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Abstract— Multiple cameras are increasingly prevalent on
robotic and human-driven vehicles. These cameras come in
a variety of wide-angle, fish-eye, and catadioptric models.
Furthermore, wheel odometry is generally available on the
vehicles on which the cameras are mounted. For robustness,
vision applications tend to use wheel odometry as a strong
prior for camera pose estimation, and in these cases, an
accurate extrinsic calibration is required in addition to an
accurate intrinsic calibration. To date, there is no known work
on automatic intrinsic calibration of generic cameras, and
more importantly, automatic extrinsic calibration of a rig with
multiple generic cameras and odometry.

We propose an easy-to-use automated pipeline that handles
both intrinsic and extrinsic calibration; we do not assume
that there are overlapping fields of view. At the begining,
we run an intrinsic calibration for each generic camera. The
intrinsic calibration is automatic and requires a chessboard.
Subsequently, we run an extrinsic calibration which finds
all camera-odometry transforms. The extrinsic calibration is
unsupervised, uses natural features, and only requires the
vehicle to be driven around for a short time. The intrinsic
parameters are optimized in a final bundle adjustment step in
the extrinsic calibration. In addition, the pipeline produces a
globally-consistent sparse map of landmarks which can be used
for visual localization. The pipeline is publicly available as a
standalone C++ package.

I. INTRODUCTION

There has been an explosive growth in the use of cameras
on robotic and human-driven vehicles. From the robotic
perspective, a camera offers a rich source of visual informa-
tion which greatly enhances robot perception in contrast to
lidar line scanners; recent advances in computing hardware
facilitate real-time image processing. From the automotive
perspective, multiple cameras are useful for driver assistance
applications which help improve road safety. Image pro-
cessing applications utilizing multiple cameras on a vehicle
require both an accurate intrinsic calibration for each camera
and an accurate extrinsic calibration. An accurate intrinsic
camera calibration consists of an optimal set of parameters
for a camera projection model that relates 2D image points
to 3D scene points; these optimal parameters correspond to
minimal reprojection error. An accurate extrinsic calibration
corresponds to accurate camera poses with respect to a
reference frame on the vehicle, usually the odometry frame.
Accurate calibration allows feature points from one camera
to be reprojected into another camera with low reprojection
errors, and furthermore, odometry data can be used in
conjunction with the camera extrinsics to efficiently compute
a good initial estimate of the camera poses which can then be
refined via local bundle adjustment with minimal correction.

We use the unified projection model described by Mei et
al. in [1] which works well in practice for regular, wide-
angle, fish-eye, and catadioptric cameras. This model differs
from the unified Taylor model proposed by Scaramuzza et
al. [2] in the aspect that Mei’s model is of a parametric form
and explicitly models a generic camera while Scaramuzza’s
model is represented by an arbitrary Taylor polynomial. As
a result, a closed-form Jacobian matrix can be formulated
using Mei’s model but not for Scaramuzza’s model. Contrary
to claims that Mei’s model applied to fish-eye cameras has
limited accuracy, we find from experimental data that Mei’s
model works very well for fish-eye cameras in practice.

Our pipeline has two stages: intrinsic and extrinsic cal-
ibration. In the intrinsic calibration stage, we require a
large chessboard on which all squares have an equal known
dimension. For each camera, with the chessboard held in a
wide variety of poses, we use an automatic chessboard corner
detector to find all interior corners on the chessboard in every
image until we accumulate a minimum number of corners.
We then use the set of estimated corner coordinates to find
the parameters to Mei’s model by generating an initial esti-
mate of the intrinsic parameters and refining the parameters
via non-linear optimization; an analytical Jacobian is used to
significantly speed up the optimization.

In the extrinsic calibration stage, we separately run monoc-
ular VO with sliding window bundle adjustment for each
camera. It is possible for the VO to break occasionally in
poorly-textured areas. Nevertheless, we use all sets of VO
estimates to find an initial estimate of the camera-odometry
transform for each camera; each set of VO estimates has
a different scale. We triangulate the inlier feature point
correspondences generated by monocular VO using the initial
camera-odometry transforms and odometry data. The result-
ing sparse map is then optimized via bundle adjustment; the
odometry poses are kept fixed while all 3D scene points and
the camera-odometry transforms are optimized. At this point,
the camera-odometry transforms become more accurate;
however, they are not sufficiently accurate for reprojection of
feature points from one camera to another camera with sub-
pixel reprojection errors. To solve this issue and still adhere
to the assumption of no overlapping fields of views, we
find feature point correspondences across different cameras.
Starting from the first odometry pose, we maintain a local
frame history for each camera, and we find feature point
correspondences between each camera’s current frame and
every frame in every other camera’s frame history. For each
frame pair, we rectify the two images on a common image



plane which corresponds to the average rotation of the two
corresponding cameras. This rectification greatly increases
the number of point feature correspondences; we obtain a
valid subset of feature point correspondences after geomet-
ric verification. For each feature point correspondence, we
project the existing 3D scene points in the map and seen
in the corresponding cameras onto the rectified images, and
associate each feature point with the 3D scene point whose
projected image point is nearest to that feature point and
within a distance of 2 pixels.

To ensure the global consistency of the sparse map of
landmarks, we use a vocabulary tree to detect loop closures
using all frames from all cameras. We run another bundle
adjustment similar to that described earlier, but which also
optimizes all intrinsic camera parameters and odometry
poses, to obtain a set of intrinsic parameters for each
camera, a set of camera-odometry transforms, and a globally-
consistent sparse map of landmarks.

Our approach is novel in the aspect that we are the first to
develop a full automatic pipeline for both intrinsic calibration
for a generic camera and extrinsic calibration for a rig with
multiple generic cameras and odometry without the need
for a global localization system such as GPS/INS and the
Vicon motion capture system. We make the pipeline robust
to breaks in monocular visual odometry which occur in areas
with low texture.

A. Related Work

There has been much research on the hand-eye calibration
problem [3], [4]. In general, published generic solutions to
the hand-eye calibration problem do not work for vehicles
with planar motions, as the height of the camera with respect
to the odometry is unobservable. Hence, camera-odometry
calibration requires specialized solutions [5], [6]. [5] finds
the extrinsics, camera intrinsics, and odometry parameters
simultaneously for a differential drive robot; however, a
set of known landmarks is required. Similarly, [6] finds
the extrinsics and odometry parameters for a differential
drive robot without the need for known landmarks, but only
obtain the three degrees of freedom of the camera-odometry
transform. In contrast, our approach does not require known
landmarks, and obtains the full six degrees of freedom of
the camera-odometry transform for each camera. We do
not attempt to calibrate the odometry parameters, as motion
models greatly vary across vehicles.

Our approach is most similar to the works of [7] and [8].
Guo et al. [7] estimates the camera-odometry transform for
one camera and an odometer by using a set of camera and
odometry motions to find a least-squares solution. However,
monocular VO has pose and scale drift which is exacerbated
in environments where a majority of natural features are
considerably far from the camera, and as a result, the trans-
lation component of the camera-odometry transform can be
inaccurate. Furthermore, they do not use visual landmarks to
further refine the camera-odometry transform. Our approach
uses natural features in the vehicle’s environment to improve
the accuracy of the camera-odometry transform. Carrera et

al. [8] proposes an extrinsic calibration of a multi-camera
rig by using a modified version of MonoSLAM to build a
globally consistent sparse map of landmarks for each camera,
finding feature correspondences between each pair of maps
via thresholded matching between SURF descriptors, and
using the 3D similarity transform together with RANSAC
to find inlier feature correspondences. At the end, a full
bundle adjustment is run to optimize the camera poses, 3D
scene points, and robot poses. Here, no attempt has been
made to calibrate the camera poses with respect to the
odometry frame, and the 3D similarity transform step can
fail in outdoor environments where the majority of natural
features are located far away from the cameras, and their
estimated 3D locations can have substantial noise as a result,
leading to few inliers. Furthermore, the calibration procedure
requires the vehicle to make a full 360◦ turn such that near
the end of the data collection, each camera observes the same
features seen at the beginning; this requirement is to ensure
that the 3D similarity transform step works by enforcing
the global consistency of the maps. This requirement can
be prohibitive for large vehicles in cluttered settings. In
contrast, our extrinsic calibration works well without this
requirement; we only require the vehicle to make a wide
range of steering changes for optimal calibration accuracy.
In addition, our extrinsic calibration optimizes the intrinsics;
we find that if the intrinsics are not optimized as part of the
bundle adjustment, the calibration accuracy is suboptimal.

II. PLATFORM

Fig. 1: The two test car platforms, each equipped with a set of
four fish-eye cameras that provides an all-surround view of the
environment.

Fig. 2: The sensor coverage of the test car platforms. The four
fish-eye cameras are marked in blue.

The platform is a VW Golf VI car modified for vision-
guided autonomous driving under the auspices of the V-
Charge project. Two of our platforms are shown in figure
1. Four fish-eye cameras are mounted on the car as shown



by blue cameras in figure 2. Each fish-eye camera has a
nominal FOV of 185◦ and outputs 1280 × 800 images at
12.5 fps. For synchronous image capture, one camera acts
as a master trigger source for all other cameras. A single
PC timestamps the images together with the odometry data.
The odometry data is not generated at the same time as
the images; for each image, we find two odometry poses
in a temporal odometry pose buffer, one whose timestamp is
closest to and before the image timestamp, and one whose
timestamp is closest to and after the image timestamp. We
perform linear interpolation to get the odometry pose that
corresponds to the image timestamp.

For purposes of clarity, in subsequent figures, we color all
camera poses and 3D scene points associated to the front,
left, rear, and right cameras as red, green, blue, and yellow
respectively.

III. INTRINSIC CALIBRATION

We make some improvements to the automatic chessboard
corner detection method of [9] in terms of speed and corner
accuracy. In particular, after a set of corners is detected, we
use a spline-based method to check the global consistency
of the positions of the detected corners. We fit a spline
through each row of corners; we choose the first, middle,
and last corners as control points. The corner set is marked
as invalid if the shortest distance between any corner and
the corresponding spline exceeds a certain threshold. This
check significantly reduces the false corner detection rate.
The OpenCV chessboard corner detection implementation
only works for images captured by normal and wide-angle
cameras. An example of detected corners for a chessboard
image is shown in figure 3.

Fig. 3: The detected corners of a chessboard.

We need to solve for the camera’s intrinsic pa-
rameters [ξ, k1, k2, k3, k4, α, γ1, γ2, u0, v0] in addition to
the camera poses. ξ models the mirror transformation,
[k1, k2, k3, k4] models the radial and tangential distortions,
and [α, γ1, γ2, u0, v0] are the parameters for the standard pin-
hole model used for the generalized camera projection where
α is the skew, γ1, γ2 are the focal lengths and [u0, v0] is the
principal point. Here, we assume all pixels to be square. For
the initial estimate, we set ξ = 1, k1 = k2 = k3 = k4 = α = 0,

and (u0, v0) to be the image center coordinates. To find the
value for the generalized focal length γ = γ1 = γ2, we iterate
over each row of corners for each chessboard; in each itera-
tion, we obtain an initial estimate of γ using the method in
[1], estimate the camera pose from 2D-3D correspondences
by rectifying the corners’ image coordinates, and compute
the reprojection error. We find the minimum reprojection
error that corresponds to the best initial estimate of γ. We
refine the initial estimate of the intrinsic parameters by using
non-linear optimization to minimize the sum of reprojection
errors over all images, and a robust loss function to minimize
the outlier effect. For faster optimization, we derive and use
an analytical Jacobian to reduce the optimization time by a
factor of ∼100. For each camera, we typically obtain from
100 images an average reprojection error of between 0.2 and
0.4 pixels for the estimated intrinsic parameters.

IV. EXTRINSIC CALIBRATION

A. Monocular VO

We run monocular VO for each camera in order to obtain
a set of camera motions together which is required for
the subsequent step of computing an initial estimate of the
extrinsics. Our monocular VO steps are similar to those
in [10] but for real-time performance, we use the five-
point algorithm [11] instead of the eight-point algorithm,
and instead of using three-view triangulation, we use linear
triangulation to triangulate the feature points in the last two
views, and check that the reprojection error of the resulting
3D scene point in the first view does not exceed a threshold
which in our case is 3 pixels. We extract a synchronized set of
keyframes from all cameras when the corresponding odom-
etry pose is at least 0.25 m away from the odometry pose at
which the last set of keyframes was taken. Subsequently, we
use the OpenCV implementation of GPU SURF to extract
feature points and their descriptors, use the distance ratio
metric to match feature points, and find inlier feature point
correspondences via geometric verification. For each inlier
feature point correspondence which does not correspond
to a previously initialized 3D scene point, we triangulate
this correspondences; otherwise, we associate the already
initialized 3D scene point to the correspondence. We find the
current camera pose via the iterative form of PnP RANSAC
with the initial estimate set to the rotation component of
the previous camera pose multiplied by the rotation between
previous and current camera poses estimated by the five-
point algorithm during the geometric verification, and the
translation of the previous camera pose. At each iteration of
monocular VO, we use a sliding window bundle adjustment;
the window contains 10 frames, and we keep the camera
poses in the first 3 frames fixed. We show the inlier feature
point tracks and the estimated camera poses for the four fish-
eye cameras in figures 4 and 5 respectively.

B. Initial Estimate of Camera - Odometry Transform

We expand the method of [7] to robustly estimate each
camera-odometry transform in feature-poor environments; it
is common for the VO estimation to break occasionally,



Fig. 4: Inlier feature point tracks.

Fig. 5: Camera poses estimated by monocular VO for the four
fish-eye cameras when the car is making a gradual right turn.

resulting in several sparse maps with different scales from
at least one camera. In the first step, our approach solves
for the pitch and roll components of the camera-odometry
rotation by minimizing a least-squares cost function as in [7].
In the second step, we solve for the yaw component of the
camera-odometry rotation, the camera-odometry translation
and the scales for all sparse maps by minimizing another
least-squares cost function. As the vehicle motion is planar,
the z-component of the camera-odometry translation is un-
observable.

For each camera, in the first step, we estimate qyx, and
in the second step, we estimate qz, OtC = [tx, ty]

T , and sj
for j = 1, ...,m where OqC = qzqyx and OtC are the rotation
quaternion and translation that transforms the camera frame
to the odometry frame, qz corresponds to the yaw quaternion,
qyx corresponds to the pitch-roll quaternion, and sj is the
scale for each of the m sparse maps.

We first start with the well-known hand-eye problem using
the quaternion representation:

Oi+1qOi

OqC = OqC
Ci+1qCi (1)

(R(Oi+1qOi)− I)OtC = sjR(OqC)
Ci+1tCi −

Oi+1tOi (2)

where Oi+1qOi is the unit quaternion that rotates odometry
frame i to odometry frame i + 1, Ci+1qCi is the unit

quaternion that rotates camera frame i to camera frame i+1,
OqC is the unit quaternion that rotates the camera frame to
the odometry frame.

1) Finding the pitch-roll quaternion: To estimate qyx, we
substitute OqC = qzqyx into equation 1 and use the fact that
rotations around the z-axis commute to get:

Oi+1qOiqyx − qyx
Ci+1qCi = 0 (3)

which can be written as a matrix vector equation:

(L(Oi+1qOi)−R(
Ci+1qCi))qyx = 0 (4)

where the matrix which we call S is a 4× 4 matrix and

L(q) =


wq −zq yq xq
zq wq −xq yq
−yq xq wq zq
−xq −yq −zq wq

 R(q) =


wq zq −yq xq
−zq wq xq yq
yq −xq wq zq
−xq −yq −zq wq


We have two constraints on the unknown qyx:

xqyxyqyx = −zqyxwqyx and qT
yxqyx = 1 (5)

Given n ≥ 2 motions, we build the 4n× 4 matrix:

T =
[

ST
1 ... ST

n

]T (6)

which has rank 2 in the absence of noise. We find the singular
value decomposition T = USVT ; the last two right-singular
vectors v3 and v4 which are the last two columns of V span
the null space of T:

qyx = λ1v3 + λ2v4 (7)

We use the two constraints from equation 5 to solve for λ1

and λ2, and therefore, obtain qyx.
2) Finding the yaw quaternion, scales, and translation:

Given that the z-component of the camera-odometry trans-
lation is unobservable due to planar motion, and removing
the third row from equation 2, we have:[
cosφ− 1 − sinφ

sinφ cosφ− 1

] [
tx
ty

]
− sj

[
cosα − sinα

sinα cosα

] [
p1
p2

]
+ Oi+1t

′
Oi

= 0

(8)

where α is the yaw, [p1 p2]
T are the first two elements of

the vector R(qyx)
Ci+1tCi and Oi+1t

′
Oi

denotes the first two
elements of the vector Oi+1tOi .

We reformulate equation 8 as a matrix vector equation:

[
J K

]
tx
ty

−sj cosα
−sj sinα

 = −Oi+1t
′
Oi

(9)

where J =

[
cosφ− 1 − sinφ

sinφ cosφ− 1

]
and K =

[
p1 −p2
p2 p1

]
.

For the m VO segments with n1 ≥ 2, ..., nm ≥ 2 motions
respectively where n =

∑m

i=1 ni, we build the 2n× (2 + 2m)



matrix:

G =



J1
1 K1

1 ... 0 0 ... 0 0

... ... ... 0 0 ... 0 0

J1
n1

K1
n1

... 0 0 ... 0 0

0 0 ... Jj
1 Kj

1 ... 0 0

0 0 ... ... ... ... 0 0

0 0 ... Jj
nj

Kj
nj

... 0 0

0 0 ... 0 0 ... Jm
1 Km

1

0 0 ... 0 0 ... ... ...

0 0 ... 0 0 ... Jm
nm

Km
nm


(10)

where the matrices Jj
i and Kj

i correspond to the ith motion
in VO segment j, and

G



tx
ty

−s0 cosα0

−s0 sinα0

...

−sm cosαm

−sm sinαm


= −

 O1t
′
O0

...
On+1t

′
On

 (11)

for which we use the least squares method to find the solution
to OtC = [tx ty]

T , sj and αj . We have estimated the scale
sj for each VO segment, and the translation OtC ; however,
we have m hypotheses of α. We choose the best hypothesis
that minimizes the cost function:

C =

nj∑
i=0

((R(Oi+1qOi)− I)OtC

− sjR(α)R(qyx)
Ci+1tCi +

Oi+1tOi) (12)

We then refine the estimate of qyx, α, OtC , and sj for
j = 1, ...,m by using non-linear optimization to minimize
the above-mentioned cost function C.

C. 3D Point Triangulation

For each camera, we iterate through every frame, and at
each frame, we find all features which are visible in the
current frame and last two frames, and do not correspond
to a previously initialized 3D scene point. We triangulate
each feature correspondence in the last and current frames
using linear triangulation [12]; if the reprojection error of
the resulting 3D scene point in the second last frame does
not exceed a threshold of 3 pixels, we associate the 3D
scene point to the corresponding feature in the second last
frame. Subsequently, each feature track is associated to the
same 3D scene point which the first three features already
correspond to. We use the Ceres solver [13] to run a bundle
adjustment which optimizes the extrinsics and 3D scene
points by minimizing the image reprojection error across all
frames for all cameras.

D. Finding Local Inter-Camera Feature Point Correspon-
dences

We iterate over each odometry pose in order of increasing
timestamp, and maintain a local frame history for each cam-
era; the length of the local frame history for one camera is
defined by the distance the vehicle moves before a significant
number of features observed in the current frame gets seen
in a frame in any other camera.

At each odometry pose, for each possible pair of cameras,
we match features in the first camera’s current frame against
those in the second camera’s frame history, and find the
frame in the history that yields the highest number of inlier
feature point correspondences. Before the feature match-
ing, the image pair is rectified on a common image plane
which corresponds to the average rotation between the first
camera’s pose and the second camera’s pose; the camera
poses are computed using the current extrinsic estimate and
the odometer poses. An example of a rectified image pair
between the right and front cameras is shown in figure 6. This
rectification step is to ensure a high number of inlier feature
point correspondences; in contrast, we get a very low number
of inlier feature point correspondences between images that
are distorted and unrectified.

We find the subset of inlier feature correspondences that
correspond to 3D scene points in the map by projecting 3D
scene points in the map corrresponding to the first camera
into the first rectified frame, and doing the same for the
second camera. For each inlier feature correspondence, we
find the pair of nearest projected 3D scene points; if the
image distance between the feature points and corresponding
projected 3D scene points exceeds 2 pixels, we reject the
feature correspondence. We show an example of inlier feature
correspondences with associated 3D scene points in figure 7.

Fig. 6: Inlier feature point correspondences between rectified
images in the right and right cameras.

Fig. 7: The subset of the same feature point correspondences that
correspond to 3D scene points in the maps.

This step is critical to finding all optimal camera-odometry
transforms that are consistent with each other on a global
scale.

E. Loop Closures

In this step, we use the DBoW2 implementation of the
vocabulary tree [14]. For each frame for each camera, we
convert the features of the corresponding image into a bag-
of-words vector and add the vector to the vocabulary tree. For
each frame for each camera, we find n most similar images,
and we filter out matched images which belong to the same



monocular VO segment and whose keyframe indices are
within a certain range of the query image’s keyframe index.
This is to avoid unnecessary linking of frames whose features
may already belong to common feature tracks. In most cases,
we observe the linking of features between the last frame
in one monocular VO segment for a particular camera, and
the first frame in the next monocular VO segment for the
same camera; this linking contributes towards the global
consistency of the sparse map of landmarks.

F. Full Bundle Adjustment

We perform full bundle adjustment that optimizes all
intrinsics, extrinsics, odometry poses, and 3D scene points.
Since we only estimate the relative heights of the cameras,
we obtain the absolute heights of the cameras above the
ground by taking a hand measurement of the height of one
camera above the ground, and using this height measurement
to obtain the absolute heights of all other cameras. The
accuracy of this hand measurement is not important to image-
processing applications.

V. EXPERIMENTS AND RESULTS

We compare our extrinsic calibration results against those
generated by a AR-marker-based extrinsic calibration cur-
rently used in the V-Charge project. In this AR-marker-based
calibration, three different types of AR markers are placed
around the vehicle: camera markers that are visible in at
least one camera, floor markers that are placed on the ground
around the car, and wheel markers that are placed on the rear
wheels to help identify the nominal odometry frame. The
origin of this nominal odometry frame is defined to be the
projection of the center of the rear axle to the ground plane,
while the x, y, and z axes are parallel to the longitudinal axis,
lateral axis and vertical axis of the vehicle respectively. The
cameras on the vehicle together with a calibrated handheld
camera capture images of the markers. Subsequently, the
markers are detected in all images, and a bundle adjustment
is run to optimize the poses of the markers and cameras. At
the end of the bundle adjustment, the poses of the cameras
are extracted with respect to the nominal odometry frame;
the locations of the floor markers define the ground plane,
and the wheel markers define the rear axis of the vehicle.

We show the sparse maps of landmarks for each camera
and combined sparse map at each stage of the extrinsic
calibration process in figure 8. We observe that the final
sparse maps are much more well-defined and well-aligned
to one another compared to the sparse maps computed by
triangulation at the beginning. The average reprojection error
associated with the final maps and over 450000 points is 0.5
pixels.

We also tabulate in table I the estimated angles between
the front camera and the other three cameras for both our
estimated extrinsics and the AR-marker-based extrinsics. for
the left, rear, and right cameras. Similarly, we tabulate in
table II the unit estimated translations between the front
camera and the other three cameras to ignore the effect of
scale. We show a visual comparison of the final estimated

extrinsics with the extrinsics computed by the AR-marker-
based calibration in figure 9. A green sphere marks the origin
of the odometry frame. We observe that both sets of extrin-
sics are almost identical in terms of the cameras’ relative
transforms; the scale of the estimated extrinsics is 0.44%
smaller on average which is statistically insignificant. There
is a y-offset of 10 cm between the estimated and AR-marker-
based extrinsics; the explanation is that our calibration uses
odometry data unlike the AR-marker-based calibration.

We are unable to compare our approach with [8] as
their 3D similarity transform step fails in our experimental
settings. A vast majority of scene points are located far
away from the cameras, and thus, the estimates of their 3D
coordinates have significant noise.

Fig. 9: Comparison of extrinsics generated by our pipeline and the
AR-marker-based calibration method. The cameras corresponding
to the AR-marker-based extrinsics are marked in purple with green
lines. The grid resolution is 1 m.

We perform an experiment to show that the estimated
calibration parameters are more accurate than that of the AR-
marker-based parameters; we use a multi-view plane-sweep-
based stereo algorithm [15] with semi-global block matching
to compute dense depth maps from rectified images for each
camera using only the odometry poses, camera intrinsics,
and extrinsics without any camera pose optimization. The
plane sweep is extremely sensitive to the accuracy of the
intrinsic and extrinsic calibration parameters; we compare the
depth maps computed by the plane sweep using our estimated
intrinsics and extrinsics with the depth maps computed with
the intrinsics and extrinsics generated by the AR-marker-
based calibration. We show in figure 10 that the use of our
estimated parameters results in a more accurate dense map
especially on the ground compared to the use of the AR-
marker-based parameters. This result demonstrates the higher
accuracy of our estimated parameters, and can be attributed
to the fact that our pipeline takes into account odometry
data, and makes use of a high number of features over a
wide range of distances to ensure optimal accuracy.

On an 2.80 GHz Intel Core i7 PC, our pipeline takes ap-
proximately 15 seconds to compute the intrinsic parameters
for each camera using 100 images each, and approximately
90 minutes to compute the extrinsic parameters using a



(a) After 3D scene point trian-
gulation.

(b) After BA with 3D scene
point triangulation.

(c) After BA with local inter-
camera correspondences.

(d) After BA with loop closures.

Fig. 8: Sparse maps of landmarks at various stages of the pipeline. The first four rows correspond to the front, left, rear, and right cameras
respectively, while the last row shows the combined map from all cameras. The grid resolution is 10 m.



TABLE I: Estimated angles between front camera (reference camera) and the other three cameras.

Left camera Rear camera Right camera
Our calibration 86.7507◦ 179.559◦ 88.1723◦

AR-marker-based calibration 86.8544◦ 178.262◦ 89.3818◦

TABLE II: Estimated unit translations between front camera (reference camera) and the other three cameras.

Left camera Rear camera Right camera
Our calibration [−0.5397− 0.1987− 0.8180] [−0.0120− 0.0902− 0.9959] [0.5199− 0.2184− 0.8258]

AR-marker-based calibration [−0.5912− 0.1780− 0.7862] [−0.0277− 0.1048− 0.9941] [0.5143− 0.2364− 0.8244]

Fig. 10: 3-view plane sweep stereo with front camera. Forward
camera motion is challenging for plane sweep stereo. The left depth
map is computed using our estimated parameters, while the right
depth map is computed using the AR-marker-based parameters.

total of 2000 frames; most of the time is spent finding
local inter-map feature point correspondences and on bundle
adjustment.

A video showing the stages of the calibration pipeline
together with the calibration package can be accessed at
http://people.inf.ethz.ch/hengli/camodocal.

VI. CONCLUSIONS

Our calibration pipeline is able to compute a highly accu-
rate intrinsic and extrinsic calibration of a rig with multiple
generic cameras and odometry in an arbitrary environment
without prior knowledge of the rig setup and without the
need for environment modifications. Due to the automated
nature of the pipeline, minimal human intervention is re-
quired, and the pipeline is easy to use. Furthermore, the
pipeline produces a globally-consistent map of landmarks.
The pipeline does not require a special calibration setup; no
substantial time-related or material-related costs are incurred.
As a result, the pipeline has huge potential benefits for the
robotics community and automotive industry.

From experiments, we demonstrate the sub-pixel accuracy
of our intrinsic calibration with regards to the unified projec-
tion model, and thus, show the unified projection model to
work well in large-scale environments. An accurate extrinsic
calibration with multiple cameras and odometry allows for
real-time odometry-aided vision applications which are more
robust and accurate compared to vision-only applications in
the sense that we avoid computationally-intensive camera
pose estimations from 2D-3D correspondences; occasionally,
a camera pose estimated from a low number of 2D-3D
correspondences can be significantly inaccurate and lead to
a catastrophic failure. At the same time, we produce a high-
quality globally-consistent sparse map of landmarks using
features from all cameras.

We plan to work on an online version of the calibration.
The motivation is that several cameras on our car platforms
are mounted on movable parts, for example, a car door, and
that vision applications will fail when the cameras are moved.
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