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Abstract. It this paper we present a novel minimal case solution to the
calibrated relative pose problem using 3 point correspondences for the
case of two known orientation angles. This case is relevant when a cam-
era is coupled with an inertial measurement unit (IMU) and it recently
gained importance with the omnipresence of Smartphones (iPhone, Nokia
N900) that are equipped with accelerometers to measure the gravity nor-
mal. Similar to the 5-point (6-point), 7-point and 8-point algorithm for
computing the essential matrix in the unconstrained case, we derive a
3-point, 4-point and 5-point algorithm for the special case of two known
orientation angles. We investigate degenerate conditions and show that
the new 3-point algorithm can cope with planes and even collinear points.
We will show a detailed analysis and comparison on synthetic data and
present results on cell phone images. As an additional application we
demonstrate the algorithms on relative pose estimation for a micro aerial
vehicle’s (MAV) camera-IMU system.

1 Introduction

In this paper we investigate the case of computing calibrated relative pose for
the case of two known orientation angles. This case is largely motivated by the
availability of Smartphones (e.g. iPhone, Nokia N900) that are equipped with a
camera and an inertial measurement unit (IMU). In the case of Smartphones the
IMU mainly consists of accelerometers that allow to measure the earths gravity
vector. From this measurement two orientation angles of the device and the
embedded camera can be measured but usually not all three orientation angles.
A similar situation arises when one is detecting vanishing points in the image.
From a detected vanishing point it is also possible to compute two orientation
angles [3] and we have the same case as with the accelerometer.
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For the relative pose problem this means that only one rotation angle and the
three translation parameters are left to be computed from visual measurements.
For this special case we will derive a simplified essential matrix and we will
show that this leads to an algorithm that can compute the relative pose from
three point correspondences only (similar to [5]), instead of the standard 5 point
algorithm [10]. In analogy to the 5-point (6-point), 7-point and 8-point algorithm
for computing the essential matrix in the unconstrained case, we derive a 3-point,
4-point and 5-point algorithm for the special case of two known orientation
angles.

Reducing the number of point correspondences is of utmost importance when
a RANSAC [1] scheme is used to cope with outliers in the data. The number
of random samples to find one outlier free sample depends exponentially on the
number of parameters to instantiate one hypothesis. The necessary number of
samples to get an outlier free sample with a chance of 99% and an outlier ratio
of 50% is 146 for the standard 5-point algorithm. The 3-point algorithm would
only need 35 samples which is a speedup of a factor of 4. In R-RANSAC [8],
where the termination criterion is, when the probability of missing a set of inliers
larger than the largest support found so far falls under a predefined threshold, a
smaller sample size also improves the efficiency. In this sense the proposed 3-point
algorithm will be much more efficient in computing relative pose than previous
methods, which might be very important for using the method on Smartphones
with limited computational power.

We also analyze the degeneracies of the new algorithm and we will show that
it will work for planar scenes and even for the case of three collinear points.

In addition to a detailed description of the proposed algorithm we will give
a detailed performance analysis using synthetic data. We will test the algorithm
under different levels of noise and more important under noise on the IMU
measurements. For results on real data we show relative pose estimation on
images from a Nokia N900 Smartphone. The IMU values of the N900 have a
precision of 1 degree and we will show that this is good enough to be used for
our algorithm. As an additional application we demonstrate the algorithms on
relative pose estimation for the camera-IMU system of a micro aerial vehicle
(MAV). Visual localization for MAV’s is a very active field of research and the
power and weight limitations of a MAV do not allow for the use of powerful
computers. Therefore it is even more important to use very efficient algorithms,
e.g. our proposed 3-point algorithm.

2 Related work

The special case of knowing the full camera orientation is the case of pure trans-
lational motion. In this case the essential matrix can be computed linearly [3].
The case of knowing the translation and solving for the rotation only, using three
points, was briefly described in [11]. The case of knowing the rotation partially,
e.g. from vanishing points has already been investigated, e.g. for removing tilt
in photographs [2] or rectifying images for visual localization [16]. However, the
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knowledge of two rotations can directly be used to derive a simplified essential
matrix that can be estimated from 3 point correspondences and the two rota-
tion angles. This 3-point method has recently been investigated by [5] and their
work is closely related to ours. They set up a polynomial equation system in the
entries of the simplified essential matrix and use the Macaulay matrix method
to solve it, which gives 12 solutions for the essential matrix.

In our work we use a similar parameterization of the essential matrix, however
we follow a different way of setting up and solving the polynomial system for the
essential matrix. The method we propose leads to a 4th degree polynomial which
results in up to 4 real solutions for the essential matrix, instead of 12 as in [5]. In
terms of efficiency this is an important fact. The different essential matrices have
to be verified with additional points (usually done within a RANSAC loop). In
this sense our formulation with 4 solutions is much more efficient than the one
with 12 solutions..

Our formulation is related to the 5-point algorithm [10] and to the 6-point
algorithm [14] in the way the 4th degree polynomial is set up. In addition we also
propose a linear 5-point algorithm and a 4-point algorithm which are analogies
to the 8-point [6] and 7-point [4] algorithm for computing the essential matrix.

Other approaches that make use of IMU measurements perform Kalman
filter fusion of the IMU measurements and the vision based pose estimates [9,
12]. In our approach we propose a very tight coupling between IMU and vision
measurements in a way that the IMU measurements simplify the vision based
camera pose estimation. Tight integration of IMU and visual measurements has
also been proposed in [17].

IMU measurements have also been used in [15] together with GPS for large
scale structure-from-motion. In this approach GPS and IMU values have been
used as initial values for bundle adjustment.

3 Estimating the essential matrix for the case of two
known orientation angles

In this section we derive the parameterization of the essential matrix for the case
of two known orientation angles. We identify additional linear constraints in the
parameters of E which make it possible to compute a minimal solution for the
essential matrix from 3-point correspondences. We will derive this algorithm in
detail and give also a 4-point algorithm and a linear 5-point algorithm.

We will start with the definition of a simplified essential matrix where two
rotations (pitch and roll) are zero. The essential matrix E can be written as a
product of the translation and the three rotation matrices as follows:

E = [t]×(RyRpRr) (1)

Ry is the rotation matrix for the yaw axis, Rp is the rotation matrix for
the pitch axis and Rr is the rotation matrix for the roll axis. [t]× is the skew
symmetric matrix form of the translation vector t = (tx, ty, tz).
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Ry =

 cos(y) sin(y) 0
− sin(y) cos(y) 0

0 0 1

 (2)

Rr =

 cos(r) 0 sin(r)
0 1 0

− sin(r) 0 cos(r)

 (3)

Rp =

1 0 0
0 cos(p) sin(p)
0 − sin(p) cos(p)

 (4)

With roll and pitch values zero the matrices Rp and Rr are reduced to identity
matrices and the essential matrix E gets E = [t]×Ry. This expanded gives the
simplified essential matrix as written in (5).

E =

 tz sin(y) −tz cos(y) ty
tz cos(y) tz sin(y) −tx

−ty cos(y) − tx sin(y) tx cos(y) − ty sin(y) 0

 (5)

By looking at the essential matrix in the form of (5) we can identify 3 linear
relations.

E =

E1,1 E1,2 E1,3

E2,1 E2,2 E2,3

E3,1 E3,2 E3,3

 (6)

E3,3 = 0 (7)

E1,2 = −E2,1 (8)

E1,1 = E2,2 (9)

Using these relations the essential matrix E can be expressed with 6 of its
matrix entries reducing the degrees-of-freedom from 8 (up to scale) to 5.

E =

E2,2 −E2,1 E1,3

E2,1 E2,2 E2,3

E3,1 E3,2 0

 (10)

In the following we will use the representation of (10) to solve for the essential
matrix from point correspondences. The epipolar constraint x′TEx = 0 can be
written as shown in (11) for the 6 entries of E as written in (12).

[x′ xy′ − x′y yy′ + xx′ y′ x y]E = 0 (11)

E = [E1,3 E2,1 E2,2 E2,3 E3,1 E3,2] (12)

Stacking the constraint rows (11) leads to an equation system of the form
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AE = 0, (13)

where each point correspondence contributes one row.

The essential matrix has also to fulfill two internal constraints, the det(E) = 0
constraint (14) and the trace constraint (15).

det(E) = 0 (14)

EETE − 1

2
trace(EET )E = 0 (15)

The condition of pitch and roll being zero can be met by knowing the two
rotation angles (e.g. from an IMU or from vanishing points) and transforming
the image coordinates from a general pose into one with zero pitch an zero roll
angles. This can be done by multiplying the image coordinates of the first frame
with a homography transform H = RpRr.

This can be seen by writing the three rotations explicitly in the epipolar
constraint.

x′([t]×RyRpRr)x = 0 (16)

In (17) it can easily be seen that to remove relative pitch and roll rotations,
the necessary transformation is RpRr.

x′([t]×Ry)(RpRrx) = 0 (17)

3.1 The linear 5-point algorithm

The linear 5-point algorithm is a direct consequence of the epipolar constraints
written as (13). The essential matrix E (12) has only 6 parameters and is defined
up to scale. Every point correspondence gives a constraint in the form of (11).
With 5 of these constraints (13) can be linearly solved for the entries of E. The
solution has to be corrected so that E fulfills the det(E) = 0 constraint and
the trace constraint. This is done be replacing E with E′ such that the first
two singular values are corrected to be identical. This is in analogy to the 8-
point algorithm for computing the essential matrix and fundamental matrix [6].
Similar to the 8-point algorithm the linear 5-point algorithm can be used to find
a least squared solution to an over-constrained system (13) if more than 5 point
correspondences are used.

Differently to the 8-point algorithm, the case of points in a plane is not a
degenerate case for the linear 5-point algorithm. It is shown in [13] that A has
rank 6 if all 3D points are in a plane. As the linear 5-point algorithm only needs
5 linearly independent equations this is not a degenerate case.
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3.2 The 4-point algorithm

The 4-point algorithm is an analogy to the 7-point algorithm for the uncon-
strained case of computing the essential matrix as described in [4]. It uses the
det(0) = 0 constraint for the estimation.

With 4 point correspondences A of the equation system (13) has rank 4. In
this case the solution to (13) is a 2-dimensional null space of the form

E = aE1 + E2. (18)

The two-dimensional null space E1 and E2 can be computed using SVD. The
scalar parameter a can be computed using the det(E) = 0 constraint. Expanding
the expression det(aE1 +E2) = 0 leads to a cubic polynomial in a. There will be
one or three solutions for a (complex solutions are discarded) which leads to one
or three solutions for E by back-substitution into (18). The algorithm can be
used for more than 4 point correspondences. In this case the null space E1, E2

is computed in the least squares sense from all the point correspondences.

3.3 The 3-point minimal case algorithm

The 3-point minimal case algorithm is an analogy to the 5-point minimal case
solver [10] and as well to the 6-point minimal case solver [14] for the uncon-
strained case. It is minimal as it solves for the remaining 3 DOG (up to scale)
using only 3 point correspondences. Similar to the 5-point and 6-point methods
it uses the trace constraint and the det(E) = 0 constraint to set up a polynomial
equation system and to find the solution to E solving it.

With 3 point correspondences the matrix A of (13) has rank 3. In this case
the solution to (13) is a 3-dimensional null space of the form

E = aE1 + bE2 + E3 (19)

This is the same case as for the 6-point algorithm, where the solution also
has the form of a 3-dimensional subspace.

To derive the solution we start by substituting (19) into the det(E) = 0
constraint (14) and into the trace constraint (15), which gives 7 polynomial
equations in a and b of degree 3. Our reduced essential matrix parameterization
(12) has only 6 parameters, thus the trace constraint gives only 6 equations
instead of 9. And the seventh equation comes from the det(E) = 0 constraint.
However the rank of the linear system of the 7 equation is only 6. There exists a
linear dependency between the entries E1,3, E2,3, E3,1, E3,2 which can be verified
by symbolic Gaussian elimination on the equations.

Considering this as a homogeneous linear system in monomials of a and b this
will give expressions in the monomials a3, a2b, a2, ab2, ab, a, b3, b2, b, 1. Next we
set up a polynomial equation system using the 6 linearly independent equations.
By performing Gaussian elimination and subsequent row operations a polyno-
mial of 4th degree in b can be found. From Gaussian elimination we get (20).
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a3 a2b a2 ab2 ab a b3 b2 b 1
1 . . . .

1 . . . .
1 . . . .

1 . . . .
1 . . . . < h >

1 . . . . < i >

(20)

With row operations on the polynomials < h > and < i > we can arrive at
the desired 4th degree univariate polynomial.

< h >= poly(ab, b3, b2, b, 1) (21)

< i >= poly(a, b3, b2, b, 1) (22)

We eliminate the monomial ab by multiplying < i > with b and subtracting
it from < h >.

< k >=< h > −b < i >= poly(b4, b3, b2, b, 1) (23)

The resulting polynomial < k > is a 4th degree polynomial in b. The solutions
for b by solving < k > (23) can be substituted into < i > (22) which is linear
in a and which gives one solution for a for each b. For each pair of (a, b) we
compute an essential matrix using (19).

This method gives up to 4 real solutions and it can be shown with symbolic
software (e.g. Gröbner basis package of Maple) that this 3 point problem can
have up to 4 solutions. This means our method also finds the minimal number
of solutions for this problem. The algorithm also can be used for more than 3
point correspondences. In this case the null space E1, E2, E3 is computed in the
least squares sense from all the point correspondences.

4 Degeneracies

In [13] it is shown that 6 points in a plane give 6 linearly independent equations
of the form of (11), however any further point in the plane will not give another
linearly independent equation. This means that algorithms that need more than
6 independent linear equations, e.g. the 7-point and 8-point algorithm will fail
for the case of a plane. The 5-point and the 6-point algorithm and the 3-point,
4-point and linear 5-point as well are able to deal with the case of all the points
in a plane.

The case of 4 or 5 points on a line however is still a degenerate case for
the 5-point algorithm. However, it is not for the 3-point which can compute the
essential matrix even from 3 collinear points. Three points on the same line give
three independent equations for the epipolar constraint (11), however any further
points on the line will not give another linearly independent equations [13].
For the 3-point algorithm only three linearly independent equations in (11) are
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needed. The equation system (20) has rank 6 in this case which allows our
method to solve the system. However the case where the 3D line is parallel to
the baseline of the cameras is a degenerate case. There we observed that the
rank of (20) drops to 3.

5 Experiments

5.1 Synthetic data

In this experiment we evaluate the robustness of the new methods under im-
age noise and noise on the IMU measurements and compare it to the standard
five point method [11]. Robustness to noise from the IMU is especially impor-
tant since errors in the two given angles can influence the outcome of the new
algorithms.

The test scene consists of random 3D points that have a depth of 50% of
the distance of the first camera to the scene. The baseline between the views is
10% of the distance to the scene and the direction is either parallel to the scene
(sideways) or along the z-axis of the first camera (forward). Additionally, the
second camera was rotated around every axis.

We want to test the algorithms used for two cases, the minimal case when
they are used for RANSAC and the least squares case when using many points for
a polishing step. For the first series of experiments the minimal number of point
correspondences necessary to get a solution are used. If the method resulted
in multiple solutions the one with the smallest deviation of the true solution
was chosen. 500 trials were done per data point in the plots and the average
translation and rotation error of the first quantile are plotted. This measure is a
good performance criterion if the method is used for RANSAC where it is more
important to find an acceptable solution with many inliers than to get consistent
results over all trials. The less accurate solutions will result in less inliers and be
automatically filtered out. The least squares plots show the mean value of 200
trials with 100 point correspondences per trial.

To analyze the robustness the computed essential matrices are decomposed
in a relative translation direction and rotation. The translational error is the
angle between the true translation direction and the estimated direction. It is
not possible to compute an error in distance because the translation can be
estimated only up to scale and therefore no information about the length is
available. The rotational error is the smallest angle of rotation which is needed
to bring the estimated rotation to the true value.

Figure 1 shows the results of the minimal cases for gradually increased image
noise levels. As can be seen, the new 3-point and the linear 5-point methods are
more robust if exact IMU data is available. Notice that the 3-point method is
better for sideways motion while the linear 5-point method is better for forward
motion. Regarding the rotational errors the new methods are also more robust
than the standard 5-point method, but it has to be noticed that the errors of
all algorithms are very small. In addition to that the standard 5-point method
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has to estimate rotations around 3 axes whereas the new methods estimate only
one.

The least squares results in Figure 2 show that the new methods are as robust
as the standard 5-point method for sideways motion. For forward motion, which
is the weak point of the standard 5-point algorithm, the 3-point and linear 5-
point methods are clearly better, but again the 4-point method does not produce
better results.

Since in reality no exact data will be available about the attitude of the
camera, it is important to examine how the new methods work when noise is
added to the IMU data. Good accelerometers today have noise levels of around
0.02 degrees in the computed angles. Figure 3 shows the results for the minimal
cases for increasing noise on the IMU data while assuming image noise with
0.5 pixel standard deviation. The standard 5-point method is not influenced by
the noise because no IMU data is used. But for the other algorithms the error
scales with the noise of the IMU data and at some point the errors get bigger
than for the standard 5-point method. This shows that it is important to have
good measurements from the IMU because too big errors in the angles make it
harder to compute the correct solution. The 3-point method gives good results
for sideways motion even for very noisy IMU data. For forward motion the linear
5-point method, again, is the best of the new methods. The least squares results
in figure 4 show a similar picture. For sideways motion and moderate noise the
3-point method is as robust as the standard 5-point, where for forward motion
the linear 5-point is again the most robust of the presented methods. But it
is apparent that more image points do not help that much against noise and
imprecisions from the IMU.

5.2 Real data from N900 smartphone

To demonstrate that the new 3-point method also works on currently avail-
able consumer Smartphones we tested it with the Nokia N900 which has an
accelerometer similar to other modern Smartphones like Apples iPhone. The
relative rotations to the plane perpendicular to the gravity vector were read out
from the accelerometers and used to warp the extracted SIFT [7] features to a
virtual ground plane. These transformed feature coordinates only differ in one
rotation angle and translation and where used as input for the 3-point method.
Figure 5 shows an example of estimated epipolar geometry for a planar scene.
The blue lines show the initial SIFT matches and the green lines the inliers after
RANSAC.

5.3 Relative pose estimation for MAV camera-IMU system

In this experiment we test the 3-point algorithm for relative pose estimation for
a MAV camera-IMU system. The camera-IMU system consists of a stereo setup
and an IMU with a nominal accuracy of 0.06 degrees. The camera-IMU system
is designed to fit on a micro quadrotor. In the experiment we compute the pose
of the camera-IMU relative to a reference pose for multiple different poses using
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Fig. 1. Rotational and translational error for the minimal case algorithms in degrees
over image noise standard deviation in pixel. (a) Rotational sideways (b) Rotational
forward (c) Translational sideways (d) Translational forward

SIFT feature matches. To verify the results we also compute the poses using
a marker based pose estimation method without using IMU information. The
computed poses are plotted in Fig. 6. The poses from the 3-point method are
in red color, the poses from the marker based method are in blue. The blue
square is the location of the marker on the floor. This experiment successfully
demonstrates the practicability of our proposed 3-point method.

6 Conclusion

In this paper we presented three new algorithms (3-point, 4-point and linear 5-
point) to compute the essential matrix for the case when two orientation angles
are known. We showed that this is a practically relevant case as modern Smart-
phones (iPhone, Nokia N900) are equipped with an IMU that can measure two of
the three orientation angles of the device. This is done by accelerometers which
are able to measure the earths gravity normal and thus can measure two of its
three orientation angles. This case is also practically relevant for the case of
pure visual relative pose estimation for the case when a vanishing point can be
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Fig. 2. Rotational and translational error (least squares case) in degrees over image
noise standard deviation in pixel. (a) Rotational sideways (b) Rotational forward (c)
Translational sideways (d) Translational forward

detected in the images. Similar to an IMU a single vanishing point also gives two
orientation angles. What’s more, it is conceivable that in future, cameras will
always be coupled with IMU’s. The small scale of MEMS IMU’s make a tight
integration possible. This makes the proposed method even more practically rel-
evant. In the experimental section we analyzed the accuracy of the proposed
methods very carefully using synthetic data. A special focus was put on the case
of noisy IMU measurements. We showed that the algorithm is sensitive to inac-
curate IMU measurements, especially the translation part. However, we showed
with real experiments using a Nokia N900 Smartphone, that the accuracy of 1◦ is
sufficient for robust relative pose estimation. More experiments conducted with
an IMU with higher precision (0.06◦) showed how the proposed methods can
reliably be used for relative pose estimation of an micro aerial vehicle. So far we
did not explore the possibility of using the two orientation angles to unwarp the
images before feature detection and matching. By unwarping, the perspective
distortions between the two images could be removed. This would allow the use
of simpler feature detectors, which need to be only scale and rotation invariant.
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Fig. 3. Rotational and translational error for the minimal case algorithms in degrees
over IMU noise standard deviation in degree (at 0.5 pixel image noise). (a) Rotational
sideways (b) Rotational forward (c) Translational sideways (d) Translational forward
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Fig. 5. Epipolar geometry from N900 images and IMU readings. (a) Cyan lines indicate
initial SIFT feature matches, green lines are inliers after RANSAC. Residual Sampson
distance of inliers is 0.4 pixel. The quality of inliers depends largely on the accuracy of
IMU readings. (b,c) Epipolar geometry visualized by epipolar lines.
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Fig. 6. Relative pose estimation for MAV camera-IMU system. (a) The camera-IMU
system for a micro quadrotor. (b) Poses computed from the 3-point algorithm (red)
compared to marker based pose estimation (blue).
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