the benefits of fixed-lag smoothing, but using only the inliers.

3 Two-Stage Measurement Selection and Estimation
The two-stage measurement selection/initialization and final estimation 3D pose filter
is composed of two individual extended Kalman filters (EKF). We refer to them as the
leading and following filters. The two filters run concurrently on the same measurements
(images) in a synchronized producer-consumer fashion, but offset from each other in time.
They are identical except in the way that they initialize 3D feature estimates, where the
leading filter initializes points by triangulation and the following filter receives its initial
feature position and covariance estimates from the leading filter.
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Figure 1: Timing of pipelined leading and following filters for time offset w = 5.

Figure 1 shows an example of pipelined leading and following filters for time offset
w = 5. Once the initial w frames have been processed (the pipeline primed) then at each



filter time step k the leading filter passes its latest feature set Fk−w for frame k−w to the
following filter. Omitting the w for clarity, the feature set Fk for frame k is defined as

Fk = {(xk
1, X̂

k
1 ,Σk

1), . . . ,(x
k
n, X̂

k
n ,Σk

n)} (1)

where xk
i is the actual measurement (2D projection) of a feature, X̂k

i is the estimated 3D
position that feature at time k, Σk

i is the corresponding 3D covariance of the estimate, and
n is the total number of features. The leading filter spends w time steps attempting to
estimate 3D feature locations for frame k−w, selecting only the best ones to pass on to
the following filter. In the remainder of this section we will first describe a single filter
and then describe how the two filters are combined to form the estimation system.

3.1 Individual Filter
While we use an extended Kalman filter for this work, we believe the pipelined approach
could be employed with any on-line 3D filters or other estimators. Our filters fuse mea-
surements from a 2D KLT tracker [9, 17], which is an optical flow based 2D tracker that
measures the motion of salient features from one frame to the next in a video sequence.
The filter’s process model uses a smooth motion model for the change in camera position
and orientation. It uses a first order Taylor series approximation to relate the state at time
k to time k + 1. This model assumes that the velocity is constant. The estimated 3D fea-
tures must be static with respect to the world frame to be included in the filter state, and
so they are modeled as having zero velocity.

The filter state Sk at time k is made up of the camera’s position Ck, orientation θ k,
velocity Ċk, orientation rate θ̇ k (rotational velocity) and estimates of the 3D position of
each of the n features being tracked Xk

1 ...Xk
n . The filter state is shown in Equation (2),

Sk =
[

Ck Ċk θ k θ̇ k Xk
1 . . . Xk

n
]T (2)

where again, n is the number of tracked features. The filter’s predicted measurement
equation is simply the projection of each estimated 3D feature i into the camera at time
k given calibration K. In Equation (3) R is the rotation matrix composed from the Euler
angle representation of the camera orientation Θk.

x̂k
i = K

[
RT k −RT k

Ck
]

Xk
i (3)

Note that we use the “hat” in x̂k
i to indicate it is an estimate of the measurement xk

i .
To predict the actual measurement the projected 3D point must be homogenized,

which requires dividing by the third homogeneous coordinate. This makes the projection
non-linear and precludes using a linear Kalman filter. The filter linearizes the projection
equation around the predicted camera system pose to form the Jacobian used in the EKF
equations. 3D feature estimates are kept in memory only so long as the feature is tracked
by the 2D tracker. This limits the total memory usage of the filter, enabling tracking
over large areas. It also means that the filter cannot perform loop completion which is a
common limitation of most structure from motion systems when processing long video
sequences covering large areas.

One of the main drawbacks of using the EKF is that as the number of tracked salient
features increases, the storage space required to store the filter’s covariance matrix in-
creases in a quadratic fashion because the matrix stores all of the feature covariances and



their cross-covariances. The filter’s update cycle complexity is O(n3) where n is the num-
ber of features. This makes real time operation on large sets of features problematic. We
avoid this performance bottleneck by taking advantage of the statistical independence of
the salient features. So long as the features are stationary with respect to the world coor-
dinate frame, their cross-covariance terms are zero in the filter’s covariance matrix. This
yields a large, sparse matrix. The structure of this matrix could be exploited to speed up
the inversion step, which is part of the Kalman filter.

Another approach is to process the feature measurements, which are taken at the same
time, sequentially. This approach to processing in the Kalman filter is described in [2].
The filter update cycle starts by predicting the camera position and covariance at the next
time step. Then the filter processes each of the 2D feature measurements in sequential
fashion. In each sequential update a subset of the total state comprised of the camera
system state and a randomly selected 3D feature estimate is generated and processed to
update the filter’s state and covariance estimate as well as the position and covariance of
the 3D feature. Each 2D feature measurement that is processed reduces the uncertainty
of the camera pose a certain amount as well as the uncertainty of the corresponding 3D
feature. When processing the features sequentially, features that are processed earlier
tend to have a greater influence on the camera pose estimate but only because they cause
a correction to the state which later measurements support. So long as features are pro-
cessed in random order, over time sequential processing can be shown to behave similarly
to processing all features at once in a single update cycle [21].

One advantage of sequential processing is that it allows simple outlier detection and
rejection. Outliers are detected based on the difference between the estimated 3D point’s
projection and its corresponding measurement in the current frame. This error is the
filter’s residual which is an integral component of the Kalman filter. Outliers are not
allowed to influence the camera system state and covariance and are removed from the
total filter state.

Camera Motion Over Time
3D Feature and Covariance

Projected 3D Feature Estimate
Figure 2: Initial covariance sampling

The initialization of 3D features and their covariances is an important part of the filter
design. The filter should strive to initialize 3D estimates for 2D tracks only for inliers.
Feature initialization in the leading filter is done by triangulation across a minimum base-



line. In addition, the angle between the rays to the feature is measured and a threshold
is applied to this angle. In this our filter implementation we chose a threshold of 10o.
This prevents features at infinity from being processed by the filter. (Features at infinity
give information about camera rotation but no information about translation and have very
large uncertainties, which could cause numerical problems.) Further, the triangulated 3D
point is projected into each of the cameras that it has been tracked in 2D so far in the
sequence. Only projected features that are within 1 pixel of their corresponding measure-
ments are passed into the filter. This threshold includes both expected measurement error
in the KLT tracker, as well as error in the filter’s camera pose prediction.

Initial 3D feature covariances are determined by generating a sampled probability
distribution in 3D. This is done by intersecting the perturbed rays corresponding to the
projected 3D feature estimate in the first frame it is tracked in and the current frame.
Each ray is perturbed by the expected amount of measurement noise in eight directions
around the projected 3D point in the horizontal, vertical and diagonal directions in the
two frames’ image spaces. A Gaussian distribution is then fit to this set of samples. A
simplified example of this sampling process, sampling only in the horizontal direction, is
shown in figure 2.

3.2 Two-Stage Extended Kalman Filter Pipeline
In the previous section we described the operation of a single structure from motion pro-
cess performed by an extended Kalman filter. Our novel approach combines two single
filters staggered in time and operating in parallel to improve SfM accuracy. The filter
leading in time selects the best set of inliers and initializes their estimated 3D coordinates
and uncertainties. Inliers are then passed to the filter following in time, which performs
SfM only on the inliers equiped with reliable initial estimates and covariances, improving
the SfM accuracy in the following filter.

The leading filter operates on the current frame in the video sequence and selects the
best 2D feature tracks, passing initial estimates of the 3D feature locations and feature
covariances to the following filter. The following filter operates a fixed number of frames
behind the leading filter in the video sequence. Because the following filter receives 3D
feature estimates and covariances from the leading filter, it is able to track 2D features
from the frame where the 2D track begins and does not have to wait to triangulate the
feature or convert feature tracks from a ray/depth/camera center formulation to full 3D
formulation, which is done in recent Kalman filter based SLAM implementations [4].
This increases the overall number of good features that are tracked in the following filter
each frame.

This two-stage architecture allows a simple and effective form of measurement selec-
tion. Features are selected to be passed to the following filter if they are triangulated and
then tracked in 3D for a fixed number of frames. Outlier 2D tracks may occasionally be
triangulated and added to the leading filter state. However, it is unlikely that these outliers
will continue for more than a couple of frames in the leading filter without being rejected
as outliers based on their higher reprojection errors due to their inconsistency with the
camera motion. By only passing back 3D features that last multiple frames in the leading
filter, the following filter processes only features which are consistent with the camera
motion. This makes the following filter’s camera pose and scene structure estimates more
accurate, as demonstrated by reduced reprojection errors. The feature initialization pro-



cess is shown in figure 3. In that figure dashed lines represent measurements of the 3D
feature in a given camera.

Using this architecture the leading and following filters states are not bound together
and so the state estimates could drift apart over time. Still both of the cameras’ relative
motions should be approximately the same over a short time span. The 3D feature loca-
tions estimated by the leading filter, which estimates the 3D features in a world coordinate
frame, can be passed to the following filter by passing the feature’s position relative to the
leading camera pose which corresponds to the following filter’s current state. In this way
the two filters’ states are coupled together through the initial 3D feature estimates.Leading FilterCamera Poses Pt Pt+8Pt+4Following FilterCamera Poses

Leading FilterCamera PosesFollowing FilterCamera Poses
Pt
Pt Pt+4 Pt+12Pt Pt+4

2D feature measured at time t+4 is triangulated by leading filter over camera poses Pt+4 and Pt+8
3D feature estimate and covariance are copied back to following filter to be tracked in 3D from the beginning of its 2D measurements at time t+4

Figure 3: Initialization of a feature in the leading filter and passing the feature back to the
following filter

Our pipelined estimation approach is considerably more efficient that a naive looka-
head filter implementation. A naive implementation when estimating the camera pose
and scene structure at frame i would process all of the measurements for frames i to
i + w, where w is the number of frames looked ahead, to find the inlier correspondences
to integrate into the final estimate at frame i, repeating this process of looking ahead w
frames and then taking a single step at each frame. This would yield an overall compu-



tational complexity of O(wh) where w is the number of frames looked ahead and h is the
cost of performing one complete SfM estimation on the video sequence. In contrast, our
two filter approach is able to determine which correspondences are reliable inliers with a
computation cost of only O(h).

4 Results
To demonstrate the improved performance of our two-stage approach we ran the tracking
system over ten seconds of video. The video was collected using a camera with known
intrinsic calibration and a field of view of approximately 40ox30o, frame rate of 30 frames
per second and resolution of 1024x768 pixels. The camera was rigidly coupled to an
inertial navigation system which was used to initialize the Kalman filter’s velocity and
rotational velocity estimates. This was necessary because the Kalman filter formulation
we use is tuned for a particular scale of motion and so the initial scaled translation and
rotation rates must be known. One could just as easily initialize the filter with a fiducial of
known size. Recently, Civera [5] has devised a parametrization of structure from motion
estimation for the Kalman filter that does not require scale initialization and that could be
used in our two-stage architecture to mitigate this limitation.
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Figure 4 shows the improvement in reprojection errors by selecting measurements
and initializing 3D feature estimates using the lookahead filter. The graph shows the
mean reprojection errors of all 3D features tracked in each frame, projected into every
frame in which they are tracked in 2D. One can clearly see that selecting only those
features that are tracked in 3D in the leading filter for 4 or more frames and tracking only
those features in the following filter significantly improves the tracking performance of
the following filter. No additional non-linear optimization is performed on these results.
Figure 4 shows the number of features tracked in 3D using only a single filter which is
identical to the leading filter vs. using the two-stage filter architecture. This demonstrates
the ability of the two-stage pipelined filter system to select a superior subset of the tracks
generated by a single filter system.

5 Conclusion
In this paper we have introduced a measurement selection and initialization approach
utilizing a two-stage filter architecture to determine the best set of features and initial-
ize their estimates and uncertainties. These features have lower reprojection errors when
processed, allowing for more accurate structure from motion estimation than approaches
that attempt to estimate structure from motion in the most recently captured frame with
no delay. Pipelined estimation is applicable to many types of robust estimation systems
including Kalman and particle filters and is applicable to any system of potentially un-
reliable sensors, where a reliable set of sensors must be selected and a small delay in
estimating the state is acceptable.

Future work on pipelined estimation may involve selecting an optimal set of good
features to process (minimal computational cost to process with maximal camera state
information) in the following filter which gives a reliable camera pose estimate while
minimizing the computational cost of operating multiple filters, allowing for real time
filter operation with high accuracy. Additionally, in the current architecture it is possible
for the leading filter’s scale to drift away from the following filter’s over time. Addressing
this potential weekness by correcting the leading filter’s state using the following filter’s
more reliable estimates (feeding them forward) would make the system more robust to
scale or other drift between the filters.
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