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Abstract— For autonomous navigation of Micro Aerial Vehi-
cles (MAVs) in cluttered environments, it is essential to detect
potential obstacles not only in the direction of flight but in
their entire local environment. While there exist systems that
do vision based obstacle detection, most of them are limited
to a single perception direction. Extending these systems to a
multi-directional sensing approach would exhaust the payload
limit in terms of weight and computational power.

We present a novel light-weight sensor setup comprising of
four stereo heads and an inertial measurement unit (IMU) to
perform FPGA-based dense reconstruction for obstacle detec-
tion in all directions. As the data-rate scales up with the number
of cameras we use an FPGA to perform streaming based tasks
in real-time and show a light-weight polar-coordinate map to
allow a companion computer to fully process the data of all
the cameras and perform obstacle detection in real-time. The
system is able to process up to 80 frames per second (fps) freely
distributed on the four stereo heads while maintaining a low
power budget. The perception system including FPGA, image
sensors and stereo mounts is 235 g in weight.

I. INTRODUCTION

Micro Aerial Vehicles (MAVs) are well suited for a variety
of robotics applications. Due to their mobility they can
be used in situations such as disaster scene surveillance,
inspection and delivery of goods. For MAVs to function in
cluttered environments (semi-) autonomously, it is essential
that they are able to detect and avoid obstacles not only in
the direction of flight but all around the vehicle.

With an omnidirectional obstacle sensing capability the
MAV is more flexible in path planning as flight direction
changes can be applied without rotating the MAV to face
the main sensors again in the direction of flight. Also
dynamic obstacles can be addressed faster and independent
of the MAV’s orientation. For example, navigating through
a moving crowd of people or flying in a highly cluttered
environment with occlusions is much safer having a sensing
capability all around.

As discussed in detail in the following section, there exist
many sophisticated systems showing vision-based obstacle
avoidance. However most of them use a single direction
sensing approach where the main image sensors are facing
in the direction of flight. Additionally, these algorithms
require high-power multicore CPU systems to run them at
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Fig. 1: Point cloud of the spherical map representation (e) with the according
four disparity maps (a-d). In the front (b) and back (d) disparity map the
mask for the rotors is visible in the top corners.

a reasonable update rate. Another option are ground station
CPU systems to perform fast off-board processing but they
rely on a high-latency communication link.

There is a range of other interesting depth sensing options
that can potentially be integrated on small-scale MAVs for
omnidirectional obstacle detection. One of the first sensors
used for obstacle perception in robotics in general is the
ultrasound distance sensor. The downside is the low band-
width of the sensors due to the limitation in speed of sound
as well as the relatively small detection distance and the
fact that only small regions in the measurement cone can be
sampled for obstacles. 2D laser range scanners can be used
to detect obstacles in a two-dimensional cross-section around
the MAV. The limitations of the system are its relatively large
weight and the fact that laser-scanners, which are suitable
for small-scale MAVs, are usually restricted to planar, 2D
measurements. RGBD cameras are an interesting option for
obstacle perception. However, as they are usually infrared-
based they are mostly limited to indoor applications without
direct sunlight.

We believe that passive, camera-based systems are ideal
for MAVs as they capture rich information about the en-
vironment at a high update rate and high resolution while
maintaining small size and low weight. However, this vast
information of raw image data requires significant CPU
resources to be processed into usable information for obstacle
detection. So far, most approaches rely on CPU-based stereo
densification which scales poorly with the number of used
stereo camera pairs or the image resolution.



This paper shows a novel solution to address these prob-
lems: using a multi stereo camera setup in conjunction with
an FPGA we are able to use simple and fast algorithms to
map and detect obstacles all around the MAV. The FPGA
is used to process the incoming stereo images into disparity
images. More precisely, the undistortion, rectification and a
dense matching is directly performed on the FPGA with a
framerate of up to 80 Hz, thus significantly reducing the
CPU load for perception tasks. The weight of the full sensor
system with FPGA and aluminum mounts is 235 g, thus
rendering it an ideal option for the use on a constrained
MAV platform in terms of payload, computational power
and energy consumption.

The structure of this publication is as follows: we first
show related work in the field of vision based obstacle
detection. Second, we provide a detailed description of the
obstacle detection and mapping algorithm. We then present
our test system setup with the major hardware components,
followed by an efficient implementation of the obstacle
detection algorithm. Lastly, we give results of the obstacle
mapping and detection in a cluttered outdoor scenario.

II. RELATED WORK

In the last decade, there has been a substantial amount
of work done in enabling vision based obstacle detection
on MAVs. Most approaches are based on a single direction
sensing approach. High level path planning in 3D maps
from a stereo head is shown in [1] and [2]. There are also
approaches using an active depth sensor instead of a passive
stereo head [3][4]. They all successfully show autonomous
flights in unknown environments but are restricted to static
scenes as they need to turn the vehicle around to sense
the complete surroundings. Our system performs obstacle
detection simultaneously in all directions and independent
of the orientation.
A low-latency obstacle segmentation directly from depth
maps is described in [5]. They use high frame rate disparity
maps for obstacle detection but are again restricted to a
single direction. An approach that avoids to fully process
high bandwidth disparity data is shown in [6]. The push
broom stereo algorithm relies on predictable motion of the
vehicle towards the scene. Depth sensing is therefore limited
to the direction of motion only.
In [7], the authors present a navigation scheme for operating
MAVs in cluttered industrial environments using a front-
looking stereo camera. [8] presents an omnidirectional sens-
ing approach towards multimodal obstacle avoidance. Their
MAV perception system is based on a 3D laser scanner,
ultra sonic distance sensors and two stereo camera heads.
The laser scanner provides an almost omnidirectional view
of the surroundings but with an update rate of only 2 Hz.
Also the laser scanner alone is already 210 g in weight that
uses the payload to capacity whereas our system relies on
light-weight image sensors only.
An omnidirectional sensing approach using a single camera
system is shown in [9]. They use a dedicated camera and
several full size computers to generate panorama disparity

maps at 5 Hz update rate.
A comparable system to ours based on Intel RealSense
modules on an AscTec Firefly multi-copter drones was
demonstrated at CES151. They performed obstacle avoidance
in a cluttered environment. However they use active depth
sensors, compared to our system that is based on passive
image sensors only.

Statistical voxel-map approaches, such as Octomap[10],
are a commonly used dense 3D map representation. The
Octomap framework is strongly optimized for fast occupancy
lookups, combined with a statistical outlier rejection scheme.
However, inserting data is computationally expensive and the
outlier rejection introduces a delay. As there is no need for a
global map in the context of local robot navigation, there is a
clear need for a robust and fast local map representation. In
[11], the authors present a path planning and local collision
avoidance scheme which operates directly on the disparity
data. Equivalently, transforming disparity data from one view
point into the current camera position was shown in [12] and
used for disparity data filtering in [13].

Using a local polar map for collision avoidance was pre-
viously shown in [14] and in [15] combined with ultrasonic
sensors. In [1] is shown how dense data can be reduced by
filtering them in spherical coordinates and doing the collision
avoidance in an octomap later.

III. ALGORITHM

In the following section we describe the algorithms per-
forming disparity estimation, omnidirectional mapping and
obstacle detection based on the data streams of the image
sensors.

A. Dense Stereo

Stereo matching is performed based on real-time Semi
Global Matching (SGM) as shown in [16]. The hardware
synchronized image data streams of a single stereo head are
stored in a buffer. Lens distortion correction and rectification
are combined into a single warp operation. Radial and
tangential distortion parameters as described in [17] are used
to find the corrected pixel location in the buffer. Stereo
matching with epipolar geometry is performed after the
undistortion and rectification block. The best match based
on a local cost function and global consistency constraints is
selected as the valid disparity output. The corrected image
data streams of both sensors are finally synchronized with
the disparity output stream.

B. State-estimation

To perform the mapping, the camera rig is required to
be localized in a consistent way at least locally. As we
maintain a local map only, no globally consistent localization
is required. For localization, we use the data from a single
stereo pair together with the inertial data in a tightly coupled
visual-inertial state estimator [18]. In order to ensure fast
insertion of the disparity maps into the local map, we do not
wait for the optimization procedure of the state-estimator to
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finish. Instead, we simply forward-propagate the last known
pose using the IMU measurements and the current IMU bias
estimate.

C. Local Map

Having a map representation as close as possible to the
sensing technology used for map generation allows fast
insertion with the benefits of representing the complete
surrounding of the MAV. In the context of an omnidirectional
depth sensor, spherical depth representation can capture the
local geometry of the robot’s environment efficiently. Alike
disparity data, spherical coordinates allow to store depth data
by bearing direction and corresponding depth. Such a 2D
distance map covering the sphere around the MAV can be
used efficiently for local collision avoidance. We use θ to
represent the horizontal angle and φ for the vertical angle. ρ
defines the depth of a sperical map point.

The surface of the sphere is discretized into N rows,
which correspond to θ ∈ [0, 2π] and M columns for φ ∈
[φ′, π − φ′]. Where φ′ is used to define a small dead zone in
the polar regions, to avoid the uninteresting but very dense
region at the poles.

1) Disparity handling: For outlier rejection we apply the
speckle filter from OpenCV [19] directly on the disparity
data. This allows us to reject small blobs of wrong matched
environment, without introducing a delay longer than the
computation time required to run the algorithm. By em-
ploying such a speckle filter, there is the risk that correctly
detected small objects can be removed. However, in the
context of the experiments in a forest setting (Sec. V-C),
it is shown that the scheme is still able to detect leaves and
small branches. It also provides enough outlier filtering to
get a clean free space around the MAV.

To insert disparity data into the spherical map, the disparity
is projected into 3D points, then transformed from the camera
frame into the map frame using the transformation TMC and
finally projected into the spherical coordinate system. The
disparity data provided by the FPGA SGM core are already
rectified and undistorted, why we do not need to take the
lens model into account at this stage.

We can directly map each pixel coordinate x = (u, v) and
its disparity D(x) into the corresponding cartesian 3D point
pC ∈ R3 represented in the camera frame

pC =

xCyC
zC

 =
f · b
D(x)

u
f
v
f

1

 . (1)

Where f is the focal length of the camera and b the length
of the baseline. The transformation TMC to transform the
3D points from the camera frame into the map frame is

TMC = TMW
−1 ·TWS ·TSC. (2)

TSC is the static transformation of the camera frame into the
MAV state frame. From the visual inertial state estimation
framework used for the localization of the MAV, we get the
full pose of the MAV in world frame, which provides us
the transform from the MAV state to world TWS. TMW is

the transformation from the world frame to the current map
frame. By applying TMC to pC we get the 3D coordinates
in the map frame,

pM =

xMyM
zM

 = TMC · pC, (3)

which than can be converted to spherical coordinates:

ρ =
√
x2M + y2M + z2M

θ = atan2 (yM , xM )

φ = arccos

(
zM
ρ

)
.

(4)

2) 3D data lookup: For real time obstacle detection and
collision avoidance, fast data access of map data is essential.
The fastest and simplest access is looking up a distance
measurement by giving a bearing angle. Bearing angles can
be mapped directly to the discrete map storage indexes u
and v by

u =
θ + π

ru
and v =

φ− φ′

rv
, (5)

where ru is the horizontal resolution of the map and rv the
vertical resolution. Using the map indexes, the distance can
directly be read out of the memory

ρ = M(u, v). (6)

For a more sophisticated motion planning system, a point
cloud of close obstacles can be easily extracted by iterating
over a range of bearing angles,

pM =

ρ · sin(φ) · cos(θ)ρ · sin(φ) · sin(θ)
ρ · cos(θ)

 (7)

where ρ is from Eq. 6 with u and v from Eq. 5.
3) Map Moving: To keep the map local, the depth data

in the map have to be transformed to the current position
while moving the MAV. This warping is computationally
expensive and introduces discretization errors due to the
low angular resolution of the map storage. To reduce the
influence of these errors, the map frame is only updated after
a certain minimal translation of the MAV. This introduces
a small parallax effect when inserting new data, due to a
new view point of the camera in respect to the map center
point. Especially when looking at a edge of an obstacle,
regions behind can be occluded from the viewpoint of the
map center, but be visible at the new camera position. When
taking only the closes depth while inserting data into one
map point multiple times, the parallax errors can be handled
in a way such that no safety relevant information is lost. After
the map is moved the void in previously occluded regions
will be filled as soon as new depth data are processed.

When the norm of the MAV’s translational motion exceeds
a certain threshold, the map center is transformed into the
current MAV position using the transform from the map
frame to the current MAV state.

TMS = TWS
−1 ·TWM. (8)



Each data point in the old map is converted to Cartesian
coordinates using Eq. 7 and then transformed to the new
map frame

pnew = TMB ∗ pold (9)

followed by inserting it into the new map using Eq. 4.

D. Obstacle Detection

For a potential simple obstacle avoidance system, we
extract all the points in the map, which are closer than a
certain threshold. This list can be generated very efficiently
by iterating over all the map indexes. In this step, the low
resolution (typically 1000 × 500) of the map is the major
speedup factor compared to working directly on the four
disparity maps. The 2D property of the local map enables fast
iteration over all map points, and therefore over all directions
around the MAV. This is also in contrast to the voxel-grid
Octomap-based 3D representation which requires a large set
of ray casts to properly sample the local environment of the
MAV.

IV. SYSTEM SETUP

This section shows the general system structure of the
MAV and the multi camera setup including an overview of
the involved processing software and hardware for obstacle
detection.

We use eight image sensors, configured as four stereo
heads, to perform disparity estimation in all directions.
All image sensors are connected to a single FPGA. An
intellectual property (IP) block interfaces the image sensors
and maintains pairwise synchronization of the sensors of the
individual stereo heads. A subsequent distortion correction
and rectification block aligns the image streams of a stereo
head to enable epipolar geometry. The IP blocks performing
computer vision tasks are time shared among all stereo heads.
The blocks automatically detect which head is streaming data
and load the corresponding calibration files. Stereo matching
based on an SGM algorithm is performed afterwards. The
corrected images next to disparity maps are sent to the
companion computer via an Ethernet link. Fig. 2 shows
the System-on-Chip (SoC) module with main IP cores and
connections next to the companion computer.

A. Hardware modules

We extended and adapted a visual-inertial sensor as de-
scribed in [20] to support eight cameras. The cameras are
built with MT9V034 image sensors with global shutter from
Aptina. The SoC system is based on a Xilinx Zync-7020
SoC module including an ARM dual-core Cortex A9 next
to a Xilinx Artix FPGA fabric. The FPGA is interfacing
an ADIS 16448 IMU, which is hardware time-synchronized
with the triggered image acquisition.

The companion computer is based on an AscTec Mas-
termind hosting an Intel i7-3612QE quad core CPU with
2.1 GHz and 4 GB of memory.
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Fig. 2: System overview. Eight image sensors forming four stereo heads are
directly connected to the SoC device. Lens distortion correction, rectification
and SGM stereo matching is performed within the FPGA fabric. Processed
image data and disparity maps are sent to the companion computer using
a Gigabit Ethernet link. Spherical mapping is performed on the companion
computer and potential obstacles finally sent out using a low latency serial
link.

B. FPGA IP Cores

The image sensors are connected to independent de-
serializer modules first. External triggering maintains syn-
chronization and readout of the two image sensors of a stereo
head. The subsequent lens distortion correction and recti-
fication core performs real-time address generation based
on provided radial tangential distortion parameters and a
rectification homography. Corrected pixel values are sent
to the disparity estimation core performing real-time SGM
stereo matching as described in [16]. All IP cores are time-
multiplexed among the four stereo heads. Calibration pa-
rameters are automatically loaded depending on which input
stream presents data. The pipeline supports a throughput of
up to 80 stereo fps at a resolution of 752x480 pixel each,
that can be flexibly distributed among the four stereo heads.
Disparity maps are stored next to corrected image data on the
shared DDR3 memory of the SoC device. A Linux system
running on the ARM cores sends out data over Gigabit
Ethernet to the companion computer.

This setup allows us to flexibly select the frequency of
each camera pair at run-time, and which image and dense
data should be transmitted over the Ethernet link.

C. MAV

An AscTec Firefly platform is used as a carrier for the
multi camera system. The Firefly is 605 x 665 x 165 mm in
size and 1 kg in weight. The battery allows flights up to 12
minutes and a payload of up to 600 g. The available onboard
computer AscTec Mastermind weights 325 g and our camera
setup another 235 g, which brings us close to the limits. Fig.
3 shows the Firefly MAV platform with the mounted eight
camera system.

D. Calibration

To perform rectification, undistortion of the stereo images
and reprojection of the resulting disparity map, the intrinsic



Fig. 3: AscTec Firefly platform with mounted eight camera setup. The four
stereo camera heads are targeted towards different directions to cover the
surroundings of the MAV.

Device Operation Time (us) Cumulative
Latency (us)

CMOS Sensor Image Capture 3000 us 3000 us

FPGA Undistort./Rectification 1200 us 4200 us
SGM Stereo 300 us 4500 us

Core i7 3612

Data transmission 14’000 us 18’500 us
Speckles Filtering 7’200 us 25’700 us
Obstacle Mapping 1’200 us 26’900 us
Map Moving* 29’600 us 26’900 us

TABLE I: Table of timings of individual parts of the algorithm and overall
latency. The timings start at the beginning of image exposure and end after
determination of close obstacles. The run times on the CPU core are subject
to variation, the maximum times are mentioned. *Map Moving is done in
a separate thread and does not cause any extra latency.

and extrinsic calibration parameters of the individual stereo
camera pairs are required to be known. Additionally, to
build a locally consistent map as well as to perform state
estimation, the extrinsic parameters of the stereo pairs rel-
ative to each other and relative to the IMU are required.
All calibration parameters are estimated using the Kalibr
framework [21].

V. RESULTS

In this section, we first show a detailed latency analysis
of the algorithms implemented in the test system. We then
present detection results in a dynamic scene with persons
passing by. Finally, we give field trial results of a test flight
in a cluttered outdoor forest scene.

A. Latency Analysis

The timing of the individual steps of the algorithm are
shown in Table I. The timings start at image exposure and
end when the obstacle is being sent to a potential collision
avoidance system. A detailed latency analysis of the FPGA
IP cores is given in [16]. The transfer of the disparity maps
and raw images to the companion computer using an Ethernet
link results in the largest portion of the overall latency.

B. Dynamic Scene

We placed the MAV in an outdoor open space while
persons walked by. A 3D point cloud of the spherical map
with data inserted from all four disparity maps is shown in
Fig. 1. The spherical map representation reduces the total

amount of data and allows for real-time obstacle detection.
Fig. 4 shows the disparity map of the left and the front
camera head next to a top down view of the spherical map
with labeled obstacles. For this experiment, we recorded
dense data in all four directions with 7 Hz each. To avoid
collisions in FPGA resources and congestion in the data
transmission, we evenly distributed the four dense triggers
over one phase. This results in a round robin map update
schedule, which minimizes delays caused by processing time
needed of the map update step.

C. Field Trial

We verified the system in outdoor flight tests. The MAV
successfully detected potential obstacles in a forest environ-
ment while updating the spherical map. The sensor rate is
set to 21 Hz for the two frontal raw image streams for state
estimation and all four disparity map streams to 7 Hz.

In Fig. 5a, the rectified left camera view of the front stereo
head is presented next to the corresponding disparity map in
Fig. 5b. The 3D spherical map with the MAV coordinate
system is presented in Fig. 5g. The environment is color-
coded according to the distance of the objects towards the
MAV (red: close, blue: distant). While the MAV moves
forward, obstacles are getting closer and pass by on the side
and enter the visible area of the sideways looking stereo
heads. The tree trunk visible in Fig. 5b shows up in Fig. 5h
at the side of the MAV and disappears in this viewpoint in
Fig. 5i. This paper is accompanied by a video showing the
flight tests and real-time spherical map building.

VI. CONCLUSION

In this work, we presented a low-latency FPGA-based
omnidirectional obstacle detection sensor system. By inte-
grating this sensor setup on a MAV platform, we demonstrate
successful obstacle detection with very little latency. Our
mapping algorithm outperforms existing dense omnidirec-
tional sensing solutions in terms of latency due to the stream-
based FPGA data processing pipeline. Low-latency obstacle
detection around the MAV allows for usage in collision
avoidance in highly cluttered dynamic environments.
Due to the FPGA, a multi camera setup is feasible without
heavily upgrading the overall computational power. The
perception system including FPGA, image sensors and stereo
mounts is 235 g in weight, thus rendering it a highly
interesting sensor solution for mobile robotic systems.
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