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Abstract— Mapping the environment is crucial to enable path
planning and obstacle avoidance for self-driving vehicles and
other robots. In this paper, we concentrate on ground-based
vehicles and present an approach which extracts static obstacles
from depth maps computed out of multiple consecutive images.
In contrast to existing approaches, our system does not require
accurate visual inertial odometry estimation but solely relies on
the readily available wheel odometry. To handle the resulting
higher pose uncertainty, our system fuses obstacle detections
over time and between cameras to estimate the free and
occupied space around the vehicle. Using monocular fisheye
cameras, we are able to cover a wider field of view and detect
obstacles closer to the car, which are often not within the
standard field of view of a classical binocular stereo camera
setup. Our quantitative analysis shows that our system is
accurate enough for navigation purposes of self-driving cars
and runs in real-time.

I. INTRODUCTION

Reliably and accurately detecting obstacles is one of the
core problems that need to be solved to enable autonomous
navigation for robots and vehicles. For many use cases such
as micro aerial vehicles (MAVs) or self-driving cars, obstacle
detection approaches need to run in (near) real-time so that
evasive actions can be performed. At the same time, solutions
to the obstacle detection problem are often restricted by the
type of vehicle and the available resources. For example, a
MAV has restricted computational capabilities and can carry
only a certain payload while car manufacturers are interested
in using sensors already built into series vehicles in order to
keep self-driving cars affordable.

There essentially exist two approaches for obstacle de-
tection. Active methods use sensors such as laser scanners,
time-of-flight, structured light or ultrasound to search for
obstacles. In contrast, passive methods try to detect obstacles
based on passive measurements of the scene, e.g., in camera
images. They have the advantage that they work over a
wide range of weather and lighting conditions, offer a high
resolution, and that cameras are cheap. At the same time, a
wide field of view can be covered using for example fisheye
cameras. In this paper, we therefore present an obstacle
detection system for static objects based on camera images.
We use stereo vision techniques [1], [2], [3] to obtain a
3D model of the scene. Our main motivation is to enable
self-driving cars to detect static objects such as parked cars
and signposts, determine the amount of free space around
them, and measure the distance between obstacles, e.g., to
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determine the size of an empty parking spot. We therefore
detect obstacles as objects obtruding from the ground [4].
Most existing stereo vision-based techniques rely on classical
forward facing binocular stereo cameras with a relatively
narrow field of view and visual (inertial) odometry (VIO)
systems to provide accurate vehicle poses. These systems
are mainly targeted for detecting objects which are in front
of the car and are therefore used in standard on road forward
driving situations. For many maneuvers such as parking into
a parking spot or navigating in a narrow parking garage, a
full surround view is very important. We show that for such
situations accurate obstacle detections can be obtained from
a system that uses only monocular fisheye cameras and the
less accurate poses provided from the wheel odometry of the
car, if the noisy individual detections are properly fused over
time. The resulting system does not require complex VIO
systems, but simply exploits information already available
while running in real-time on our test vehicle, we thus avoid
any unnecessary delay a VIO system might introduce.

This paper makes the following contributions: We describe
the overall obstacle detection system and explain each part in
detail, highlighting the rationale behind our design decisions.
We demonstrate experimentally that highly precise vehicle
poses are not required for accurate obstacle detection and
show that a proper fusion of individual measurements can
compensate for pose errors. Self-driving cars are currently a
very active field of research and we believe that the proposed
system and our results will be of interest to a significant part
of researchers working in this field. To our knowledge, ours
is the first system that uses monocular fisheye cameras and
only relies on the wheel odometry.

The paper is structured as follows: The remainder of this
section discusses related work. Sec. II provides an overview
over both our vehicle setup and our obstacle detection
system. Sec. III explains the computation of the depth maps.
Obstacle extraction is described in Sec. IV, while Sec. V
details how to fuse detections from multiple depth maps.
Sec. VI experimentally evaluates the proposed method.

A. Related Work
In contrast to motion stereo systems, active sensors such as

lidar [5] and binocular stereo cameras [6] can provide a depth
map of the environment at any time, even when the vehicle
is not moving. Stereo cameras offer the advantage of being
cheap to produce while providing high-quality measurements
in real-time [6]. Thus, many obstacle detection systems rely
on a stereo setup [7], [8], [9]. Obstacles are usually detected
in an occupancy grid [10], [11], a digital elevation [12] or



Fig. 1. Overview over the obstacle detection system proposed in this paper.

height map [4], [9], [13], or a volumetric data structure [14]
into which the depth measurements are fused. Occupancy
grids are probably the most popular scene representation as
they not only provide information about the positions of the
occupied space but also about free space [15].

In the case of ground-bound vehicles, e.g., cars moving
on planar surfaces, obstacles correspond to objects obtrud-
ing from the ground: [9] compute a height profile from
stereo measurements and subsequently estimate for each 2D
occupancy grid cell whether it corresponds to free space
or occupied space. While [9] use a probabilistic model,
[16] employ dynamic programming on the grid cells to
determine free space. Given the free space, stixels can be
used to compactly represent obstacles as boxes standing on
the ground [4]. Overhanging structures and archways can be
handled by allowing multiple height map layers [13].

In this paper, we follow a similar approach and model ob-
stacles as objects extruding from the ground. While existing
work requires high-precision sensors [16] or visual odometry
methods to obtain precise vehicle poses before fusing the
depth data [9], [17], we show that using the less accurate
wheel odometry readily available in every car is sufficient.

The disadvantage of most stereo cameras is their limited
field of view (FOV). Thus, car manufacturers are beginning
to additionally integrate wide FOV [7] or fisheye cameras
[18] to cover the entire scene surrounding the vehicle. The
extremely wide FOV of fisheye cameras enables them to
also observe objects close to the vehicle, i.e., they are well-
suited for obstacle detections. In this paper, we thus use
such cameras and show experimentally that we are able to
accurately detect obstacles through motion stereo. [19] use
motion stereo, based on very accurate poses from GPS/INS
measurements, to generate large-scale urban reconstructions
by estimating the 3D geometry of the scene. In contrast,
our approach determines which parts of the environment are
occupied by obstacles and which are free space.

II. OVERVIEW

As illustrated in Fig. 1, our obstacle detection framework
consists of three main stages. First, we extract a depth map
for each camera mounted on the car using multi-view stereo
matching on a sequence of camera frames recorded by the
moving car. The camera poses required for this step are
directly obtained from the wheel odometry and the extrinsic
calibration of the cameras. No visual odometry system is
employed to refine the poses. The depth maps provide a
3D reconstruction of the surroundings of the car but do not

offer any information about which structures are obstacles
that need to be avoided and which parts correspond to free
space that the car can move through. In the second stage, we
thus detect and extract both obstacles and free space for each
individual depth map. Since obstacles are objects protruding
from the ground, obstacle detection is performed in 2D.

One of the shortcomings of using wheel odometry is that
the rotation of the wheels is only discretely sampled, which
leads to a slight oscillation around the true traveled distance.
This is not a problem in terms of determining the position of
the car but leads to uncertainty for the estimated depth maps
due to a slightly inaccurate baseline in the stereo matching.
Therefore, the third stage fuses the obstacle detections over
several camera frames to obtain a more accurate estimation
of the occupied space around the car. Depending on the use
case, the fusion can be done independently per camera or as
a single fusion that combines data from multiple cameras.

We integrated our obstacle detection system into two VW
Golf VI cars that are equipped with a system of four fisheye
cameras mounted on the car with minimally overlapping
FOVs. The cameras are installed in the side mirrors as well
as in the front and back of the car and each have a 185◦

FOV, jointly covering the whole field of view around the car.
They record at a frame rate of 12.5Hz and are triggered syn-
chronously. Besides the cameras, we also utilize the wheel
odometry of the car, which provides a 3 degrees-of-freedom
pose of the car on the ground plane by measuring the rotation
of the wheels. The cameras are calibrated with respect to
the odometry frame using a simultaneous localization and
mapping-based calibration pipeline [20]. The cars are the
test platforms of the V-Charge project [18], whose aims are
fully automated navigation and parking. As such they are
equipped with other environment perception sensors which
are not used for our system. However, since the output
of our method is simply a set of occupied and free space
estimations, our results can easily be fused into a combined
obstacle map together with similar data from other sensors.
All used sensors are either already built into today’s cars
or close-to-market. For the processing of the sensor data
and to perform the navigational tasks required for automated
driving, the cars have a cluster of 6 PCs installed in the trunk.

III. DEPTH MAP COMPUTATION

The first step of our algorithm is to compute a depth map
out of the fish eye camera images and the camera poses
provided by the wheel odometry. Often, the ground plane
is hard to match as it is weakly textured and affected by



Fig. 2. Results of our depth map computation procedure. (Left) image of the reference view, the depth maps computed (middle) without ground direction
plane-sweep and (right) the complete depth map computation procedure including the ground directions. The depth maps are coloured with respect to height
above ground instead of depth (color pattern repeating every 0.5 meters), to illustrate the quality of the ground. Without the ground direction plane-sweep,
the ground is reconstructed rather bumpy (cf. middle). In contrast, our complete procedure obtains a much smoother reconstruction.

motion blur due to the close proximity to the car. To reduce
noise on the areas where the ground plane is visible in the
images, we introduce a two stage approach which first checks
if the ground plane matches sufficiently well in the images
and only reconstructs other structures if a matching patch is
unlikely to belong to the ground plane.

Standard binocular stereo matching takes two stereo rec-
tified images as an input and computes a depth map for one
of the two images. In our case, images are recorded with a
continuous frame rate. This means we have the option to
match more than one image to a single reference image
to increase the quality of the computed depth maps by
increasing the baseline. For general camera configurations, it
is not possible to stereo rectify a set of more than two images.
To avoid this problem, plane-sweeping stereo [1] is usually
used since it does not require any rectification. The main idea
of plane-sweeping is to match a set of images to a reference
image by projecting them onto a plane hypothesis and then
back to the reference image. The images warped through this
procedure and the reference image will then be compared
using an image dissimilarity measure, which is evaluated
over a small matching window. If the tested plane hypothesis
is close to the true depth of a pixel in a reference image, the
corresponding dissimilarity value will be low. Testing many
plane hypotheses and taking the depth induced by the best
matching plane for each pixel then produces a depth map
for the reference image. Originally, plane-sweeping has been
proposed for pinhole images, where the images are warped
into the reference view through a planar homography. In
order to cover a wider field of view with each camera, and
thus enable obstacle detection around the car, our setup uses
fish eye cameras. While this increases the complexity of the
warping process slightly, depth maps can still be computed
in real-time on a graphics processing unit (GPU) [3].

The plane-sweeping algorithm locally approximates the
reconstructed 3D structure as a plane. If the normal direction
of the plane hypothesis is not well aligned with the actual
surface direction, the warped image will be locally distorted
with respect to the reference image, which increases the
dissimilarity score even for matching patches. This can be
overcome by aligning the sweeping plane directions with the
predominant directions in the scene [2]. We therefore sweep
planes in two directions; Since we are interested in detecting
obstacles on the ground, one sweep direction uses planes
parallel to the ground plane while the others are fronto-
parallel to the camera. The extrinsic camera calibration,
which gives us the height of the cameras with respect to the

surface the car drives on, provides a good initial estimate
of the ground plane. Hence, we only need to test very
few planes for the ground direction; we used 10 in our
experiments. For the fronto-parallel sweep, we space the
planes inversely proportional to the depth, resulting in an
even sampling in disparity space. For each pixel in the
reference image and each plane, we obtain one dissimilarity
score from each image that is matched against the reference
image. To obtain one single cost per plane for each pixel in
the reference image, we simply average these dissimilarity
scores. Notice, this means we do no utilize any occlusion
handling (c.f. [3]). Occlusion handling could slightly improve
the quality of the depth maps around occlusion boundaries
but this small gain comes with a set of disadvantages. Firstly,
occlusion handling slows down the depth map computation
process. Secondly, doing occlusion handling the way it was
initially proposed in [21] would mean that we would compute
the depth map for at least one frame before the newest one
available. This would lead to an unnecessary delay of the
data. As we could not observe any significant gains with it
and since it comes with the aforementioned problems, we
refrained from using occlusion handling in our experiments.
The depth map is finally extracted as the depth of the plane
with minimal cost, utilizing a winner takes all strategy.

The last step of our depth map computation procedure is
to combine the potentially incomplete depth map computed
for each sweeping direction. For this, we need to define a bit
more formally the output of the plane-sweeping algorithm.
For the sweeps in the ground and fronto-parallel direction,
we obtain a depth map Zg(x, y) and Zf(x, y), respectively.
The computation of the depth maps provides for each pixel
(x, y) the image dissimilarity cost for the best matching
plane C·(x, y) and the uniqueness ratio U·(x, y) encoding
the uniqueness of this match. Let C·,2(x, y) be the cost of the
second-best matching plane for pixel (x, y). The uniqueness
ratio is then defined as the ratio C·(x, y)/C·,2(x, y). Both of
these additional values can be used to filter the depth maps:
A low matching cost implies that the image patches match
well. A large uniqueness ratio indicates ambiguities, e.g.,
uniformly textured regions or repeating patterns will result
in a ratio close to 1. We use two sets of thresholds for the
two sweeping direction TCg , TUg and TCf

, TUf
, respectively.

Let

αg(x) :=
(
Cg(x) < TCg(x)

)
∧
(
(Ug(x) < TUg(x))

)
αf (x) := (Cf(x) < TCf

(x)) ∧ ((Uf(x) < TUf
(x)))

denote that a pixel x := (x, y) passes the thresholds on the



dissimilarity cost and the uniqueness ratio for the ground-
parallel and fronto-parallel sweeps, respectively. The two
depth maps are merged as

Z(x, y) =


Zg(x, y) if αg(x, y)

Zf(x, y) if ¬αg(x, y) ∧ αf (x, y)

−1 else
, (1)

where −1 indicates that no depth is assigned to a pixel.
Choosing TCf

≤ TCg
and TUf

≤ TUf
, Z(x, y) preferably

uses matches on the ground plane. In our experiments, we
found this behavior to be desirable as it leads to a smoother
reconstruction of the ground which is important to avoid false
positive obstacle detections.

For our experiments, we use zero mean normalized cross
correlation (ZNCC) scores over a 9 × 9 pixel window for
measuring the image similarity. The matching cost C·(x, y)
are computed as the negative ZNCC score normalized to the
interval [0, 1], i.e., a matching cost of 1 corresponds to a
ZNCC score of −1 and a matching cost of 0 corresponds
to a ZNCC score of 1. There are 10 planes used for sweeps
parallel to the ground and 50 planes for the fronto-parallel
direcion. The filtering thresholds are set to TUg

:= 0.9925,
TUf

:= 0.98, TCg := 0.18 and TCf
:= 0.17. The depth maps

are computed on a resolution of 640 × 400 pixels and we
match two images against the reference image, meaning 3
images contribute to every depth map. Fig 2 shows the results
of our depth maps computation procedure. The benefit of the
additional ground direction sweeping is mostly visible in the
form of a smoother ground plane.

IV. OBSTACLE EXTRACTION

The output of the previous section is a depth map for each
camera. In this section, we describe how to extract obstacles
from a single depth map. Following [4], [9], we make the
simplifying assumption that the car is moving on a plane, i.e.,
every object not lying on the plane is a potential obstacle,
and perform obstacle detection in 2D.

Obstacle detection consists of three steps. Given a depth
map, we first create a 2D occupancy grid that encodes which
cells contain depth measurements. From this grid, we then
extract obstacles from the occupied cells and refine their
positions to avoid discretization artifacts. Finally, we estimate
the uncertainty of each detection, which will be used in
Sec. V to fuse detections from multiple depth maps.

A. Occupancy Grid Generation

We define the local coordinate frame of the car to coincide
with the vehicle odometry frame. It has its origin on the
ground plane at the point where the middle of the rear axle
orthogonally projects to the ground plane. The x-axis is
pointing towards the front of the car, the y-axis to the left
and the z-axis is pointing vertically away from the ground
(cf. Fig. 3). Due to this choice of coordinate system, we can
directly infer the position of the ground for each camera from
the known extrinsic calibration of the car’s camera system.

For each camera, we define a separate occupancy grid that
covers the relevant part of the area observed by the camera.

Fig. 3. Illustration of the coordinate systems used in the paper. The x-,
y-, and z-axes are colored in red, green, and blue, respectively.

The grid is placed in the ground plane, i.e., coincides with
the x-y plane of the vehicle frame. The cameras are mounted
such that their x-axes are parallel to the ground. Thus, the x-
and y-axes of the occupancy grid are chosen to be parallel
to the projections of the x- and z-axes of the camera onto
the ground plane. As illustrated in Fig. 3, the origin of the
occupancy grid is the projection of the camera center codo,
expressed in the vehicle frame, to the x-y plane. We express
coordinates in the occupancy map by an (angle, disparity)
pair (d, ρ), where disparity d = 1/ygrid corresponds to the
inverse depth of the measurement.

We use disparities instead of the original y-coordinates
since the depth maps are already computed based on dispari-
ties by spacing the planes inversely-proportional to the depth.
As a consequence, the occupancy grid has a higher resolution
very close to the camera, which leads to an unnecessary high
grid resolution and thus memory and time consumption. In
order to guarantee a minimal cell size in depth direction we
virtually shift the grid by yshift. The definition of the final
occupancy grid coordinates (dgrid, ρgrid) can now be stated
in terms of the Cartesian coordinates in the occupancy grid
frame as:

dgrid = 1/ (ygrid + yshift)

ρgrid = ρ = arctan (xgrid/ygrid) . (2)

The occupancy grid coordinates (dgrid, ρgrid) are only de-
fined for Cartesian coordinates with ygrid > 0. Notice that
the resulting grid has the shape of an isosceles trapezoid,
similar to the polar grid in [16].

Let odoRcam ∈ R3×3 and odotcam ∈ R3×1 be the rotation
and translation that transform a depth measurement xcam

from the local camera coordinate system into the vehicle
frame, i.e., xodo = odoRcamxcam + odotcam. As shown in
Fig. 3, the corresponding grid cell is obtained by projecting
xodo−codo onto the x-y plane of the grid frame, computing
the angle and disparity, and performing the shift by yshift.

For each grid cell (d, ρ), we store the number F (d, ρ)
of points from the depth map that vote for free space in
this specific cell, the number O(d, ρ) of points that vote for
occupied space, and additionally the average disparity dgrid
of the points voting for occupied space within a given cell.
If the vehicle frame position xodo of a depth measurement
is close to (or below in case of errors in the depth map) the
ground, it votes for free space in its corresponding cell. If
xodo lies above the ground plane up to a maximum height,
it votes for occupied space in its cell and the corresponding
average disparity value is updated. The maximum height



is necessary to handle structures such as overhanging roofs
where the car can drive underneath and indoor environments
such as underground parking lots.

In our experiments we use a grid resolution of 50× 120,
depth values up to 30 meters, and an opening angle of 140◦.

B. Obstacle Extraction and Refinement

After filling the occupancy grid, we extract obstacles out
of the accumulated data. Each column of the occupancy grid
defines a ray corresponding to an angle ρgrid. For each such
ray, we want to find the disparity value dobst of the first
obstacle along the ray. In order to be robust against noise in
the input depth maps, we discard all obstacles that do not
pass the following two tests.

A valid obstacle detection should be supported by a
minimum amount of depth measurements. We thus compute
the strength of an obstacle as

Sobst(d, ρ) =

d+Dobst∑
i=d

O(i, ρ) , (3)

where we also consider the Dobst cells along the ray that
follow the first detection. We specify two thresholds T near

strengh

and T far
strengh to threshold the obstacle strength at the closest

and furthest distance of the grid, respectively. This reflects
the fact that objects which are further away are represented
by fewer image pixels and thus fewer depth measurements.
The threshold T d

strength for the given cell is then computed
through linear interpolation.

Ideally, there should only be votes for free space until
we hit the first object and no cell behind this object should
contain free space votes. However, this is often not the case
close to the camera as sporadic mismatches in the sky and
other distant structures, which should be very high above the
ground, get reconstructed close to the camera and therefore
also close to the ground, resulting in votes for occupied
space. The second test is thus designed to reduce the number
of erroneously reconstructed obstacles. We define a second
obstacle strength measure that rewards free space in front of
the obstacle and occupied space behind it as

S′obst(d, ρ) =

d−1∑
i=0

(F (i, ρ)−O(i, ρ))

+

d+Dobst∑
i=d

(O(i, ρ)− F (i, ρ)) . (4)

Again, we use a corresponding threshold Tstrengh′ to discard
spurious obstacle detections.

The final extraction procedure is as follows: Beginning
at the cell closest to the origin, we compute the obstacle
strengths for the cells along each ray. We create an obstacle
for the first cell for which both strengths are above the corre-
sponding thresholds. In order to avoid reporting obstacles at
discrete positions only, we use the average disparities stored
for each grid cell to refine the obstacle position. The final
refined position of the obstacle is extracted as the combined
average disparity d of the points that where used as votes
for the obstacle strength in Equation 3.

In the case that there is no strong enough obstacle along
a ray, we extract a special ”free space” obstacle that flags
the position until which only free space is observed in the
grid. This special obstacle represents the fact that the ground
plane is visible until this position, which will later be used
during the fusion process.

C. Uncertainty Estimation

The positions of the extracted obstacles originate from
depth maps that were computed using camera poses provided
by the vehicle’s wheel odometry, which is not as accurate
as vision-based odometry methods. From binocular stereo
matching, it is known that the uncertainty of the depth
grows quadratically with the depth. Unfortunately, this is
not directly applicaple to fisheye lenses [22] and to multi-
view matching. However, for a later fusion of the data
over time and between cameras, it is important to obtain
a (rough) estimate of the uncertainty for each detection. In
the remainder of this section, we thus propose a method to
estimate the distance uncertainty of the extracted obstacles.

For standard binocular stereo matching using discrete
disparities, one can only determine the true displacement of
a pixel up to ±0.5 pixels. Fisheye cameras (approximately)
follow an equidistant model [23], i.e., the displacement
error in pixels is linearly related to the angle difference
∆α between the viewing rays through the two pixels. We
use this linear relation to estimate the uncertainty of each
obstacle detection. Since obstacles are detected in 2D, we
also estimate their uncertainty in 2D.

Each depth map is computed from the current and two
previous frames. Let Ccur and Cfar be the 2D positions
of the current and the previous camera with the largest
distance to the current frame, obtained by projecting the
camera centers onto the ground plane. Let O be the obstacle
position and let CcurO and CfarO be the rays from the
two camera centers to the obstacles. We create two new rays
r1, r2 originating from Cfar such that the angle between the
rays and CfarO is ±∆uncertainty degrees. Intersecting r1 and
r2 with CcurO then provides an uncertainty interval for the
obstacle.

The final result of our obstacle detection approach, 2D
obstacle positions and their uncertainties, is depicted in Fig.
4. There is a rather high uncertainty and level of noise in
the estimates, as can be seen when obstacles from several
frames are simply transformed into a single frame without
any proper fusion. In the next section, we thus introduce
a simple way of fusing obstacle detections over time. We
constantly fuse the available measurements, enabling us to
detect and discard incorrect detections such as the outlying
measurements observed in the middle of the parking spot
shown in Fig. 4. Notice that fusion over time also removes
obstacles detected on dynamic objects.

V. DATA FUSION

Since we make the reasonable assumption that the car
moves on a (locally) planar ground, we again use a 2D grid
to fuse the obstacles detected in multiple camera frames. For



Fig. 4. Results of our obstacle detection approach: (Top row) Two input
images. (Bottom row) Obstacles detected in three different frames, projected
to the ground plane. The red dots denote the obstacle position and the
cyan lines indicate the uncertainty area along the ray. The last image
contains all obstacles extracted in an interval of ±1 seconds around the
corresponding frame and shows that simply adding individual detections
produces significant noise.

each grid cell, we aim to determine whether it corresponds
to free space or is occupied, i.e., contains an obstacle. In
robotics, this is often achieved in terms of an occupancy grid
using an inverse sensor model [10]. We follow a different
approach which originates from the fusion of laser point
clouds [24] and has since then been used successfully in
many computer vision systems [25], [26], [27]. Its main idea
is to follow each ray originating from a camera center until
it hits the first obstacle. For all grid cells traversed by the
ray, a negative weight is added to denote free space. At
the measurement, the ray enters the object and hence the
space behind the measurement should be occupied, which is
denoted by adding a positive weight. Since we do not know
the thickness of each object, we only enter positive weights
for a small region behind the obstacle. After adding the
measurements for all cameras that should be considered, a
cell having a negative accumulated weight is then considered
as free space and a cell with a positive weight as occupied
space. For cells that have a weight of exactly zero, the space
is considered as unobserved.

For real-time processing, we need to limit the size of the
grid. We achieve this by only updating a 10× 10 meter area
which is placed such that it covers the area observed in the
current camera frame. Which part of the fusion grid needs
to be updated is determined based on the wheel odometry
reading. For each cell inside the viewing area of the current
camera frame, we determine the obstacle which lies on the
ray from the camera center to the grid cell. The weight added
to the current grid cell is defined by comparing the distance
lobst of the obstacle to the camera with the distance lcell
between the cell and the camera. As explained in Sec. IV-B,
there are two types of obstacles, conventional obstacles and
the ”free space” obstacles placed at the end of the definitively
visible space along a ray. Consequently, two different types
of weights are used. The free space weight wf is used for
both types while the obstacle weight wo is only employed
for the standard obstacles. For both types of obstacles, an

Fig. 6. Fusion results for an indoor sequence. Reflections on the ground
cause erroneous detections while backlight complicates precise depth esti-
mation. Still, our system is able to outline the positions of the obstacles.

uncertainty interval (lobst − u1, lobst + u2) along the ray is
given and we distribute the weight of the obstacle along the
interval. Thus, obstacles that are measured with low accuracy
will only contribute little weight to each grid cell.

The free space weight for the cells along the ray is

wf =

{
−k if lcell ≤ lobst − u1
0 else

, (5)

where the constant k ≥ 0 is added only to cells in front of the
obstacle. The obstacle weight wo should only be non-zero in
the uncertainty regions and is thus defined as

wo =


− 1

u1
if lcell ∈ (lobst − u1, lobst)

1
u2

if lcell ∈ [lobst, lobst + u2]

0 else
. (6)

Additionally, we impose a minimal uncertainty area to make
sure that the weight is spread at least into a few cells in the
grid. We also discard measurements which have a very large
uncertainty interval of more than 4 meters.

All grid cells are initialized with weight zero and are
updated whenever new obstacle detections are available by
adding the respective weight to the grid cells. The update
is constantly performed in a separate compute thread con-
current to depth map generation and obstacle detection. The
area of the grid that is updated is set to 400 × 400 cells,
resulting in a 2.5cm resolution for the 10m×10m area. The
constant for free space is set to k = 4. Figures 5 and 6 depict
results of the fusion approach, where free space is colored
green, occupied space is red, and unobserved space is black.

VI. EXPERIMENTS

In this section, we present the experimental evaluation
of our obstacle detection and fusion system. We consider
two use cases and evaluate the accuracy in these situations,
namely driving past an empty parking spot to measure its
width and driving through two objects and measure how far
they are away from the car. In the first case, the wide field of
view of our fisheye cameras allows us to observe the whole
parking spot even at close distance. Similarly, the second
case also benefits from the fisheye cameras’ ability to detect
obstacles close to the car. Both cases are much harder to
handle using classical stereo systems due to their limited



Fig. 5. Obstacle fusion results for two outdoor test sequences. (Top row) input images, (bottom row) fusion results. (Left hand side) right facing camera,
(right hand side) front facing camera. Free space is colored green, occupied space in red, and unobserved space in black. The white dot denotes the position
of the current camera. Obstacle fusion over time enables our approach to remove outlier detections (cf. Fig. 4) and to recover the structure of the scene.

Fig. 7. Left: Ground truth measurment taken with a tape measure. Right:
Distance that we determine in the fused results by measuring how wide the
minimal gap between the first two foam boxes is (grid resolution 2.5cm).

field of view. We employ foam boxes as obstacles as it is
easier to define the ground truth distance between two boxes
than two cars, even though these boxes are hard to detect by
our motion stereo system.

To enable quantitative evaluation, all the experiments are
conducted by replaying sequences recorded by the car on a
desktop computer equipped with an Intel Quad Core i7 950
CPU running with a clock rate of 3.07 Ghz and a NVIDIA
GeForce GTX 680 GPU. On the car, we are able to run the
same software on one of the 6 PCs mounted in the trunk.

A. Measuring the Width of a Parking Spot

The use case of this experiment is that a car is driving
past a free parking spot and we would like to measure the
width of the parking spot in order to decide whether the
car fits into it. For this experiment we naturally use the
sidewards facing cameras. We marked the parking spot with
foam boxes placed 3 meters apart (measured with a tape
measure, cf. Fig. 7). We drove past the parking spot 5 times
in each direction and stopped the fusion when the rear axle
is at the end of the parking spot. Tab. I reports the mean
width of the parking spot measured from the fused results
(cf. Fig. 7), together with the standard deviations from 5
measurements from the 5 different runs for each side. As can
be seen, the measurements of our system are accurate enough
to determine that the car fits into the parking spot. Notice,
the slight underestimate in distance is expected as we always
use the smallest possible distance between the first two foam
boxes to measure the size of the spot. Such a conservative
estimate is desired in practice as to avoid initiating a parking
maneuver that could potentially lead to a crash.

TABLE I
WIDTH MEASUREMENTS OF AN EMPTY PARKING SPOT

Camera Mean Standard Deviation Ground Truth
Left 2.93m 0.04m 3.00m

Right 2.91m 0.02m 3.00m

TABLE II
DISTANCE IN METERS BETWEEN TWO OBSTACLES

Ground Truth 3.00 3.30 3.60 3.90 4.20 4.50 4.80 5.10 5.40 5.70 6.00
Measured 2.93 3.2 3.48 3.8 4.1 4.4 4.7 5.00 5.3 5.58 5.88

B. Measuring the Distance Between Two Obstacles

While driving between obstacles, it is important to accu-
rately measure the distance of the obstacles to the car. To
measure how accurately our system is able to measure the
sidewards distance, we drive with the car in between two
foam boxes. As a ground truth measurement we measured
the distance of the two foam boxes with a tape measure. The
fusion is stopped at the point when the two sidewards facing
cameras are in between the two foam boxes. Afterwards, the
distance is determined by looking at the fusion of the left and
right camera and measuring the distance. The foam boxes
were set up at different distances from three to six meters. We
took one measurement per distance. The results are presented
in table II. The results are accurate enough for autonomous
driving. Compared to the first experiment, having an accurate
calibration is much more important for this use case as the
measured distance depends on two cameras. Thus, an error
in distance between the two cameras would directly transfer
to an error in the measurements. Again, we always took the
smallest measurement between the two foam boxes resulting
in a slight underestimation of the distance.

C. Runtime Performance

One important aspect of an obstacle sensor running on
a self-driving car is its runtime performance. As indicated
earlier, we are running the system by replaying a logfile
on a desktop computer with a GPU. On the actual car,
the same software is running on a similar but slightly less
powerful computer. We consider the scenario where a car is
driving forward, hence we run the whole system using multi-
threading concurrently on the left, front and right camera.



Fig. 8. (Left) Two input images of the front camera. (Right) Result of
running our system concurrently on the left, front and right camera. The
obstacle frames are entered into the grid with a joint framerate of 37.5Hz.

The images are captured with a framerate of 12.5Hz, there-
fore our peak performance that we can reach per camera is
12.5Hz. For the result shown in Fig. 8, we are able to process
all the frames and hence reach the maximal performance
of 12.5Hz, leading to a joint framerate of 37.5Hz. We also
confirmed that our system runs in real-time on the car itself.
Initial experiments show that even using a NVIDIA Tegra
K1 chip is sufficient to process one single camera at lower
resolution.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an obstacle detection
pipeline for self-driving cars designed to rely purely on
monocular cameras and the wheel odometry. Using fisheye
cameras allows our system to easily handle situations where
classical stereo cameras fail due to their restricted field of
view. Our experimental results demonstrate that our method
achieves a detection accuracy that is sufficient for practical
applications while running in real-time.

The output of our system are a set of obstacles, which
we fuse into a consistent grid representation that indicates
free and occupied space. This grid can readily be fused
with similar results from other sensors. In order to improve
the quality, the original obstacle detections could be fused
directly instead of fusing the final results. However, properly
modeling and fusing the uncertainty characteristics of the
different sensor types is a challenging task.

Currently, our system does not detect dynamic obstacles
such as other cars. Detecting dynamic objects would require
us to associate obstacle detections over time, e.g., based on
semantic classification in the images or motion models. This
would allow us to link the corresponding obstacle detections
and thus prevent the fusion stage from filtering out dynamic
obstacles.
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