
Real-Time Direct Dense Matching on Fisheye Images
Using Plane-Sweeping Stereo

Christian Häne∗, Lionel Heng, Gim Hee Lee†, Alexey Sizov, Marc Pollefeys

Department of Computer Science, ETH Zürich, Switzerland

Abstract

In this paper, we propose an adaptation of camera pro-
jection models for fisheye cameras into the plane-sweeping
stereo matching algorithm. This adaptation allows us to do
plane-sweeping stereo directly on fisheye images. Our ap-
proach also works for other non-pinhole cameras such as
omnidirectional and catadioptric cameras when using the
unified projection model. Despite the simplicity of our pro-
posed approach, we are able to obtain full, good quality
and high resolution depth maps from the fisheye images. To
verify our approach, we show experimental results based on
depth maps generated by our approach, and dense models
produced from these depth maps.

1. Introduction
A camera is a low-cost and information-rich sensor that

is suitable for many robotics applications such as obstacle

detection and motion estimation. In these applications, a

fisheye camera prevails over the conventional camera be-

cause it has a wider field-of-view that offers more coverage

of the environment. Examples of successful use of fisheye

cameras for robotics applications are Zingg et. al [25] and

Lee et. al [14, 15], where fisheye cameras are used to per-

form optical flow for obstacle detection on a Micro-Aerial

Vehicle (MAV) and motion estimation on a self-driving car.

In these works, additional coverage provided by the fisheye

cameras proved to be critical for the MAVs to gain max-

imum information of its surrounding for safe navigation,

and increases the number of feature correspondences which

improves motion estimation for the car. The use of fish-

eye cameras is not only limited to robotics applications. In

recent years, we have seen an increasing number of mass-

market cars such as the Nissan Qashqai and Honda Odyssey

that are equipped with multiple fisheye cameras to provide

drivers with a surround view for parking assistance. An-

other recent application of fisheye cameras is on hand-held

∗chaene@inf.ethz.ch
†Now at Mitsubishi Electric Research Laboratories

mobile devices1.

As compared to robotics and driving assistance applica-

tions, the use of fisheye cameras is limited in dense map-

ping applications probably due to the difficulty in handling

the large distortion inherent in fisheye images for dense

matching. Existing works in dense mapping such as the

Urbanscape project [17] use multiple pinhole cameras to

maximize coverage. The advantages of fisheye cameras for

robotics applications, the convenience from the availability

of these cameras on mass-market cars and the limited usage

of fisheye cameras for dense mapping due to the large dis-

tortions motivate us to work on a simple yet effective model

to produce depth maps from direct dense matching on fish-

eye images. We show that depth maps can be directly ob-

tained from the fisheye camera by a simple adaptation of

suitable fisheye camera models into the widely used plane-

sweeping algorithm [4, 6]. The only requirement we need

for the fisheye model is that both projection and unprojec-

tion can be done efficiently. In this work we use two differ-

ent camera models, the unified projection model [8, 2, 16]

and the field-of-view (FOV) model [5].

We choose to do plane-sweeping for dense matching be-

cause, in comparison to the rectification approach [18], the

plane-sweeping approach can be done on more than two im-

ages. In addition, the plane-sweeping approach is particu-

larly well-suited to Graphics Processing Unit (GPU) imple-

mentations for achieving real-time performance. We show

experimentally that the alternative approach that first con-

verts the fisheye images into pinhole images followed by

plane-sweeping leads to a significant reduction in the cov-

erage area. Our approach is only slightly slower than the

standard plane sweep method, which uses planar homogra-

phies on the pinhole model, and thus still runs in real-time

on a desktop computer. For mobile devices, high perfor-

mance mobile GPUs have been released recently, for exam-

ple the NVIDIA Tegra K1. Using devices equipped with

such GPUs, there is a potential to reach interactive frame

rates on mobile devices. Most importantly, we show that

despite the simplicity of our proposed approach, we are able

1www.google.com/atap/projecttango

2014 Second International Conference on 3D Vision

978-1-4799-7000-1/14 $31.00 © 2014 IEEE

DOI 10.1109/3DV.2014.77

57

to obtain full, good quality and high resolution depth maps

from the fisheye images in arbitrary camera configurations

without the need of prior rectification. It should be noted

that the unified projection model [8, 2, 16], which we use

for our approach also works for other non-pinhole cameras

such as omnidirectional and catadioptric cameras.

In contrast to the existing works mentioned earlier in

MAV navigation, motion estimation and sparse mapping for

self-driving cars, which leveraged only sparse features from

the fisheye images, our depth maps computed directly from

the fisheye images provide more comprehensive informa-

tion about the surrounding while retaining the advantages

of fisheye cameras. We further demonstrate the potential

of our approach by using the depth maps computed directly

from the fisheye images to build dense maps of the envi-

ronment. In comparison to the dense model built from the

depth maps computed by the plane-sweeping algorithm on

pinhole images [6] in the Urbanscape project [17], the dense

model built from the depth maps which are computed di-

rectly from the fisheye images in our approach are shown

to cover a larger part of the scene with fewer images and

similar runtime performance.

1.1. Related Work

Rectified two-view and multi-view stereo matching are

well established algorithms in computer vision. The main

difference between these two methods is that the former

works on only two rectified images which simplifies im-

age matching along the aligned epiploar lines on the recti-

fied images, while the latter works for any number of im-

ages. More details of the rectified two-view stereo can be

found in [18]. In cases with more than two images, im-

age matching along aligned epipolar lines is possible only

in some special camera configurations. In addition, rectifi-

cation fails when the epipoles fall within or too close to the

borders of the images and this problem is exacerbated when

wide field-of-view images are used as it is more probable

that the motion direction lies inside the image boundaries.

To overcome these problems, the plane-sweeping algorithm

was introduced in [4]. This approach allows direct match-

ing on multiple images without the need for rectification.

Gallup et. al [6] showed that the quality of the depth maps

is improved by aligning the sweeping plane with the pre-

dominant orientations of the scene. In addition to the ease

of matching images taken from arbitrary configurations, the

plane-sweeping algorithm has the advantage of real-time

performance which can be achieved by utilizing the textur-

ing capabilities of GPUs [22, 6]. With such high perfor-

mance stereo matching algorithms, dense reconstruction of

whole cities becomes feasible [17].

While most of the works on stereo matching made use

of pinhole images, limited works are shown on non-pinhole

images such as omnidirectional, catadioptric or fisheye

cameras. In [12, 24], Ishiguro et. al and Zhu et. al showed

the first approaches on omnidirectional stereo vision that

created a horizontal 360◦ panorama stereo pair by rotating

a camera around a center point. In a later work [9], multiple

catadioptric cameras were used to produce similar horizon-

tal omnidirectional stereo pairs. These approaches, how-

ever, share the limitation that the field-of-view is large in

only one direction. Catadioptric and fisheye cameras are

able to capture images with an opening angle of 180◦ and

beyond. One straightforward way to match the whole field-

of-view of omnidirectional images would be to extract a set

of pinhole images that cover the whole field of view. How-

ever, this leads to a significant increase in running time as

many more images have to be matched. For specific tasks

such as obstacle detection in automotive applications, [7]

proposed to extract multiple pinhole images out of a sin-

gle omnidirectional image for dense stereo matching only

in important directions for obstacle detection. In [1], Abra-

ham et. al proposed an approach that rectifies fisheye im-

ages and preserves most of the field-of-view. However, such

approaches do not generalize to arbitrary camera configura-

tions.

2. Stereo Matching on Fisheye Images
In this section, we first introduce the generic notation for

the camera projections that are suitable for our method. The

details for the specific models can be found in [8, 2, 16] for

the unified projection model and in [5] for the FOV model.

Next, we describe in detail how the fisheye projection model

is adapted into the plane-sweeping stereo matching algo-

rithm.

2.1. Camera Projection Model

The camera projection model describes how a point is

mapped to the image plane and its inverse function com-

putes the corresponding ray in 3D space for a given image

pixel. For our application, it is important that both of the

functions can be evaluated efficiently.

Given a 3D point X = [Xx, Xy, Xz]
T

in the camera

frame FC , the function xu = �(ξ,X) maps the 3D point

X to an undistorted image point x on the normalized image

plane. ξ is a single scalar parameter that models the fish-

eye lens. Imperfections of the camera lens cause additional

radial and tangential distortions to the image. This trans-

forms the normalized undistorted image coordinate x to the

normalized distorted image coordinate x′ according to the

plumb blob model [3], which we denote as x′ = D(x). Ap-

plying the camera projection matrix K on x′, we get the

image coordinate (x̃′, ỹ′) that we observed from an image

captured with the fisheye camera. The intrinsic parameters

φ = [ξ, k1, k2, k3, k4, k5, fx, fy, Cx, Cy] are ob-

tained from the camera calibration. [k1, k2, k3, k4, k5]
and [fx, fy, Cx, Cy] are from the distortion model and

58

camera projection matrix respectively. We denote the un-

projection, which maps a point x on the undistorted image

plane to a ray by X = �
−1(ξ,x).

The details of the individual camera models can be found

in [16] and [5] for the unified projection model and the FOV

model, respectively. For our work the important nature of

these two camera models is that both the projection � and

unprojection �
−1 can be stated in closed form and hence be

computed efficiently on the GPU. This is important as on

the GPU a look up table is slower than the direct computa-

tion.

2.2. Plane-Sweeping for Fisheye Images

Plane-sweeping stereo matching [4] allows for dense

stereo matching between multiple images without prior

stereo rectification. Existing implementations such as [6]

work for cameras that follow the standard pinhole model.

We propose to extend the plane-sweeping stereo matching

for fisheye cameras by incorporating the fisheye projection

model directly into the plane-sweeping stereo matching al-

gorithm. We closely follow [6] in the description of our

algorithm.

The inputs to our plane-sweeping algorithm for fish-

eye cameras are a set of fisheye images, I ′ =
{I ′1, · · · , I ′n, · · · , I ′N}, and the camera parameters, P =
{P1, · · · , Pn, · · · , PN} associated with the respective im-

ages. Each camera parameter Pn = {φn,Rn,Cn} is made

up of the camera intrinsics φn and pose [Rn,Cn]. To keep

our plane-sweeping algorithm for fisheye cameras simple

and avoid a costly look up table on the GPU, we do a

pre-processing step to remove the tangential and radial dis-

tortions from the fisheye images. Each pixel [x̃, ỹ, 1]T on

the set of undistorted images I = {I1, · · · , In, · · · , IN} is

mapped onto I ′ by

[x̃′, ỹ′, 1]T = KD
(
K−1[x̃, ỹ, 1]T

)
(1)

This allows us to efficiently do a look-up for the correspond-

ing pixel [x̃′, ỹ′, 1]T in the fisheye image for each pixel

[x̃, ỹ, 1]T in the undistorted image I.

Let us choose Iref ∈ I as a reference view for the com-

putation of a depth map. Additionally, we define a set

of plane hypotheses Π = {Π1, · · · ,Πm, · · · ,ΠM}. The

main idea of the plane-sweeping algorithm is to use these

planes Π as the hypothetical local reconstructions of the

scene, where we choose the best plane for each pixel by

evaluating an image dissimilarity measure. Each plane hy-

pothesis is defined as Πm = [nT
m, dm], where nm is the unit

length normal vector of the plane pointing towards the cam-

era center and dm the distance of the plane to the camera

center. To evaluate a plane hypothesis Πm, the pixels of the

image In are mapped onto the reference view by projecting

the image In onto plane Πm followed by rendering it onto

the reference view Pref , we call this Irefn,m. In projective

geometry, such a planar mapping is described by a homog-

raphy. Using the fisheye projection model described in the

previous section, the mapping that directly uses the pixels

[x̃n, ỹn, 1]
T from the undistorted fisheye image is given by

Href
n,m = RT

nRref +
1

dm
(RT

nCn −RT
nCref)n

T
m

[x̃n, ỹn, 1]
T = Kn�(H

ref
n,m�

−1(K−1
ref [x̃ref , ỹref , 1]

T)) (2)

We now warp image In to an image Irefn,m with Equa-

tion 2, which we compare against the reference image Iref .
In particular, the image dissimilarity is evaluated between

all the warped Irefn,m and reference Iref image, ∀n �= ref and

for all planes Π = {Π1, · · · ,Πm, · · · ,ΠM}. In our ex-

periments, we use the negative zero mean normalized cross

correlation (ZNCC) over a correlation window W for the

evaluation of image dissimilarity (see Equation 3).

Evaluating the ZNCC matching scores can be done in

constant time independent of the window size by using in-

tegral images [21]. As memory access on GPUs is often

slower than computing the required values, Stam [19] pro-

poses the use of a box filter which maintains a running sum

in the vertical direction and sums up the horizontal direction

by summing up the values in shared memory. We utilize a

sequence of five times box filtering to compute the ZNCC

scores according to [21] leading to a running time that in-

creases linearly with the matching window width.

2.3. Cost Aggregation

We use the aggregated cost Dref
m (x̃, ỹ) in cases where

more than one image gets matched to the reference image.

There are different options to compute the aggregated cost,

with the choice of taking occlusions into account [13]. For

this work we used two of them:

1. All matching costs are averaged. For example, with

2k images, k images before and k after the reference

image,

Dref
m (x̃, ỹ) =

1

2k

n=ref+k∑
n=ref−k

Dref
n,m(x̃, ỹ), n �= ref (4)

2. Average cost from best half of the sequence. This as-

sumes that the images are taken in a sequence with a

predominant motion direction. First, we take the aver-

age cost over the half sequences on both sides of the

reference view. Next, the final matching cost is the

minimum of the two averages.

Dref
m (x̃, ỹ) =

1

k
min

{ n=ref−1∑
n=ref−k

Dref
n,m(x̃, ỹ),

n=ref+k∑
n=ref+1

Dref
n,m(x̃, ỹ)

}
(5)

59

Dref
n,m(x̃, ỹ) =

−
∑

(i,j)∈W
{Iref(x̃+ i, ỹ + j)− Iref(x̃, ỹ)}{Irefn,m(x̃+ i, ỹ + j)− I

ref

n,m(x̃, ỹ)}
√ ∑

(i,j)∈W
{Iref(x̃+ i, ỹ + j)− Iref(x̃, ỹ)}2

∑
(i,j)∈W

{Irefn,m(x̃+ i, ỹ + j)− I
ref

n,m(x̃, ỹ)}2
(3)

I(x̃, ỹ) =
1

|W|
∑

(i,j)∈W
I(x̃+ i, ỹ + j)

This option handles occlusion with the assumption that

each half of the sequence sees a different view of the

occlusion.

2.4. Depth Extraction and Sub-Pixel Interpolation

We adopt the winner-takes-all strategy to decide the final

depth value for fast processing. In particular, the plane Πm

with the lowest aggregated matching cost for each pixel in

the reference view is chosen.

m̂(x̃, ỹ) = argmin
m

Dref
m (x̃, ỹ) (6)

Finally, the final depth Z is computed as

Zm(x̃, ỹ) = −dm
(
nT
m�

−1
(
K−1

ref [x̃, ỹ, 1]
T
))−1

(7)

with the fisheye model taken into account.

Depths are extracted at discrete plane positions using

Equation 7 and this leads to non-smooth surfaces. We cir-

cumvent this problem with sub-pixel interpolation [20]. The

idea is to look at the matching scores of the neighboring

planes, fit an interpolation function through the matching

scores and extract the depth at the extremal point of the in-

terpolated matching cost. We fit a parabola using the scores

of the two neighboring planes in our implementation.

3. Experimental Evaluation
3.1. Camera Setups

We use three different camera setups to experimentally

validate the dense matching on fisheye images. The first

camera setup consists of four CCD cameras with fisheye

lenses that each capture a 185◦ field-of-view. These cam-

eras provide 1280×800 images at 12.5 Hz, and are inte-

grated into a Volkswagen Golf car in such a way that the

camera setup provides a surround view with a minimal over-

lapping field of view between any two cameras. Similarly,

the second camera setup comprises four CMOS cameras

with 185◦ fisheye lenses. These cameras provide 754×480

images at 15 Hz, and are installed on an AscTec Firefly

hexacopter. The first and second cameras are arranged in

a forward-looking stereo configuration while the third and

fourth cameras are arranged in a rear-looking stereo config-

uration. The third camera setup consists of a single fisheye

lens which is installed on a mobile hand-held platform. For

all camera setups, the cameras are hardware-synchronized.

Where necessary, we use SLAM-based calibration to obtain

both the camera intrinsics and extrinsics [11, 10].

The camera poses that are given to our plane-sweeping

algorithm are computed using visual odometry combined

with wheel odometry and inertial meaturements where

available.

3.2. Run-Time Performance

In this section, we evaluate the performance of the fish-

eye plane sweep. We implemented both the standard pin-

hole plane sweep and our proposed fisheye extension us-

ing Nvidia CUDA. Our test platform is equipped with a

GeForce GTX 680 GPU with 4GB of memory.

For all the experiments, we precomputed the poses and

stored them to disk as a preprocessing step. In the actual ex-

periment, we load the poses and the images from disk. As

for many applications, the images do not need to be loaded

from disk because they are directly captured by a camera.

Hence, we do not include in our measurements the time

spent on loading the images from disk. The reported times

include the time to upload the images to the GPU, undistort

them or extract pinhole images respectively, run the plane

sweep, and download the depth map. As our images are

taken in sequence, we only upload each image to the GPU

once, and use the same image to compute multiple depth

maps.

In the first experiment, we use images taken in a se-

quence from a moving car. The native resolution of the

images is 1280× 800. In the process of undistortion or pin-

hole image extraction, we downsample them by half such

that we obtain an image resolution of 640× 400. We match

two consecutive images using 64 planes, ZNCC matching

scores, no occlusion handling, and subpixel interpolation.

Some example depth maps and the running times are shown

in Fig. 1. For a 9 × 9 ZNCC matching window, the fish-

eye and pinhole versions generate depth maps at 59.8 Hz

and 65.1 Hz respectively. The fisheye version has a 8.96%

longer running time but we obtain depth maps that cover the

entire field of view of the camera.

In the next experiment, we measure the performance

using half-sequence occlusion handling. Again, we use

60

�

��

��

��

��

��

��

	�

�

��� ��� 	�	 ��� ����� ����� �����

�
�

��
��

��
��

��
��

�
��

���
��

�

���������������������������� �

!���� �
"����#�

�

��

��

��

��

��

��

	�

�

��� ��� 	�	 ��� ����� ����� �����
�

�
��

��
��

��
��

��
�

��
���

��
�

���������������������������� �

!���� �
"����#�

Figure 1. First row (from left to right): An input image, example

pinhole and fisheye depth maps with 9×9 ZNCC for the two-view

and three-view case. Second row (from left to right): Running

times for the two-view and three-view cases averaged over 1667

and 1666 depth maps respectively.

the half-resolution images with 64 planes, ZNCC matching

scores, and subpixel interpolation. We match three images,

choose the middle image as the reference image, and do

half-sequence occlusion handling. The results can be seen

in Fig. 1. For a 9 × 9 window, the fisheye and pinhole

versions generate depth maps at 32.0 Hz and 34.6 Hz re-

spectively. The fisheye version has a 8.15% longer running

time.

We also use images from a MAV. The native resolution

of the images is 754× 480. We undistort the images or ex-

tract pinhole images with the same resolution. Each pair of

cameras is set up in a stereo configuration. For each stereo

camera, we use two images captured at the same time and

match them. We use 96 planes, ZNCC matching scores, no

occlusion handling, and subpixel interpolation. An example

image and depth maps can be seen in Fig. 2. We notice that

some noise in the depth map occurs due to some parts of the

MAV being visible in the images. With a 9× 9 ZNCC win-

dow, depth maps are generated at 37.8 Hz and 34.4 Hz for

the pinhole and fisheye versions respectively. In this case,

the running time for the fisheye version is longer by 9.8%.

In the last experiment, we use two stereo image pairs

captured consecutively. Again, we use the full 754 × 480
resolution with 96 planes. We use ZNCC matching scores,

no occlusion handling, and subpixel interpolation. Example

depth maps and a plot of time measurements can be found

in Fig 2. The performance for a 9 × 9 ZNCC window is

16.3 Hz for the pinhole version and 14.8 Hz for the fisheye

version. Here, the running time for the fisheye version is

longer by 9.9%.

All our measurements show that the increase in running

time from using our proposed plane sweep with the unified

projection model on fish eye images is below 10%. How-

ever, from running one plane sweep, we obtain a depth map

that covers the entire field of view of the fisheye camera,

and this advantage far outweighs the performance penalty.

�

��

��

��

��

��

��

	�

�

��� ��� 	�	 ��� ����� ����� �����

�
�

��
��

��
��

��
��

�
��

���
��

�

���������������������������� �

!���� �
"����#�

�

��

��

��

��

��

��

	�

�

��� ��� 	�	 ��� ����� ����� �����

�
�

��
��

��
��

��
��

�
��

���
��

�

���������������������������� �

!���� �
"����#�

Figure 2. First row (from left to right): An input image, example

pinhole and fisheye depth maps with 9x9 ZNCC for the two-view

and four-view case. Second row (from left to right) Running times

for the two-view and four-view cases averaged over 569 depth

maps.

3.3. Coverage

Figure 3. Coverage comparison of locally fused and filtered pin-

hole depth maps and fisheye depth maps. The first and second

rows correspond to the pinhole and fisheye images respectively.

The three columns show example input images, depth maps, and

coverage images. In each coverage image, a blue pixel indicates

the presence of a depth value for both depth maps, a red pixel in-

dicates that a depth value is only present in the pinhole depth map,

and a green pixel indicates that a depth value is only present in the

fisheye depth map. The non-black area indicates the field of view

of the camera. For the fisheye images, a mask was applied to mask

out parts of the car visible in the images.

In order to quantitatively determine the increase in cover-

age obtained from fisheye images, that is, the additional in-

formation we gain with a bigger field of view, we conduct an

experiment using images from the four cameras mounted on

the car. In the first step, we run three-view stereo matching

using half-sequence occlusion handling on full-resolution

1280 × 800 images, 128 planes, 11 × 11 ZNCC matching

costs, and subpixel interpolation. We cannot directly com-

pare the resulting depth maps because they contain a sig-

nificant number of outliers. Therefore, we compute locally

fused depth maps by using 11 raw depth maps and warping

them into the middle view. To extract a high-quality depth

map, we only accept depths in which at least 3 out of the 11

raw depth values per pixel agree. For each of the pinhole

61

Avg coverage

(pinhole)

Avg coverage

(fisheye)
Pinhole area (front) 36.15% 45.38%

Pinhole area (left) 65.24% 73.07%

Pinhole area (rear) 32.21% 45.38%

Pinhole area (right) 73.22% 80.80 %

Fisheye area (front) 25.91% 37.48%

Fisheye area (left) 49.56% 61.56%

Fisheye area (rear) 24.17% 39.55%

Fisheye area (right) 54.38% 67.79%

Table 1. Average coverage of the depth maps over 200 frames.

and fisheye depth maps, we compute how many pixels have

a depth estimate. To make the comparison consistent, we

compare both depth maps in two ways; we look at both the

portion of the depth maps visible in a pinhole image, and

the portion of the depth maps visible in the fisheye image.

Example depth maps are shown in Fig. 3, and the average

coverage is given in Table 1. Here, we define the coverage

to be the number of pixels associated with a depth value

divided by the total number of pixels in the portion of the

depth map to be compared (pinhole or fisheye area).

In a second experiment, we compute a dense point cloud

reconstructed from 31 depth maps for both the fisheye and

pinhole models. The resolution is 640×480 and each depth

map is computed by locally fusing five depth maps and

keeping the points that are consistent in at least three depth

maps. Example input images and top-view renderings can

be seen in Fig. 4. With the fisheye model, the ground is

more complete, and the point cloud includes overhanging

parts of buildings which are not visible in the point cloud

corresponding to the pinhole model. Note that the camera

is pointing roughly 45◦ towards the ground which makes re-

constructing the elevated structures difficult. Close-up ren-

derings of the point clouds are depicted in Fig. 5. We ob-

serve that when compared to the pinhole model, the truck

on the left and the building facade on the right look more

complete with the fisheye model.

3.4. Dense Modelling

One important use case of depth maps is to build dense

3D models. In this section, we compare the dense models

we obtain from both pinhole depth maps and fisheye depth

maps. To fuse the depth maps, we use in both cases the

volumetric TV-Flux fusion of [23].

We use images from the MAV, and compute 20 depth

maps using two consecutive stereo image pairs. From each

fisheye image, we extract two different pinhole images; the

first image has a horizontal field of view of 65◦ which corre-

sponds to the field of view of standard pinhole cameras, and

the second image has a wide field of view of 114.8◦. The

depth maps are computed with a resolution of 754 × 480
pixels using 96 planes, 9 × 9 ZNCC matching scores, no

Figure 7. Results from the mobile device.

occlusion handling, and subpixel interpolation. The result-

ing dense 3D models are visualized in Fig. 6. All the dense

models are computed with the same settings. We observe

that the 65◦ pinhole images are not able to see the ground

or the ceiling, and thus, the reconstruction covers a small

volume. Using the wide-angle 114.8◦ pinhole images, the

reconstruction becomes more complete. The reconstruction

is most complete with the fisheye images as we directly do

dense matching on the fisheye images using our proposed

matching algorithm.

3.5. Mobile Devices

Another application of our algorithm is on hand-held

mobile devices. We use the Google Tango phone2. This

device contains a depth sensor. This sensor has a standard

pinhole camera field-of-view and works indoors only. Our

algorithm makes use of the fisheye camera from the device.

It is able to compute depth information with a large field-

of-view based on the motion of the device and the fisheye

images. The camera poses are directly computed on the de-

vice in real-time. Our depth map computation is run offline

on a desktop computer as a post processing step.

The settings of the plane sweep where as follows. We

match three images where the last one is used as reference

view. Occlusion handling is turned off and the image dis-

similarity measure is an 11x11 ZNCC score. Some example

depth maps are shown in figure 7.

2www.google.com/atap/projecttango

62

Figure 4. Top: An example pinhole image is shown on the left, and a top-view rendering of the generated point cloud corresponding to the

pinhole model is shown on the right. Bottom: An example fisheye image is shown on the left, and a top-view rendering of the generated

point cloud corresponding to the fisheye model is shown on the right.

Figure 5. Close-up renderings of the generated point clouds. The left and right images correspond to the pinhole and fisheye models

respectively.

4. Conclusions and Future Work

We have shown that our plane-sweeping stereo directly

applied to fisheye images is capable of producing high-

quality depth maps that cover the entire field-of-view of

the fisheye camera. We make a simple adaptation to the

widely-used plane-sweeping stereo algorithm for pinhole

images by including the fisheye model such that our plane-

sweeping stereo algorithm directly works with fisheye im-

ages without losing coverage. Our plane-sweeping stereo

algorithm is well-suited for GPU implementations. Fur-

thermore, our GPU implementation realizes real-time ap-

plications based on fisheye depth maps. In future work, we

will implement our plane-sweeping stereo in a car equipped

with a surround-view camera system, and generate a tex-

tured dense 3D model in real-time via volumetric fusion.

In contrast to top-view composite 2D images that surround-

view camera systems typically produce, a textured dense 3D

model significantly improves the driver’s situational aware-

ness. Similarly, we will apply our plane- sweeping stereo

to a robot platform equipped with a surround-view camera

system such that the robot has an instantaneous 360◦ view

of obstacles in the vicinity. Another future work is to imple-

ment the algorithm on a mobile GPU such as the NVIDIA

Tegra K1.

Acknowledgements: We thank Torsten Sattler for pro-

viding the data sets from the mobile device. Furthermore

we acknowledge the support of the V-Charge grant #269916

under the EC’s FP7/2007-2013 and Google’s Project Tango.

Lionel Heng is funded by the DSO National Laboratories

Postgraduate Scholarship.

References
[1] S. Abraham and W. Förstner. Fish-eye-stereo calibration and

epipolar rectification. Journal of photogrammetry and re-
mote sensing (ISPRS), 2005. 2

[2] J. P. Barreto and H. Araujo. Issues on the geometry of central

catadioptric image formation. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2001. 1, 2

[3] D. C. Brown. Close-range camera calibration. Photogram-
metric Engineering, 1971. 2

[4] R. T. Collins. A space-sweep approach to true multi-image

matching. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition
(CVPR), 1996. 1, 2, 3

[5] F. Devernay and O. Faugeras. Straight lines have to be

straight. Machine vision and applications, 2001. 1, 2, 3

[6] D. Gallup, J.-M. Frahm, P. Mordohai, Q. Yang, and M. Polle-

feys. Real-time plane-sweeping stereo with multiple sweep-

ing directions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2007. 1,

2, 3

63

Figure 6. The first, second, and third columns correspond to the 65◦ pinhole model, 114.8◦ pinhole model, and the fisheye model respec-

tively. The first row shows the input images, the second row shows example depth maps, and the third row shows the resulting dense 3D

models.

[7] S. Gehrig. Large-field-of-view stereo for automotive appli-

cations. In Proceedings of the 6th Workshop on Omnidirec-
tional Vision (OMNIVIS), 2005. 2

[8] C. Geyer and K. Daniilidis. A unifying theory for cen-

tral panoramic systems and practical implications. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), 2000. 1, 2

[9] J. Gluckman, S. K. Nayar, and K. J. Thoresz. Real-time om-

nidirectional and panoramic stereo. In Proceedings of the
Image Understanding Workshop, 1998. 2

[10] L. Heng, P. Furgale, and M. Pollefeys. Leveraging image-

based localization for infrastructure-based calibration of a

multi-camera rig. Journal of Field Robotics (JFR), 2014.

4

[11] L. Heng, G. H. Lee, and M. Pollefeys. Self-calibration and

visual slam with a multi-camera system on a micro aerial

vehicle. In Proceedings of Robotics: Science and Systems
(RSS), 2014. 4

[12] H. Ishiguro, M. Yamamoto, and S. Tsuji. Omni-directional

stereo. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 1992. 2

[13] S. B. Kang, R. Szeliski, and J. Chai. Handling occlusions in

dense multi-view stereo. In Proceedings of the IEEE Com-
puter Society Conference on Computer Vision and Pattern
Recognition (CVPR), 2001. 3

[14] G. H. Lee, F. Fraundorfer, and M. Pollefeys. Motion esti-

mation for a self-driving car with a generalized camera. In

IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2013. 1

[15] G. H. Lee, F. Fraundorfer, and M. Pollefeys. Structureless

pose-graph loop-closure with a multi-camera system on a

self-driving car. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2013. 1

[16] C. Mei and P. Rives. Single view point omnidirectional

camera calibration from planar grids. In Proceedings of the
IEEE International Conference on Robotics and Automation
(ICRA), 2007. 1, 2, 3

[17] M. Pollefeys, D. Nistér, J.-M. Frahm, A. Akbarzadeh,

P. Mordohai, B. Clipp, C. Engels, D. Gallup, S.-J. Kim,

P. Merrell, C. Salami, S. Sinha, B. Talton, L. Wang, Q. Yang,

H. Stewénius, R. Yang, G. Welch, and H. Towles. Detailed

real-time urban 3d reconstruction from video. International
Journal of Computer Vision (IJCV), 2008. 1, 2

[18] D. Scharstein and R. Szeliski. A taxonomy and evaluation of

dense two-frame stereo correspondence algorithms. Interna-
tional journal of computer vision (IJCV), 2002. 1, 2

[19] J. Stam. Stereo imaging with cuda. Technical report,

NVIDIA Corporation, 2008. 3

[20] Q. Tian and M. N. Huhns. Algorithms for subpixel regis-

tration. Computer Vision, Graphics and Image Processing,

1986. 4

[21] D. Tsai and C. Lin. Fast normalized cross correlation for

defect detection. Pattern Recognition Letters, 2003. 3

[22] R. Yang and M. Pollefeys. Multi-resolution real-time stereo

on commodity graphics hardware. In Proceedings of the
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR), 2003. 2

[23] C. Zach. Fast and high quality fusion of depth maps. In Pro-
ceedings of the International Symposium on 3D Data Pro-
cessing, Visualization and Transmission (3DPVT), 2008. 6

[24] Z. Zhu. Omnidirectional stereo vision. In Proceedings of the
Workshop on Omnidirectinal Vision (OMNIVIS), 2001. 2

[25] S. Zingg, D. Scaramuzza, S. Weiss, and R. Siegwart. Mav

navigation through indoor corridors using optical flow. In

IEEE International Conference on Robotics and Automation
(ICRA), 2010. 1

64

