
Parallel, Real-Time Visual SLAM

Brian Clipp1, Jongwoo Lim2, Jan-Michael Frahm1 and Marc Pollefeys1,3

Department of Computer Science1 Honda Research Institute USA, Inc.2 Department of Computer Science3

The University of North Carolina Mountain View, CA, USA ETH Zurich, Switzerland
Chapel Hill, NC, USA jlim@honda-ri.com marc.pollefeys@inf.ethz.ch

{bclipp,jmf}@cs.unc.edu

Abstract— In this paper we present a novel system for real-
time, six degree of freedom visual simultaneous localization
and mapping using a stereo camera as the only sensor. The
system makes extensive use of parallelism both on the graphics
processor and through multiple CPU threads. Working to-
gether these threads achieve real-time feature tracking, visual
odometry, loop detection and global map correction using
bundle adjustment. The resulting corrections are fed back
into to the visual odometry system to limit its drift over
long sequences. We demonstrate our system on a series videos
from challenging indoor environments with moving occluders,
visually homogenous regions with few features, scene parts with
large changes in lighting and fast camera motion. The total
system performs its task of global map building in real time
including loop detection and bundle adjustment on typical office
building scale scenes.

I. INTRODUCTION

In recent years the visual simultaneous localization and
mapping (VSLAM) problem has become a focus of the
robotics and vision communities. This effort has been made
possible by advances in camera hardware and the computa-
tional power available in a personal computer. In this paper
we introduce a novel, real-time system for six degree of
freedom visual simultaneous localization and mapping. It
operates in real-time at more than 15 frames per second by
leveraging a combination of data parallel algorithms on the
GPU, parallel execution of compute intensive operations and
producer/consumer thread relationships that effectively use
modern multi-core CPU architectures.

A particular problem for visual navigation is posed by
indoor environments due to their lack of salient features. A
combination of local tracking and global location recognition
enables our system to robustly operate in these environments.
The system is demonstrated on two challenging indoor
sequences that include sections with very few salient features
to track because of large textureless regions. To overcome
inherent drift problems from local feature tracking the system
detects loops once it re-enters an area it has mapped before
using SIFT [11] features. The loop closing mechanism
additionally enables re-initialization into the global model
after local tracking failure. We demonstrate the improvement
in the maps after loop detection and loop completion in
comparison to using only visual odometry, which does not
detect loops.

The remainder of this paper begins with a discussion of
related work in section II. Section III introduces the system

from an algorithmic perspective while section IV focuses
on implementation details. Experimental results are given in
section V followed by our conclusions.

II. BACKGROUND

The robotics and vision communities have made great
strides toward solving the visual SLAM problem in recent
years. Davison first presented a real-time VSLAM system in
2003 based on an Extended Kalman filter [4]. That system
performed very well in cubicle scale environments but in
larger environments the cubic scaling complexity of the
extended Kalman filter prevented real time operation.

A particle filter approach to VSLAM was presented by
Eade and Drummond [6]. Their system could also map small
office scale environments but the small number of particles
that could be processed in real time limited their map size.

More recent approaches to real-time VSLAM have focused
on dealing with the complexity of updating a globally
consistent map. Clemente et al. [2] proposed a sub-map
approach where the total map is made up of a set of smaller
metric maps connected by transformations. Since each metric
map is limited in size it can be updated in real-time. A major
drawback of this approach is that global correction is done by
fixing the sub-maps and varying the transformations between
them. This forces all of the error accumulated in each of the
sub-maps into the joints between the maps.

Mei et al. in [12] presented a system using a relative
map representation. Each pair of camera poses that see a
3D feature in common is connected by a transformation
in a graph structure. The 3D features are attached to the
coordinate frame of the first camera that measures them. With
this structure a globally topological but locally metric map
is obtained. Since it does not perform global map updates,
maps of arbitrarily large environments can be computed in
real-time.

In [10] Konolige and Agrawal presented a real-time VS-
LAM method including visual odometry and global map
correction. They addressed scaling issues in global map cor-
rection by limiting the number of key-frames in the map and
converting constraints from measurements into probability
distributions over inter-camera transformations. Key-frame
poses are updated using these distributions as constraints in
a non-linear minimization. While addressing scaling issues,
converting measurements to distributions on transformations
trades accuracy for speed.



Fig. 1. The main threads of the system architecture.

The most closely related work to ours is Klein and
Murray’s parallel tracking and mapping [9] (PTAM). Their
system is designed for use in augmented reality in a small
working volume such as a desk or in front of a building. In
PTAM one thread estimates the camera pose with respect to
an existing map in real time while a second thread updates
the underlying map which is a reduced set of key frames and
3D features. Our application is different in that we explore
office building scale environments and map them in real time.
However, we do not perform a full 6DOF pose estimate for
every frame of the video as they do.

III. SYSTEM DESCRIPTION

Our parallel, real-time VSLAM system is composed of
three primary modules: Scene Flow (SF), Visual Odometry
(VO) and Global-SLAM (GS) as shown in Figure 1. The
Scene Flow module calculates the sparse optical flow and
selects key-frames based on the magnitude of the average
flow. It then passes the key-frames and the tracks to the Vi-
sual Odometry module, which calculates the inter-keyframe
motion and passes this motion as well as the 3D features
to the Global-SLAM module. The Global-Slam module then
performs loop detection, and global error correction of the
map based on the detected loops. The final result of our
method is a globally consistent sparse 3D model of the
environment made up of 3D feature points and camera poses
for the key-frames.

A. Scene Flow Module

To determine the local motion of the camera we track
features from frame to frame using multi-camera scene flow
proposed by Devernay et al. in [5], which is an extension
of differential KLT tracking into three dimensions. To meet
the real-time goal our system uses an efficient GPU based
implementation. In multi-camera scene flow features are first
extracted using the approach of Tomasi and Shi [16] and
then matched from left to right image enforcing both the
epipolar constraint and cross-validating feature matches to
eliminate outliers. After the features are matched they are
triangulated to establish 3D positions for the inlier features.
At this point features are tracked as small 3D planar surface

patches in front of the cameras. The feature motion in 3D
is determined through the temporal image flow of the 2D
features in the stereo cameras. Using this parametrization
the epipolar constraint is enforced without resorting to stereo
matching a feature in each stereo image.

Given the varying temporal redundancy in the video which
is mainly due to camera motion, we adaptively select key-
frames through a threshold on the minimum average optical
flow of features since the last key-frame. To minimize costly
feature detection, detection is only performed in the selected
key-frames with the additional constraint that if too few
features are tracked another key-frame occurs. Hence images
with small camera motion are not taken as key-frames. The
2D feature tracks and the triangulated 3D points are then
passed to the Visual-Odometry module.

B. Visual Odometry Module

The stereo camera system enables estimation of the 3D
points in the Scene Flow module. Therefore, we use an
approach along the lines of Nistér [14] to determine the
camera motion. Our method uses the three point perspective
pose method [8] in a RANSAC [1] framework to determine
the camera pose using tracks from the Scene Flow module.
While this method is sufficient for tracking the differential
camera motion it accumulates small inaccuracies over time,
which theoretically lead to an unbounded drift.

To counter the drift our system detects camera path
intersections using SIFT features [11]. SIFT features can
be matched over large changes in viewpoint, in contrast to
differentially tracked KLT-features. To boost performance we
use a CUDA based GPU implementation [17]. In addition to
using the SIFT features for loop detection we also use them
in refining the incremental motion estimation. This refine-
ment is performed using a windowed bundle adjustment [7]
delivering refined camera poses and more accurate 3D points
than delivered by the scene flow from Section III-A. In our
windowed bundle adjustment a window spanning the the last
n key-frame poses is optimized. The oldest two key-frame
poses are held fixed while the youngest n−2 key-frame poses
are varied along with all of the 3D features, both SIFT and
KLT. The bundle adjustment uses a robust cost function so
that outliers have a limited influence on the result.

Combining the refined camera motion estimate based
on KLT feature tracks with the 3D position of the SIFT
features we can predict where the SIFT features should
project into the current key-frame. We use this prediction
to our advantage by limiting the candidate matches to close
by SIFT features in the current key-frame. The benefits of
this are twofold. We are less prone to problems caused
by repetitive structures and given the smaller number of
potentially matching features we can reduce the number of
SIFT-descriptor comparisons. Further, we empirically found
that this prediction allows us to relax Lowe’s SIFT matching
uniqueness criteria [11] but still be robust to repetitive
structures in the scene.

Following predictive SIFT matching we match the remain-
ing unmatched SIFT features from left to right images in the



current key-frame using the stereo camera’s calibration to
constrain the search for matches along the epipolar lines.
These matches are then triangulated and un-matched SIFT
features are discarded.

At this point the newest key-frame has been completely
incorporated into the local map. It will be considered until it
leaves the bundle adjustment window or the visual odometry
fails and a new sub-map is started. Please note that as soon as
a frame has an initial pose in the visual odometry module its
3D pose w.r.t the global map can be found. This pose will be
locally accurate and will be refined through the windowed
bundle adjustment. The pose may be changed when loops
are detected in the global SLAM module but this should
not affect tasks such as obstacle avoidance. After exiting the
bundle adjustment window key-frames are processed by the
Global SLAM module.

C. Global-SLAM Module

The Global-SLAM module ensures global consistency in
our VSLAM system. It incorporates the information of all
currently available key-frame poses, feature measurements
and initial 3D feature estimates from the Visual Odometry
module. The final result is a set of globally consistent, metric
sub-maps each of which has its own global coordinate frame.
The sub-maps are disjoint, meaning that they cover separate
areas in the environment or cannot be linked by common 3D
features due to limitations of wide-baseline feature matching.

The key element to improve the incremental motion es-
timation provided by the Visual-Odometry module is the
detection of loop completions. Loop completions provide
additional constraints to the local constraints found in the
VO module. Our system uses the vocabulary tree [15]
based approach to detect loops. Please note, any alternative
approach like the Fab-Map [3] approach of Cummins and
Newman could be used instead. In our approach SIFT feature
descriptors are quantized into visual words using a K-d tree
over a descriptor space which is pre-computed. The visual
words seen in an image are then organized so that one can
find out quickly, which images a visual word is seen in.
Finding similar images to a query image is then as simple
as computing a vote to determine in what other images a
query image’s visual words are found. In the vote higher
weight is given to the more discriminative visual words that
are found less frequently.

The Global SLAM module can operate in one of two
modes. When exploring new areas the system operates in
loop seeking mode while in previously mapped regions the
system operates in known location mode.

1) Loop Seeking Mode: Loop seeking mode performs
loop detection for each new key frame and after a successful
loop identification a global refinement is computed through
bundle adjustment. Loop detection begins by using the
vocabulary tree to find a list of the most similar images to the
current key-frame sorted by similarity. Images from recent
key-frames are removed from the list so that loops are only
found to older sections of the map. Images in the list are

tested in order of similarity until a matching image is found
or the similarity score of the next best match is too low.

Rather than simply match SIFT features from the query
image to those visible in the next most similar image we
use the putative matching image to find a region of local 3D
scene structure and match the query image to this structure.
This can be seen as a form of query expansion based on
3D geometry. The expansion is done by finding the images
near the next most similar image and including all of the
3D features visible in all of these images in the SIFT
matching and geometric verification. The SIFT matching is
then performed from the image to the 3D structure. SIFT
descriptor matching is performed from the descriptors of
the features in the current key-frame to the 3D features’
descriptors. We only try to match SIFT descriptors with
the same associated visual word, which reduces the number
of descriptor dot products performed. A RANSAC process
using the three-point perspective pose method is then used
to find the pose of the current camera and the pose is non-
linearly optimized afterwards.

If the above method finds a solution supported by enough
inlier matches it is considered a loop. The features associated
with the inlier measurements to the RANSAC are linked so
that they are treated as a single feature in bundle adjustment.
Using 3D feature to 2D projection matching with geometric
verification makes false positive loop detections much less
likely than using an image to image matching approach. Still
truly repetitive 3D structures can cause incorrect loops to be
detected. Dealing with repetitive structures remains an open
research problem.

If no loop has been detected then the next key-frame is
tested for a potential loop closing. If a loop was detected
the system performs a global correction to the current sub-
map incorporating the newly detected loop. Since the newly
detected loop features have high reprojection errors in the
current key-frame they would be deemed invalid by our
bundle adjustment which uses a robust cost function. Hence
they would not influence the error mitigation process. To
overcome this effect we re-distribute the error before bundle
adjustment. This initializes the bundle adjustment much
closer to the global minimum of its cost function, increasing
its convergence rate and decreasing the chance of converging
to a local minimum.

We re-distribute the accumulated error by starting with the
difference in the current key-frame pose and the current key-
frame’s pose calculated w.r.t. the old features. This gives us
the amount of drift that the system has accumulated since
it left the last known location in the sub-map. This last
known location is either the first frame in the sequence
if no loops have been found so far or the last place the
system was operating in known location mode. The system
is operating in known location mode when it has reacquired
features it has mapped before and is tracking with respect
to that known map. The system linearly distributes the error
correction for the cameras back to the point it was operating
in known location mode. Spherical linear interpolation of the
rotation error quaternion is used to interpolate the rotation



error. Feature points are similarly corrected by moving them
along with the camera that first views them. A global bundle
adjustment of the map is then performed. After bundle
adjustment outlier measurements are removed as well as
features visible in fewer than two key-frames. These features
give little information about the scene structure and are
more likely to be incorrect since they do not match the
camera’s motion. After successfully detecting the loop and
correcting the accumulated error the Global-SLAM module
enters known location mode.

2) Known Location Mode: After successfully identifying
a loop this mode continuously verifies that the robot is still
moving in the previously mapped environment. Verification
is done by linking the current 3D SIFT features to previously
seen 3D SIFT features in the environment surrounding the
current location. These matches are added to a windowed
bundle adjustment in the GS module which keeps the camera
path consistent with the older previously computed parts of
the map.

In the known location mode SIFT feature matching be-
tween the current key-frame and the old 3D SIFT features
is done using the predictive approach described in the visual
odometry module (see Section III-B). Older features can
be linked to the features visible in the current frame by
projecting all of the 3D SIFT features seen in the previous
key-frame and it’s neighboring images (two key-frames are
neighbors if they see the same 3D feature) and comparing
descriptors. If no matching older SIFT features are found
then the robot has left the previously observed parts of the
environment and the system reenters the ”Loop Seeking”
mode.

The windowed bundle adjustment in GS is much the same
as the one performed in the Visual Odometry module. The
only difference in this case is that the older key-frames are
also included in the bundle but fixed. This ensures that the
new camera poses stay consistent with the existing map.
Fixing the older cameras is also justified since they have
already been globally bundle adjusted and so are probably
more accurate than the more recent key-frames. After the
windowed bundle adjustment processing begins on the next
key-frame.

IV. IMPLEMENTATION DETAILS

A key to the performance our system is that each of the
three modules Scene Flow (SF), Visual Odometry (VO) and
Global-SLAM (GS) operates independently and in parallel.
To ensure that all captured information is used only the
Scene Flow module has to operate at frame-rate. The timing
constraints on the visual odometry are dynamic and only
depend on the frequency of key-frames. This module can
lag behind by a few frames. The Global SLAM module is
less time constrained since its corrections can be incorporated
into the local tracking when they are available. The system’s
modules operate in separate threads that each adhere to the
individual module timing requirements.

A. Scene Flow Module

The scene flow module begins by taking raw, bayer
pattern images off of the stereo cameras. These images must
be converted to luminance images and radially undistorted
before the sparse scene flow can be measured. We use color
cameras so that the video we record can later be used for
dense stereo estimation and 3D modeling. While tracking
could be performed on radially distorted images, we remove
the radial distortion from the images so that later SIFT
feature extraction in the Visual Odometry module can be
done on undistorted images. Using undistorted images helps
in SIFT matching when using cameras with a large amount
of radial distortion.

De-mosaicing, radial undistortion and sparse scene flow
are all calculated on the graphics processing unit (GPU)
using CUDA. To increase performance we minimize data
transfer between CPU to GPU by downloading the raw
image to GPU for each frame, performing all computations
in GPU memory and then only uploading undistorted images
to the CPU for the key frames as well as the tracked feature
positions.

After each key-frame the feature tracks (2D position and
feature identifier) and the undistorted images are passed to
the Visual Odometry module. While the Visual Odometry
module processes the key frame the Scene Flow thread can
track ahead of it, buffering new key frames until the Visual
Odometry module is able to process them. Hence the speed
of Visual Odometry does constrain the Scene Flow module’s
real-time performance. This is just one example of how
parallelism adds robustness to our system.

B. Visual Odometry Module

In this module we perform the incremental motion esti-
mation from the KLT-features tracks and the detection of
SIFT features in parallel. For efficiency we use one thread
for each of the two stereo images. After the SIFT detection
we release the image buffers to save memory.

As described in Section III-B the Visual Odometry mod-
ule’s outputs are the relative camera motion and the new
3D points. These outputs are stored in a queue and are re-
moved from Visual Odometry’s local storage. Using a queue
decouples processing in the VO and GS module threads.
Whenever tracking fails all the VO module’s internal data
(key-frame poses and 3D features) is queued for processing
by the Global SLAM module.

V. EXPERIMENTAL RESULTS

In order to demonstrate the speed, accuracy and long term
stability of our VSLAM system we present results from two
video sequences of two indoor environments with different
characteristics. The first sequence was taken in an office
environment which has a large, open floor plan. The second
hallway sequence was shot in a building with long, but
relatively narrow (1.7m) hallways. The closed floor plan does
not allow features to be tracked for long periods of time since
they quickly leave the stereo camera’s field of view, yet the
system successfully maps the halls accurately with an error



of less than 30cm over the 51.2 m length of the longest hall
shown in Figure 9. This is an error of less than 0.6%.

Our setup uses a calibrated stereo camera pair consisting
of two Point-Grey Grasshopper cameras with 1224 × 1024
pixel resolution color CCD sensors delivering video at fif-
teen frames (stereo pairs) per second. The system’s 7cm
baseline is comparable to the median human inter-pupil
distance. The cameras are mounted on a rolling platform
with the computer. Using a rolling platform the planarity
of the camera path can be used to evaluate the quality
of the reconstruction results. However, the full six degrees
of freedom are estimated for the camera’s motion. While
performing real-time VSLAM the system also records the
imagery to disk for debugging or archival purposes.

The office sequence includes transparent glass walls and
other reflective surfaces that make tracking more challenging
(please see Figure 2 for example frames). It also has a
hallway with relatively low texture which our system suc-
cessfully maps, showing it is robust to areas without a large
amount of structure. In one section of the video a person
moves in front of the camera, partially occluding some of
the tracked features (see Figure 2 middle lower panes). Even
in this case the system is able to reject the moving person’s
feature tracks as outliers and continue tracking correctly.

Figure 3 shows the difference between operating only
using visual odometry and performing the full VSLAM with
loop detection and global map correction. In the left of
Figure 3 the map is shown using only visual odometry where
the relative motion from frame to frame is accumulated to
form the camera path. In visual odometry no loop detection
of global map correction is performed hence the system
drifts over time. In this scene VO accumulated drift of
approximately 3m over an approximately 150 meter path.
In the right pane the results of our global SLAM module
are shown. Clearly, the long term drift of visual odometry
is eliminated by loop detection and the succeeding error
mitigation through bundle adjustment.

Additionally, in Figure 4 we show the vertical drift using
only visual odometry of approximately 2 meters over a
traveled distance of 70 meters. Figure 4 shows two side views
of the map without (left) and with (right) loop detection
and global map correction. In the left pane the accumulated
vertical error of 2.0 meters is clearly visible while in the right
pane it is eliminated. Note the regular pattern on the ground
in the right pane that reflects the repetitive pattern in the
carpet there. We have overlaid the results of our system with
loop detection and correction over an architectural layout of
the office as illustrated in Figure 5. This figure demonstrates
the accuracy of our system. The results shown here were
processed from 8304 stereo frames of video at fifteen frames
per second including multiple loop detections and global
bundle adjustments, one for each time a loop was detected.

We use the hallway sequence to demonstrate our system
working in a less open environment where feature tracks
are typically shorter and fewer in number. As shown in the
panes of Figure 7 some of the hallways have large amounts
of texture while others are largely textureless. The system

robustly performs camera tracking in either case, at times
tracking with fewer than ten features.

Figure 9 shows an architectural drawing of the building’s
hallways with dimensions. From the overlay of our model
on top of the floor plan it is clear that our system creates
accurate maps. Taking the difference between the measured
center to center distance of the longest mapped hallways
on the figure and the distances between comparable camera
centers in our reconstructed map we find an error of 30cm in
the horizontal direction and 40cm in the vertical direction in
the figure. These errors equate to 0.6% error in the figure’s
horizontal direction and 1.4% in the vertical.

The three modules’ timing results on this sequence are
shown in Figure 6. Note the four spikes in the global SLAM
module’s processing time. These are times when loops were
detected and the map was bundle adjusted. In the Scene flow
graph the spikes in processing time occur when new features
are detected. In a typical frame 200-500 scene flow features
are tracked. In the global SLAM module there are typically
60-120 scene flow features and 100-200 SIFT features which
are inliers to the motion model. Reprojection errors in the
Global SLAM module’s results average approximately 0.6
throughout the sequence.

Another example of loop completion is illustrated in Fig-
ure 8 showing the map before loop detection and correction
on the left pane and the right pane gives the result after loop
detection. In these panes the camera returned to the known
area from the right. Note how the accumulated error in the
camera poses and features is eliminated by the loop detection
and global map correction. Finally a side view of the hallway
map is shown in figure 10. The side view demonstrates the
planarity of the map which matches the flat floor of the halls.
The accompanying video shows the operation of our system
on the hallway data set.

VI. CONCLUSION

In this paper we introduced a VSLAM system that fully
exploits the recent parallelism gains in consumer computer
hardware. The system uses imagery from a stereo camera
as its only input. We implemented a two-view consistent
2D tracking module on the GPU to find sparse optical flow.
We also used the GPU to extract wide-baseline features for
use in loop detection. Our system exploits modern multi-
core processors using multiple concurrent threads to perform
sparse scene flow, visual odometry and global mapping in
parallel. This parallelism allows us to perform the full metric
map reconstruction in real time.

While our system operates in real time on office building
scale scenes, extension to larger environments remains a
challenge. In the future we will investigate hierarchical bun-
dle adjustment methods like [13] to address scaling issues.
This would allow us to optimize several sub-problems that
are mutually very weakly dependent on each other in parallel.
After that a global combination step could create a globally
consistent map.



Fig. 2. Sample frames from the left camera of the stereo pair for the office sequence. Note the reflective glass walls, textureless regions and moving
person in the images.

Fig. 3. Results of office sequence top view. Left: Camera path calculated using visual odometry only. Right: Camera path calculated loop detection and
correction global slam module.

Fig. 4. Results of office sequence side view. Left: Camera path calculated using visual odometry only. Right: Camera path calculated loop detection
and correction global slam module. Note that the path processed through the global slam module is planar where visual odometry has large vertical error
accumulation as shown by the red arrow.

REFERENCES

[1] R. Bolles and M. Fischler. Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated
cartography. Commun. ACM, 24(6):381–395, June 1981.

[2] L. Clemente, A. Davison, I. Reid, J. Neira, and J. Tardos. Mapping
large loops with a single hand-held camera. In Robotics: Science and
Systems, June 2007.

[3] M. Cummins and P. Newman. FAB-MAP: Probabilistic Localization
and Mapping in the Space of Appearance. The International Journal
of Robotics Research, 27(6):647–665, 2008.

[4] A. Davison. Real-time simultaneous localisation and mapping with a
single camera. In ICCV, volume 2, pages 1403–1410, Oct. 2003.

[5] F. Devernay, D. Mateus, and M. Guilbert. Multi-camera scene flow
by tracking 3-d points and surfels. In CVPR, 2006.

[6] E. Eade and T. Drummond. Scalable monocular slam. In CVPR, 2006.
[7] C. Engels, H. Stewenius, and D. Nister. Bundle adjustment rules. In

Photogrammetric Computer Vision, September 2006.
[8] R. Haralick, C. Lee, K. Ottenberg, and M. Nolle. Review and analysis

of solutions of the three point perspective pose estimation problem.
IJCV, 13(3):331–356, December 1994.

[9] G. Klein and D. Murray. Improving the agility of keyframe-based
slam. In ECCV, 2008.

[10] K. Konolige and M. Agrawal. Frameslam: From bundle adjustment
to real-time visual mapping. IEEE Transactions on Robotics, 2008.

[11] D. Lowe. Distinctive image features from scale-invariant keypoints.
IJCV, 60(2):91–110, November 2004.

[12] C. Mei, G. Sibley, M. Cummins, P. Newman, and I. Reid. A constant
time efficient stereo slam system. In BMVC, 2009.

[13] K. Ni, D. Steedly, and F. Dellaert. Out-of-core bundle adjustment for
large-scale 3d reconstruction. In ICCV, pages 1–8, 2007.

[14] D. Nistér, O. Naroditsky, and J. Bergen. Visual odometry. In CVPR,
2004.

[15] D. Nistér and H. Stewénius. Scalable recognition with a vocabulary
tree. In CVPR, pages 2161–2168, 2006.

[16] C. Tomasi and J. Shi. Good features to track. In CVPR, 1994.
[17] C. Wu. SiftGPU: A GPU implementation of scale invariant fea-

ture transform (SIFT). http://cs.unc.edu/˜ccwu/siftgpu,
2007.



Fig. 5. Results of office sequence. Camera path from global SLAM module using bundle adjustment for loop correction. The camera made two complete
passes around both loops. Blue walls are glass. Grey walls are half ceiling height partitions.

0 2000 4000 6000 8000 10000 12000
0

0.05

0.1

0.15

0.2
Scene Flow Processing Time

Frame Number

P
ro

ce
ss

in
g 

Ti
m

e 
(s

ec
)

0 2000 4000 6000 8000 10000 12000
0

0.5

1

1.5
Visual Odometry Processing Time

Frame Number

P
ro

ce
ss

in
g 

Ti
m

e 
(s

ec
)

0 2000 4000 6000 8000 10000 12000
−4

−2

0

2
Global Slam Processing Time

Frame NumberP
ro

ce
ss

in
g 

Ti
m

e 
lo

g 10
(s

ec
)

Fig. 6. Timing results on the hallway sequence. Note the processing time spikes in the scene flow module when new features are extracted. The four
large spikes in Global SLAM processing time are caused by bundle adjustments after loop completions. The average scene flow processing rate is 37.1
frames per second (fps), visual odometry is 61.0 fps and global SLAM is 33.5 fps. The VO and Global SLAM processing rates are calculated as total
processing time/video frames (not key-frames).



Fig. 7. Sample frames from the left camera of the stereo pair for the hallway sequence. Note the lack of texture in some images and the forward motion
which makes visual odometry more challenging than if the camera was pointing to the side.

Fig. 8. Results of large building sequence. Left: Camera path intersection before loop detection and global map correction. Right: Corrected camera path.
Note that the paths are now in the same plane.

Fig. 9. Results of large building sequence. The camera made three rounds of the left loop and one of the right.

Fig. 10. The final hallway sequence model viewed from the side. Note that the model is planar matching the planar structure of the building.


