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Abstract

Many architectural scenes contain symmetric or re-
peated structures, which can generate erroneous image cor-
respondences during structure from motion (Sfm) computa-
tion. Prior work has shown that the detection and removal
of these incorrect matches is crucial for accurate and ro-
bust recovery of scene structure. In this paper, we point out
that these incorrect matches, in fact, provide strong cues
to the existence of symmetries and structural regularities in
the unknown 3D structure. We make two key contributions.
First, we propose a method to recover various symmetry
relations in the structure using geometric and appearance
cues. A set of structural constraints derived from the sym-
metries are imposed within a new constrained bundle ad-
justment formulation, where symmetry priors are also in-
corporated. Second, we show that the recovered symme-
tries enable us to choose a natural coordinate system for
the 3D structure where gauge freedom in rotation is held
fixed. Furthermore, based on the symmetries, 3D structure
completion is also performed. Our approach significantly
reduces drift through ”structural” loop closures and im-
proves the accuracy of reconstructions in urban scenes.

1. Introduction
We address the problem of automatic recovery of scene

structure and camera motion from multiple images, which
is referred to as the structure from motion (SfM) problem.
Significant progress has been achieved towards point-based
SfM techniques, primarily in the area of efficient algorithms
for scalable image matching [17], and large-scale bundle
adjustment [1, 8, 16, 11, 28], which is a core component of
all SfM approaches. As a result, it is nowadays possible to
easily reconstruct large scenes from image sequences. The
topic of urban 3D reconstruction and architectural modeling
from images, in particular, has received considerable atten-
tion in the last decade [7, 10, 14, 22, 23, 29].

Man-made or architectural structures typically contain
rich intrinsic symmetries and structural regularities by de-

Figure 1. [TOP]: Symmetric building facades on a street. [MID-
DLE]: Traditional SfM reconstruction from an open se-
quence. [BOTTOM]: Our method discovers 3D symmetries and
enforces them during SfM to produce an accurate reconstruction.

sign. For example, repetitions of identical 3D structural
elements are common in many building facades. Some-
times, multiple identical or mirrored instances of large sub-
structures may exist in the scene, as in the case of two
identical wings of a large building complex. Furthermore,
the arrangement of these parts is rarely random, but often
exhibits an underlying geometric regularity. In the past,
various model-based techniques have attempted to exploit
such rich geometric constraints in image-based architec-
tural modeling [26, 7]. However the need for prior knowl-
edge of the 3D geometry makes those methods difficult
to use in practice. This limitation was recently addressed
in [19, 20, 22], where symmetries and structural regulari-
ties in 3D geometry were automatically inferred from 3D
models without using any prior knowledge.

In this paper, we address the goal of discovering symme-
tries and repetitions in the scene structure from multiple im-
ages and imposing these symmetry constraints to improve
the accuracy of structure from motion algorithms. Start-
ing from a set of images, our approach automatically re-
covers structural regularities and symmetry relations in the
unknown 3D structure from visual feature correspondences
in the images. These symmetry relations are then exploited
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in various ways within a new constrained bundle adjustment
formulation. We say that a symmetry relation exists, when
two particular subsets of 3D points in the structure are re-
lated by a similarity transformation.

To our knowledge, there is very little prior work in struc-
ture from motion where symmetry relations are automat-
ically recovered from multiple images and also used to
impose structural constraints in bundle adjustment without
prior knowledge of the scene. Unlike [19, 20, 22], neither a
dense 3D model, nor a dense 3D point set is available in our
case. Since we start from images and the 3D scene struc-
ture recovered by traditional SfM is uncertain, the recovery
of symmetries in our case is more challenging. Also the
SfM point clouds are sparser and more irregularly sampled
in comparison to the 3D point sets used in prior work [22].

Our goal is also different from [19, 22]. We aim to
recover symmetry relations in situations where the initial
SfM reconstruction suffers from drift and can be inaccu-
rate. Discovering symmetries using only geometric cues
could be difficult in such cases. By discovering symme-
try constraints within uncertain 3D structure, and imposing
them during SfM, we are able to recover a much more accu-
rate reconstruction where the inferred structural constraints
are respected. Our approach for detecting 3D symmetries
is based on image cues. We use pairwise image matches
that contradict geometric relations between corresponding
cameras, induced by a global SfM reconstruction, to de-
tect subsets of 3D points that are symmetric to each other.
Related image-based approaches for finding repetitions in
multi-view sequences have proposed removing these con-
tradicting matches during SfM [34, 35, 24]. In contrast, we
show that these matches are extremely useful for discover-
ing symmetry relations in the scene, which can be further
exploited to achieve a much more accurate reconstruction.

To this end, we propose a new bundle adjustment for-
mulation where structural constraints are enforced between
various subsets of 3D point sets related by similarity trans-
forms. Various symmetry priors are incorporated into this
new formulation. The geometric constraints between dis-
tant symmetric point sets act like ”structural” loop closures,
which addresses the problem of drift in the reconstruction.

Symmetry knowledge in the 3D structure has another
advantage. It allows a natural coordinate system for the
structure to be chosen during bundle adjustment. Depend-
ing on the specific family of symmetries recovered, various
degrees of gauge freedom can be held fixed in the bundle
adjustment step. The similarity transformations induced by
the symmetries have low model complexity when expressed
in the natural coordinate system. Finally, we also show that
the underlying symmetries can be used for 3D model com-
pletion. The 3D structure is completed with hallucinated
3D points which respect the symmetry transformations and
this generates more densely sampled reconstructions.

2. Related Work

In earlier work on architectural modeling from images,
model-based approaches were quite common. Symmetries
and geometric regularities were enforced using parameter-
ized primitives such as polyhedrons [7, 26], planes [2], and
parallelepipeds [31]. Constrained 3D modeling was per-
formed with these primitives in conjunction with Euclidean
constraints [4], coplanarity constraints [25] and piecewise
planar representations [2]. In contrast, almost all modern
SfM approaches [10, 1, 6, 11, 8] represent the scene struc-
ture as an unstructured 3D point cloud. In ideal circum-
stances where enough overlapping images and accurate cor-
respondences are available, the point-based SfM methods
often work well. However, SfM algorithms are known to
be prone to errors due to drift and instabilities caused by
the lack of sufficient images or image observations1. Our
work aims to incorporate some of the advantages of model-
based constrained modeling techniques into modern bun-
dle adjustment methods [1, 11, 8] but does not require prior
knowledge of the scene structure. Other ways to improve
SfM algorithms are known – such as using GPS [15]. Our
work complements such techniques.

Various approaches have been proposed to detect sym-
metries in images. These include detecting regular lat-
tices [21], repetitive structures [32], bilateral and mirror
symmetries [18] in single images. Most recently, ap-
proaches for lattice detection from multiple views for non-
planar scenes have also been proposed [13]. Mirrored de-
scriptors were used in [18] to find mirror symmetries. Such
symmetries detected in single images can be exploited for
image-based modeling in specific cases [12, 33, 14].

There also exists prior work on symmetry detection in
3D geometry from range-scans or 3D models. These meth-
ods address the discovery of structural regularity in archi-
tecture [22], using lines-based features [3] and hierarchical
reasoning [27] for symmetry detection. Approaches for en-
forcing symmetries on 3D models have also been investi-
gated [20]. However as mentioned earlier, in order to ex-
ploit symmetries in structure from motion, our symmetry
detection approach must deal with uncertain 3D structures
and rely on image cues and multi-view constraints between
different images to discover the existing symmetries. This
is a key distinction between our method and existing ap-
proaches for image-based symmetry detection and geomet-
ric approaches for detecting symmetries in 3D data.

The symmetries we aim to recover can involve self-
similarities or mirror symmetries of arbitrary 3D structures
in the scene. The structural elements and their arrangements
are therefore more general than lattices [21, 13] and are
not limited to planar repetitions [32], which have been ad-
dressed in prior work. As addressed in [24, 34, 35], detect-

1Errors due to drift are often significant in open loop sequences.



ing these sort of symmetries and repetitions within a scene
from uncalibrated images can be extremely challenging as
a pair of images where the same structure instance is ob-
served twice can be confused with an image pair where the
different instances are observed.

3. Overview
The first stage of our approach involves performing ro-

bust SfM on the input image sequence, making sure our
initial reconstruction does not get affected by the pres-
ence of repetitions or symmetries using an approach sim-
ilar to [34, 35, 24]. A set of calibrated cameras, a set of
3D points and a set of 2D image observations for each 3D
point are obtained. In Section 4 we describe how appear-
ance cues (using SIFT feature matching) are used to find out
the subsets of 3D points that contain a symmetry. This step
produces a set of hypotheses for potential repetitive struc-
tures in the form of 3D similarity transformations. Once all
the 3D transformations have been extracted, the symmetry
planes and Euclidean transformations that best explain these
matches are estimated. We also explain how the discovered
symmetries allow us to select a natural coordinate system
for the 3D structure. The symmetries and transformations
are then used as geometric structural constraints in the bun-
dle adjustment algorithm, which is described in Section 6.
The natural coordinate system that was estimated is used for
parameterizing the structure in our constrained bundle ad-
justment algorithm. Additionally, the symmetry constraints
are used for adding more 3D points to the sparse 3D point
cloud. This is described in Section 5.

4. Repetition and Symmetry Detection
The first step in our method is to detect repetitions and

symmetries between different parts of the 3D model. This
procedure can be divided into three main steps. First, we
search for pairwise image matches that are erroneous but
survived the RANSAC step. We refer to these matches as
false positive pairwise matches. Then an additional step of
image matching is performed to detect mirror symmetries
on the 3D structure. Next, all the additional 2D-2D corre-
spondences obtained from these two steps are used to es-
timate 3D similarity transformations corresponding to rep-
etitions and symmetries. We also describe in this section
how a natural coordinate frame can be estimated by using
the discovered symmetry transformations.

Search for false positive image matches: With the ini-
tial sparse 3D point cloud and associated camera poses, it
is possible to detect false positive matches between two im-
ages. More specifically, we are interested in the matches
that allow us to compute a relative orientation that survives
the geometric verification, but is not in agreement with the

ones induced by the globally consistent camera poses. Such
pairwise image matches provide strong evidence of visual
resemblance between two different parts of the model. False
positive matched pairs are calculated in the following way:
if Êi,i′ is the essential matrix2 of a potential false positive,
and Ei,i′ is the one computed from the global poses (i.e.
Ei,i′ = [ti′ − Ri,i′ti]×Ri,i′ with Ri,i′ = Ri′R

T
i ), then we

consider the image pair (i, i′) to be a false positive candi-
date if the essential matrices differ significantly (in our ex-
periments we used: ‖Êi,i′ − Ei,i′‖F ≥ 1.5.) Note that the
use of a normalized baseline allows the essential matrices
to be compared without ambiguity.

Additional matching for symmetry detection: Since
symmetric structures are not only symmetric in terms of the
underlying 3D geometry, but usually also symmetric in their
appearance, we match original feature descriptors with their
mirrored counterparts which are just extracted from the mir-
rored source images. Feature matching between original
and mirrored descriptors including geometric verification
is applied to obtain a set of putative reflective symmetries.
Fig. 2 shows 2D feature correspondences for a mirror sym-
metric transformation obtained by this procedure.

Figure 2. Geometrically consistent, mirror-symmetric feature
matches between two wings of a building seen in different images,
found using mirrored descriptors.

Estimation of repetitions and symmetries: For all false
positive feature correspondences and mirrored descriptor
matches that have (different) 3D points associated in the ini-
tial model, a putative 3D-3D correspondence, induced by a
repetition or a planar symmetry, can be established. The
set of all putative 3D-3D correspondences found is used,
at first, to robustly estimate pure 3D translations and sym-
metries by exhaustive search. Sequential RANSAC is then
used on the remaining 3D-3D correspondences to estimate
general Euclidean transformations. In order to make the
repetition and symmetry detection robust to different scales,
inlier verification is done by using the projection of each 3D
point on the image observations associated with the oppo-
site 3D point. Fig. 3(a) depicts 3D correspondences verified

2We assume to have approximately calibrated cameras using EXIF tags.



(a) 3D transformation matches

(b) Reflection symmetries

Figure 3. Estimated similarity transformations and symmetry
planes for dataset 1.

via similarity transformations, and Fig. 3(b) illustrates ex-
tracted symmetry planes.

Natural coordinate frame estimation: Symmetries and
repetitions found in architectural scenes provide a strong
cue for the directions of the principal coordinate axes,
which form a natural coordinate frame for the 3D struc-
ture. In particular, knowing the vertical direction allows us
to place the 3D model, which usually resides in a gauge-
free space, onto a natural ground plane. Of less importance,
but still useful, can be the knowledge of the other princi-
pal directions, and of the center of the dominant symmetry,
which can be thought of as a natural model origin. We con-
sider the dominant symmetry to be the one with the largest
number of 3D-3D correspondences. The vertical direction
is estimated by exhaustively testing rotation axes and pair-
wise intersections of symmetry planes for the largest sup-
port. Translation vectors perpendicular to, and rotation axes
and symmetry planes collinear with the hypothesized verti-
cal direction support the current sample. Knowledge of the
vertical direction fixes the ground plane normal. The prin-
cipal direction in the ground plane is estimated in a similar
manner 3. With the estimated principal directions and the
center of dominant symmetry, the selected coordinate frame
will be a natural, object-centric one.

5. Model Completion

Knowledge of the symmetries intrinsic to the object of
interest allows to hypothesize 3D patterns via those trans-
formations, even if they are not directly seen in the images.
Using a purely geometric plausibility approach, it would be
possible to transfer 3D structures to completely unobserved
parts (e.g. to “predict” the back side of a building that was
not captured at all). In this work we focus on partial 3D

3One could also use the entropy method proposed in [23].

model completion such that any additional 3D point is seen
in at least one of the registered images. This is naturally
achieved in our system, as for a 3D point Xj1 to be part of
a detected symmetry k with associated transformation ma-
trix Mk, it needs to have had at least a matching feature on
the opposite side of the transformation. If enough observa-
tions were present on both sides of the transformation, Xj1

would approximately map to some Xj2 under transforma-
tion k. However, sometimes not enough observations were
present to reconstruct Xj2 (we require a minimum of 3 ob-
servations to triangulate points in our models). We can then
construct X̂k

j2 = Mk ◦ Xj1 and verify that it projects suf-
ficiently close to the matching feature locations. If this is
the case, the new 3D point X̂k

j2 is added to the model. The
matching features are attached to it so that it can be treated
seamlessly like any other 3D point in the bundle adjustment
described in the following section. Notice that we could
also triangulate additional 3D points seen in only one or two
images from each side of the transformation, but we refrain
from this as those would typically not be very accurate.

6. Extended Bundle Adjustment
Standard bundle adjustment is a non-linear least-squares

optimization step refining all estimated unknowns (extrin-
sic and optionally intrinsic camera calibration, 3D points)
to match the observed image measurements according to an
assumed noise model [28, 9, 8]. The objective is to mini-
mize the distance between the reprojected 3D points and the
corresponding image observations. Bundle adjustment can
be also seen as an inference procedure in a graphical model
represented by a factor graph (e.g. [6]). This view allows us
to easily augment the standard objective function in bundle
adjustment with additional terms representing priors we hy-
pothesize on the final 3D model. Formally, letCi denote the
parameters of camera i and Xj be the j-th 3D point. The
standard image reprojection error term is defined as

Erepro =
∑

(i,j)∈M

ρrepro
(
π(Ci, Xj)− pij

)2
, (1)

where π is the image projection function, ρrepro an optional
robust cost function, and pij is the observed measurement
of Xj in image i. The sum runs over i, j with (i, j) ∈ M,
which is the set of observed image projections. We uti-
lize the Huber cost function for ρrepro by re-weighting the
squared residuals. We extend the standard objective Erepro
by adding several terms to incorporate the detected struc-
tural symmetries.

3D consistency of repeating and symmetric elements:
The detection of repetitions and symmetries (see Section 4)
provides a list of inlier 3D point correspondences Xj1 ↔
Xj2 that are related either via a similarity transformation or



a reflective symmetry, e.g. if Xj1 and Xj2 are related by a
transformation k, then

σk
−1

transfXj2 = RktransfXj1 + tktransf + η, (2)

whereRtransf, ttransf and σtransf are the parameters of the simi-
larity transformation k (rotation, translation and scale resp.)
and η is additive noise. We favor rigid/symmetric alignment
in the final solution by adding appropriate terms to the cost.

One could directly add a term based on the 3D distance
between points Xj2 and the image of Xj1 under the trans-
formation, but this has the following disadvantage. The im-
age reprojection term Erepro is typically measured in pixels
whereas there is no natural unit for measuring 3D distances.
Hence, it is difficult to choose an appropriate weight be-
tween Erepro and a penalty term measured in terms of 3D
distances. Repetitions and symmetries may also be detected
at very different scales within the same 3D model, e.g. sym-
metries could exist between two distant parts of a building
but also between nearby facade elements at a smaller scale.
Therefore the noise level in the 3D distance estimates can
vary a lot. This would be difficult to capture solely with a
3D distance based cost.

Thus, it is better to use the 2D image observations cor-
responding to Xj1 to guide the alignment of Xj2 . This also
naturally handles the position uncertainty of the 3D points
Xj1 and Xj2 which is caused by the triangulation of 2D
measurements in nearby cameras where the corresponding
viewing rays are almost parallel in 3D. The additional term
in the objective is as follows.

Etransf = µtransf

∑
k∈T

ρtransf
(
π(X̂k

j1 , Ci)− pi,j2
)2

+ µtransf

∑
k∈T

ρtransf
(
π(X̂k

j2 , Ci)− pi,j1
)2
, (3)

where X̂k
j1

= RktransfXj1 + tktransf and X̂k
j2

= Rk
−1

transf(Xj2 −
tktransf) according to the k-th transformation parameters. T
is the set of all the detected euclidean transformations. The
terms exist only if the corresponding image observation
is available. µtransf is a weight parameter to balance be-
tween the reprojection term Erepro and this term. Since both
terms are based on the same units, choosing µtransf is rel-
atively noncritical. Since one is less confident in matches
across transformations, µtransf will typically be at most 1. If
µtransf = 1, the same image observations are associated with
Xj1 and Xj2 , thus effectively identifying both 3D points as
the same one. We choose ρtransf again to be the Huber cost.

A similar term is added for the detected symmetries and
the respective 3D point correspondences. It reads as

Esymm = µsymm

∑
k∈S

ρsymm
(
π(X̃k

j1 , Ci)− pi,j2
)2

+ µsymm

∑
k∈T

ρsymm
(
π(X̃k

j2 , Ci)− pi,j1
)2
, (4)

where S is the set of detected symmetries and X̃k
j is the ob-

tained 3D point after applying the k-th symmetry relation.

Priors for man-made environments: Man-made envi-
ronments are dominated by collinear and orthogonal 3D el-
ements, hence it is self-evident to add appropriate collinear-
ity and orthogonality priors. Examples of such similar-
ity transformations are pure translations or rotations in the
ground plane with angles that are multiples of π/2 (90◦).
Such transformations are favored over general 3D similari-
ties. For a rotation angle θ, let [θ] denote the closest angle
that is a multiple of π/2. For each detected similarity trans-
formation we add the following prior,

Eθ = µθ
∑
k∈T

ρθ
(
cos(θk)− cos([θk])

)2
, (5)

where θk is the rotation angle of the k-th estimated Eu-
clidean transformation. We use the difference of the cosines
in order to avoid numerical instabilities at θk = 0. Since we
only want to enforce the angular prior if θk is close to [θk],
we employ the non-convex but robust Cauchy M-estimator.

Model complexity reduction: Another feature of man-
made environments is, that not only the 3D structure, but
also the relations between symmetric and repeating parts
are highly compressible. Thus, the overall model complex-
ity to describe the transformation and symmetry parameters
is expected to be small. One way to achieve complexity
reduction in terms of the detected transformations is to in-
troduce an additional cost term,

Ecomp = µcomp

∑
k,k′∈T ,k 6=k′

ρcomp
(
dT (Tk, Tk′)

)
+ µcomp

∑
k,k′∈S,k 6=k′

ρcomp
(
dS(Sk, Sk′)

)
. (6)

dT and dS are distance functions to compare transforma-
tions and symmetries, respectively. dT is proportional to
the angle between the translation vectors for transforma-
tions with very similar rotation matrices. dS is proportional
to the angle between the symmetry planes for symmetries
with non-parallel planes, or to their plane distance in the
opposite case. Since very different transformation param-
eters should not influence the solution, we use the Cauchy
M-estimator for ρcomp (i.e. very dissimilar transformation
pairs are excluded). This generic term for complexity re-
duction can be replaced by the one described in the follow-
ing paragraph, which aligns transformation parameters with
a “natural” coordinate frame implied by the detected trans-
formations and symmetries.

Natural coordinate frame: Another important assump-
tion is that most symmetry planes and rotation axes should



be vertical, and many translations components should be
horizontal. Given the initial orthonormal basis obtained in
Section 4 the model can be transformed to the canonical
coordinate frame e.g. with the vertical axis aligned with
the z-axis. In this canonical frame, every transformation
parameter (translation directions, rotation axes, symmetry
plane normal) which is close to one of the principal direc-
tions, can be hypothesized to align exactly with the respec-
tive principal axis. In addition to the rotation angle prior
we add a robust term favoring the transformation parame-
ters to be collinear with the closest principal direction, e.g.
we have for symmetry plane normals nk

Esymm-layout = µlayout

∑
k∈S

ρlayout
(
cos
(
∠(nk, [nk])

))
, (7)

where [nk] is the closest principal direction (x, y, or z-axis
or its negated version). Since this prior should only be effec-
tive if nk is close to [nk], we utilize the robust Cauchy cost
for ρlayout. These terms link transformations via the global
coordinate frame, hence it indirectly leads to model com-
plexity reduction without the need for the explicit pairwise
terms in Ecomp (but only for transformations that are almost
aligned with the natural axis, e.g. diagonal repetitions are
thereby not made collinear).

Numerical Procedure: We use a standard Levenberg-
Marquardt method in combination with minimum-degree
column reordering and sparse Cholesky decomposition to
optimize the combined non-linear least squares objective.
Mostly due to Etransf the approximated Hessian is not as
sparse as the one derived solely from Erepro, but this ex-
actly corresponds to loop closures in standard SfM. In the
reduced camera matrix there is an additional non-zero block
at (i, i′) if there exists a transformation/symmetry linking
3D points Xj and Xj′ with image observations in cameras
i and i′, respectively. By detecting repeating and symmetric
patterns we establish “structural” loop closures implied by
similar 3D patterns, not identical 3D points. The transfor-
mation parameters induce a dense non-zero pattern in the
respective Hessian, but this additional cost is negligible.

7. Results
In this section we present quantitative and qualitative re-

sults illustrating the improvement in our 3D reconstructions
in comparison to traditional bundle adjustment where 3D
symmetries are not enforced. We evaluated our method on
four urban datasets where the number of images ranged
from 99 to 191 images. We use a robust SfM approach
suited for unstructured image collections to obtain the initial
sparse 3D reconstruction and camera poses, and utilize the
focal length estimates in the image EXIF tags to operate in a
semi-calibrated setup. The approximate intrinsic parameter

estimates can produce distortions in the 3D reconstructions,
especially when loop closures are not detected. Datasets 1–
3 are shown in Figures 1, 5 and 6 whereas the fourth dataset
is shown in the supplementary material. The 3D models es-
timated using standard bundle adjustment have significant
distortion, e.g. significantly curved roads and facades (Fig-
ure 1 and 6) and lack of parallelism in the walls and other
vertical sub-structures (see Figure 5).

We estimated symmetries in the underlying 3D geome-
try as described in Section 4 to obtain a set of similarity
transformations (see Figures 3(a), 5(b) and 6(b)) and mirror
symmetries (see Figures 3(b), 5(c) and 6(c)). In the four
datasets, the number of extracted similarity transformations
and reflection symmetries were between 15 to 50 and the
number of reflection symmetries ranged from 5 to 30 re-
spectively. Depending on the dataset, 3D model completion
introduces only 2.5% new points or up to almost 20% addi-
tional 3D points (see Table 1, column 6 for the exact num-
bers). With the knowledge of putative 3D symmetries, our
extended bundle adjustment is applied to rectify the model.
We use µtransform = µsymm = 1. Unfortunately, the choice of
µθ, µlayout is rather critical and has a substantial impact on
the result. We had to set µθ = µlayout = 100 for data set 2,
and to 1000 for the other ones.

Table 1 also displays the evolution of the bundle adjust-
ment objectives. The total residual and the contribution of
the image reprojection term, Erepro, are shown separately.
As expected, the overall residual decreases, but only par-
tially at the expense of the image reprojection term. For
instance, in dataset 1, Erepro is decreased on one order of
magnitude. We conjecture that sometimes the additional
terms in the objective enable the initial solution to escape
from a local minimum.

The degree of alignment of the resulting model with the
major coordinate axis is illustrated in Figure 4, which dis-
plays histograms of angles between respective transforma-
tion parameters and the closest principal direction. Fig. 4(a)
shows the histogram before our proposed bundle adjust-
ment (with all datasets merged into a single histogram), and
Fig. 4(b) shows the histogram after our adjustment. Note
that all angles larger or equal to 10 degrees are collapsed
into a single bin. These histograms show that the well
aligned symmetries are moving closer to being perfectly
aligned without affecting the rest of the structure. The im-
provement in the 3D reconstructions is evident from the vi-
sualizations in Figures 1, 5(e) and 6(e), which demonstrate
significant straightening of the model layout and reduction
in drift. Figure 7 shows the extracted natural coordinate and
principal directions overlaid on our reconstructions.

8. Conclusions
In this paper we have proposed a new approach for

structure from motion, where symmetry relations in the



Dataset #images #3D points init. image error init. total error #added points final image error final total error
1 175 43553 2.1751e+07 7.8620e+07 1497 2.1418e+06 1.0644e+07
2 186 47756 6.1872e+05 8.7939e+07 5605 4.8943e+06 2.7847e+07
3 99 31876 1.7700e+06 1.2126e+08 5747 6.7547e+06 3.3324e+07
4 191 60997 3.3342e+06 3.9434e+07 1556 2.4533e+06 5.7418e+06

Table 1. Dataset specification (first three columns), Erepro and the total objective before running our bundle adjustment, and Erepro and the
total objective after convergence.

(a) Input images (out of 186)

(b) 3D transformation matches (c) Reflection symmetries (d) Standard BA result (e) Proposed BA result

Figure 5. Dataset 2 and respective top views.

(a) Input images (out of 99)

(b) 3D transformation matches (c) Reflection symmetries

(d) Standard BA result (e) Proposed BA result

Figure 6. Dataset 3 and respective top views.

(a) Dataset 2 (b) Dataset 3

Figure 7. Estimated natural coordinate frames and the overlaid sparse reconstruction.



(a) Initial (b) Proposed
Figure 4. Histograms of angles indicating the alignment of trans-
formations with respect to the closest principal direction. His-
togram bins are in degrees, bin 10 includes angles ≥ 10 degrees.
(a) Before the proposed BA, and (b) result of our adjustment.

3D structure are automatically recovered from multiple im-
ages. Structural constraints derived from those symme-
tries are imposed within a new constrained bundle adjust-
ment formulation that incorporates robust priors on the ex-
pected model shape. We have demonstrated that our ap-
proach leads to improved appearance in various types of
urban and architectural scenes. We also showed that for
scenes where symmetries exist, a natural coordinate system
can be used to parameterize the structure which has several
advantages. Furthermore, discovering symmetries also fa-
cilitates 3D model completion.
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