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Abstract

In this paper, we present a framework for 6D absolute
scale motion and structure estimation of a multi-camera
system in challenging indoor environments. It operates in
real-time and employs information from two cameras with
non-overlapping fields of view. Monocular Visual Odome-
try supplying up-to-scale 6D motion information is carried
out in each of the cameras, and the metric scale is recovered
via a linear solution by imposing the known static transfor-
mation between both sensors. The redundancy in the motion
estimates is finally exploited by a statistical fusion to an op-
timal 6D metric result. The proposed technique is robust to
outliers and able to continuously deliver a reasonable mea-
surement of the scale factor. The quality of the framework
is demonstrated by a concise evaluation on indoor datasets,
including a comparison to accurate ground truth data pro-
vided by an external motion tracking system.

1. Introduction
During the last decade, the computer vision community

investigated vision based motion estimation to a great ex-
tent. Nistér et al. [20] proposed Visual Odometry (VO)
frameworks for both monocular and stereo setups. The
stereo configuration not only renders the motion estimation
more robust, but also allows inference of metric scale. The
field of view (FOV) in a classical stereo setup is however
limited as both cameras are required to observe the same
scene. We introduce a method which relaxes this constraint,
and allows the cameras to perceive different scenes while
still operating in absolute scale. The extended field of view
is especially beneficial in poorly textured environments.
Our approach is backed by automotive vision system de-
signers who increasingly propose almost non-overlapping
settings with cameras placed in the side mirrors of the car.

The proposed method operates in real-time and employs
information from two cameras with non-overlapping fields
of view. The motion of the rig is estimated by first per-

forming monocular VO in each camera individually. The
two motion estimates are then used to derive the absolute
scale by enforcing the known rigid relative placement of
the two cameras. The estimation of the scale is robustified
by applying a RANSAC [6] scheme to a windowed buffer
of several recent frames, which removes degenerate con-
straints for scale estimation. In a final step, we fuse the two
motion estimates to an optimal motion of the entire multi-
camera system by taking also the uncertainties of the indi-
vidual pose computations into account. Fig. 1 shows a tra-
jectory and scene reconstructed by the presented algorithm.

Figure 1. Map and trajectory generated by our VO system. The
right (red) and left (green) camera face opposite directions, and
the small box shows a side view on the reconstruction of the right
scene (vertical wall with office desks in front).

The remainder of this paper is organized as follows:
Next, we discuss previous work on related approaches for
motion estimation and present a brief overview of our sys-
tem. Section 2 then introduces our approach for metric scale
estimation, while section 3 focuses on the fusion of two in-
dividual monocular VO estimates. Section 4 finally outlines
the conducted experiments, before concluding the work in
section 5.

1.1. Related Work

It is a well-known fact that a single approximatively cen-
tral camera can reconstruct a given scene only up to scale
[10]. In order to estimate the motion in metric scale, sup-
plementary information is required typically given by an ad-
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ditional sensor such as a range or inertial measurement unit,
e.g. [21].

In this work, we focus on metric motion estimation by
means of an additional camera. Rigs consisting of multi-
ple cameras not only enhance constraints in pose estima-
tion problems, but also allow a larger FOV, which in turn
improves robustness. Various configurations have been pre-
sented over the years: The classical stereo setup [20], [16]
with a large common FOV exploits the known baseline be-
tween the cameras in order to derive the metric scale. In [5],
the authors relax the constraint of having a large common
FOV and present a system with only minimal overlap in the
FOV. Lately, approaches have been proposed which do not
require the cameras to see the same scene at all.

Metric motion estimation by means of multiple non-
overlapping cameras can be approached in two ways. The
cameras are treated either individually, or as one single cam-
era using the Generalized Camera Model (GCM) [8]. Suc-
cessful solutions have been presented for both approaches:

Multiple Individual Cameras: Clipp et al. [4] intro-
duce a method for full 6 DOF motion estimation by per-
forming monocular VO in one camera, and determining the
scale by a single point correspondence extracted from the
second camera. Although applying a RANSAC scheme,
the scale can only be computed at certain instances and
shows a significant variance. In [14], the authors show
how to transform the motion estimation into a triangula-
tion problem, which is subsequently solved using Second-
Order Cone Programming. Kim et al. [13] suggest to solve
the triangulation by means of a Linear Programming based
Branch and Bound algorithm. Although computation time
is reduced, the method is still not real-time compliant.

Multiple Cameras Described by the GCM: The au-
thors of [18] and [13] propose approaches to motion es-
timation using the linear seventeen-point algorithm [22].
Degenerate cases as shown in [12] are taken into account.
Mouragnon et al. [19] present the first real-time capable VO
system using the GCM. The work contains results using per-
spective, stereo and catadioptric cameras, and experiments
on more complex multi-camera systems are left as future
work. The minimal solution to the relative pose problem
using the GCM is presented in [25], where only 6 corre-
sponding image rays are required. It can be adapted to the
non-overlapping stereo case, however leads to 64 solutions
for the relative transformation and thus represents a compu-
tationally inefficient approach.

Both approaches employ joint information from multi-
ple cameras. The fact that we compute visual odometry
with relative scale propagation in each camera individually
has the advantage of giving the information from both cam-
eras equal importance and potentially overcoming short se-
quences where one of the cameras fails. Moreover, it also
allows an efficient distributed computation.

1.2. System Overview

The presented motion estimation pipeline is summarized
as a flowchart in Fig. 2. The transformations of the left (L)
and right (R) camera are denoted by the euclidean transfor-
mation matrices T (expressing translation and rotation), the
scales of the monocular VOs are indicated by λ and µ, and
a fused quantity is denoted by an asterisk. The scale esti-
mation and fusion modules are explained in the following.

Figure 2. System overview

2. Metric Scale Estimation
The fact that both cameras are rigidly mounted on the

same object can be exploited in order to infer metric scale.
We first show how the metric scale is derived from a single
rig displacement, then improve the condition of the prob-
lem by considering multiple constraints inside a windowed
buffer of multiple frames, and finally apply a RANSAC
scheme in order to enhance robustness.

2.1. Rig Constraint

The constraint expressing the static coupling of the cam-
eras originates from ’hand-eye’ calibration [11] and links
the two cameras at two different time steps t1 and t2. It
requires the concatenation of the transformations of right
c.p. (camera position) at t1 to right c.p. at t2 (TR2R1) and
right c.p. at t2 to left c.p. at t2 (TLR) to be equal to the
concatenation of the transformations of right c.p. at t1 to
left c.p. at t1 (TLR) and left c.p. at t1 to left c.p. at t2
(TL2L1). Note that the static transformation of right c.p. to
left c.p. is assumed to be known from a calibration process,
and therefore does not need subscripts indicating time in-
dices. Fig. 3 illustrates these four transformations and the
above mentioned equivalence.

TR2R1

TL2L1

TLR

TLR

Figure 3. Rig constraint linking the euclidean transformations.

The above constraint translates into the algebraic expres-
sion

TL2L1 TLR = TLR TR2R1. (1)

Expanding the euclidean transformations and introduc-
ing the unknown scale factors λ and µ for the right and left
camera respectively, we obtain
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[
RL2L1 µ tL2 L2L1
01x3 1

] [
RLR tL LR
01x3 1

]
=[

RLR tL LR
01x3 1

] [
RR2R1 λ tR2 R2R1
01x3 1

]
.

(2)

Inspection of (2) reveals that the rotational and transla-
tional parts can be decoupled, which leads to

RL2L1 RLR = RLR RR2R1 (3)

RL2L1 tL LR + µ tL2 L2L1 = RLR λ tR2 R2R1 + tL LR.

Solving the translational part of the above expression for
the scales yields

[
RLR tR2 R2R1 − tL2 L2L1

]
︸ ︷︷ ︸

:=Ai

[
λ
µ

]
︸︷︷︸
:=xi

= (RL2L1 − I3x3) tL LR.︸ ︷︷ ︸
:=bi

(4)

With the above expression, the absolute scale of each
monocular VO can be derived by means of a linear least
squares (LS) scheme using the relative transformation of the
cameras between two different time steps only.

2.2. Multi-Frame Window

In order to improve the condition of the LS problem in
(4), we compute the scales not only on two consecutive im-
ages, but over several recent frames. Each of the monocular
VOs is performing internal relative scale propagation, and
hence the scales are drifting only slowly. We thus make
the assumption that the scales are locally constant. We then
consider multiple constraints inside a sliding window taking
the lastN poses into account, as illustrated in Fig. 4. Within
this window, the rigid transformation constraint needs to be
constantly fulfilled for same scale factor values.

N-frame window
µ

λ

Figure 4. Multi-frame buffer spanning the last N camera poses.

Stacking multiple incremental constraints together leads
to the augmented LS problem

RLR t1R2 R2R1 − t1L2 L2L1
RLR t2R2 R2R1 − t2L2 L2L1

. . . . . .
RLR tN

R2 R2R1 − tN
L2 L2L1


︸ ︷︷ ︸

:=ALS

[
λ
µ

]
︸︷︷︸
:=xLS

=


( R1 L2L1 − I3x3) tL LR
( R2 L2L1 − I3x3) tL LR

. . .
( RN

L2L1 − I3x3) tL LR


︸ ︷︷ ︸

:=bLS

,

(5)
which is solved for the scales using the Moore-Penrose
pseudoinverse

xLS = A†LSbLS. (6)

2.3. Robust Estimation of Scale

There may be constraints between two stereo-frames
which are ill-conditioned for computing the scales using
(4). Either the motion-estimates of the individual VOs are
inaccurate at a particular instant, or the motion which is per-
formed by the rig is degenerate for scale estimation. In such
a situation, we need to be able to exclude the correspond-
ing constraints from the LS computation since they would
lead to erroneous results. We therefore adopt a RANSAC
scheme for removing outlier-constraints. Our implementa-
tion consists of the following three subfunctions:

• Fitting-function: Computes all free parameters of the
model using a randomly picked minimal set of data
samples. In our case, this means picking two stereo-
frames from the windowed buffer and computing a
scale hypothesis using (4). We thus only need one sam-
ple, i.e. a single constraint between two stereo-frames.
• Is-Degenerate-function: Checks if a randomly picked

single constraint is degenerate before fitting the model.
Degenerate cases of (4) are examined in [1], and oc-
cur if both cameras experience exclusive translation or
translation combined with rotation around baseline, or
if the system undergoes a specific planar motion (e.g.
Ackermann motion). Degenerate constraints are not
considered for hypothesizing scale values.
• Distance-function: This function tests all other con-

straints against the fitted model. A constraint i is re-
garded as an inlier if the scales hypothesis sufficiently
satisfies the corresponding equation, e.g. (4). The in-
lier condition thus equals to | ||Aixhyp||

||bi|| − 1| < tDIST.
During the experiments, the distance threshold tDIST

was set to 0.3.

The RANSAC step finds the inlier constraints, which are
then subsequently used to compute the scales by means of
the LS scheme in (5). Note: If it happens that there are no
inliers at all, the scales are set to one, which corresponds
to scale propagation. Also note that the degeneracy de-
pends only on the motion and not on the orientation of the
cameras. From a geometric point of view, both cameras
always represent omnidirectional bearing sensors separated
by a certain distance—independently of the physical setup.

As illustrated in Fig. 2, the computed scales are fed back
to the monocular VOs in order to rescale all poses and world
points therein.

3. Fusion of Two Odometries
The previous section showed how to deterministically

derive metric scales from two monocular VOs. Yet, we have
not fully exploited the redundancy given by the motion in-
formation of two individual cameras. The rig constraint at
t2 is not necessarily fulfilled. This section addresses this is-
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sue by fusing the two motion estimates into optimal camera
positions at t2 that satisfy the rigid rig constraint.

The fusion of the two motion estimates is tackled in four
steps. First, the individual motion estimates are expressed
in a common reference frame. Secondly, we derive the cor-
responding motion covariance matrices. Thirdly, the two
estimates are fused in the common coordinate system, and,
finally, the fused motion is transformed back into the indi-
vidual camera frames.

3.1. Expressing Motions in a Common Frame

As indicated in Fig. 5, the additional reference frame
S, named rig reference frame, is introduced as to simi-
larly transform the individual motion estimates to a com-
mon frame via known extrinsic calibration parameters. The
subscript before the transformation matrix TS2S1 indicates
the camera from which it is obtained. Rotational and trans-
lational part are decoupled, and for the sake of the subse-
quent fusion, rotations are written in terms of quaternions.
The transformations in S thus result to

CqS2S1 = q−1
CS ⊗ qC2C1 ⊗ qCS (7)

tC
S1 S1S2 = tS SC + RT

CS tR1 C1C2 − RT
CS RT

C2C1 RCS tS SC.

TR2R1

TL2L1

TLS TRS

TSL TSR

R
T

S
2
S
1

L T
S
2
S
1

Figure 5. Transforming camera motions to rig reference system.

The above equations are applied ∀ C ∈ {R,L}.

3.2. Derivation of Covariances

In order to have a measure of the uncertainty of the es-
timated incremental motions of the cameras, we now de-
rive their covariances. The covariances of the transforma-
tions from the rig frame S to the cameras are assumed to be
known from the calibration process. For the covariances of
the VO motion estimates themselves, a similar approach as
in [29] is applied. Under the assumption that the 3D points
are fixed, the covariance of the six motion parameters is de-
rived from the reprojection error

EC =
∑

i=1..N

∣∣∣∣∣∣CP (T Xi)− Cxi

∣∣∣∣∣∣
2
, (8)

where C stands for the right or left camera, respectively, P
for the projection function of the camera, X for a 3D world
point, and x for a 2D image point. During the Bundle-
Adjustment (BA) in the monocular VOs, which is executed
whenever a new keyframe is triggered, this reprojection
error is minimized by means of a nonlinear least squares
solver (Levenberg-Maquardt). Triggs et al. [28] showed

that the covariance is then given up to scale by the inverse
of the Hessian evaluated at the minimum of the cost func-
tion, i.e. the reprojection error. In analogy to data-fitting
problems, it is common to approximate the Hessian by JTJ
with J being the Jacobian [7]. The covariance of the motion
parameters Θ =

[
tx ty tz α β γ

]T
then reads

ΣΘ = ΣTt,rpy =

[
Σt,t Σt,rpy

Σrpy,t Σrpy,rpy

]
= σ̂2(JTJ)−1, (9)

where σ̂2 is the estimated variance of the residual and t and
rpy represent the translation and Euler angles, respectively.

For the fusion however, the covariances need to be ex-
pressed in terms of quaternions. The conversion from roll,
pitch, yaw covariance representation to quaternion covari-
ance representation is achieved by the Jacobian H intro-
duced in [27]. Furthermore, we need to apply the scale
factors to the translational part of the covariance matrices.
Thus, the final covariance derived from (9) results to

ΣTt,θ
=

[
Σt,t Σt,θ

Σθ,t Σθ,θ

]
=

[
λΣt,tλ λΣt,rpyHT

HΣrpy,tλ HΣrpy,rpyHT

]
,

(10)
where θ represents the quaternion axis and rpy represents
the Roll-Pitch-Yaw-angles. The Jacobian H in case of Tait-
Bryan angles is given by

H = [ ex, Rx(α) ey , Rx(α)Ry(β) ez ] , (11)

with unit vectors ei and rotation matrices Ri.
The total covariance of the rig motion is approximated

by the sum of the individual covariance matrices expressed
in the rig reference system. It finally results to

CΣ
S1tS1S2,θS2S1

= Σ
StSC,θCS

+RT
CSΣ

C1tC1C2,θC2C1
RCS +

RT
CSR

T
C2C1RCSΣ

StSR,θCS
RT

CSRC2C1RCS, (12)

where RBI consists of rotation matrices along its diagonal
following

RBI :=

[
RBI 0
0 RBI

]
. (13)

3.3. Fusion

The two motion estimates for the rig center are fused in
a similar way as suggested by [26]. They estimate the state
of an orientation sensor by means of an Extended Kalman
Filter. In the update step, the prediction of the model is
fused with the observed measurement of the sensor. We
fuse the two motion estimates of the rig center in a similar
way. This is accomplished by carrying out the following
steps:
1. Residual We compute the difference in translation and
rotation of the two motion estimates

r =

[
∆t
δθ

]
(14)

with
∆t = tL

S1 S1S2 − tR
S1 S1S2[

1
1
2
δθ

]
≈ LqS2S1 ⊗ Rq−1

S2S1,
(15)
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where we make use of the small rotation approximation for
the quaternion.

2. Weight Matrix The weight matrix is given by

F = ΣR S1tS1S2,θS2S1

(
ΣR S1tS1S2,θS2S1

+ ΣL S1tS1S2,θS2S1

)−1
.

(16)

3. Correction The weight matrix is multiplied with the
residual in order to get the correction terms[

∆t̂

δθ̂

]
= F r. (17)

4. Fusion In the final fusion step, the corrected translation
is computed additively, while the quaternion is obtained by
multiplication. We obtain

t∗S S1S2 = tR
S S1S2 + ∆t̂

q∗S2S1 = δq̂⊗ RqS2S1,
(18)

with
δq̂ =

[
α

1
2
δθ̂

]
. (19)

The scaling factor α is needed in order to enforce that the
length of the quaternion remains equal to one.

3.4. Transforming Motion back to Camera Frames

In this step, the optimal translations and rotations of the
cameras are inferred from the fused motion of the rig center
S. By doing so, it is ensured that the rig constraint at t2 is
still fulfilled. The final poses result to

q∗C2C1 = qCS ⊗ q∗S2S1 ⊗ q−1
CS (20)

t∗C1 C1C2 = −RCS tS SC + RCS t∗S1 S1S2 + RCS RT
S2S1 tS SC,

with C ∈ {R,L}. After the optimal motion of the cam-
eras has been derived, the corresponding translations and
rotations are fed back to the monocular VOs as illustrated
in Fig. 2. This is equivalent to a shift of the individual vision
reference frames.

4. Experiments
The algorithm described in the previous sections is thor-

oughly tested on real data. The setup for the experiments as
well as the achieved results are presented in the following.

4.1. The Camera Rig
The stereo rig used during the experiments consists of

two global shutter CMOS imagers with 150◦ FOV each. As
shown in Fig. 6, the cameras are facing opposite directions
and their optical axes are aligned. Pless et al. [22] showed
that this is the preferred configuration for two cameras by
composing the Fisher information matrix. The rig addition-
ally carries a camera triggering unit and markers for the ex-
ternal Vicon motion capture system.

A crucial point for the 6D motion estimation proposed
in the previous sections is accurate knowledge about the ex-
trinsic calibration of the cameras, i.e. the transformation

Figure 6. The stereo rig used during the experiments.

from the right to the left camera. While [17] uses a mirror
to calibrate non-overlapping cameras, we arrange a calibra-
tion method which makes use of the external tracking sys-
tem. The rig is immobile and the cameras capture images of
a moving checkerboard of which the position is tracked by
the tracking system. The position of the cameras can be re-
constructed by concatenating three consecutive transforma-
tions. The first transformation is from the tracking system to
the tracking markers on the checkerboard, the second from
the markers to the checkerboard pattern and the third from
the pattern to the camera. Whereas the first transformation
is supplied by the tracking system, the second is known by
construction and the third is obtained by the toolbox from
[24]. The chains of transformations read

Ti
RV

= Ti
RP
· T

PM
· Ti

MV

Ti
LV

= Ti
LP
· T

PM
· Ti

MV
,

(21)

where ’V’ stands for Vicon reference frame, ’M’ for mark-
ers on the checkerboard, ’P’ for the checkerboard pattern
and ’R’ or ’L’ for the right or left camera, respectively. The
superscript ’i’ represents the time index (the transformation
from the markers to the pattern is constant). The relative
displacement from the right to the left camera is computed
using the poses averaged over all i (typically 20):

T
LR

= T̄
LV
· T̄−1

RV
. (22)

Fig. 7 shows the result of the calibration. Note that our
calibration process also recovers the transformation covari-
ances. Also note that the central rig coordinate system is
simply defined to be aligned with the markers on the rig.

0

0

0

0

0

0

0
0

0
0

0
0

0
0

0
0

Figure 7. Extrinsic Calibration: Camera and checkerboard poses.
Translational part of covariance matrix is indicated by 3D-ellipses.
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4.2. Circular Trajectory

In order to assess the performance of the proposed sys-
tem, we tested it on two datasets and compared the recon-
structed trajectories to the ground truth supplied by the ex-
ternal tracking system. In the first dataset, the rig experi-
ences a circular motion with reasonable amount of rotation.

Three different configurations of the algorithm were
tested: In the first configuration, denoted by (S̄, F̄), monoc-
ular VO was carried out in each camera without subsequent
scale estimation or fusion step. The scales have only been
initialized using ground truth. In the second setup, indicated
by (S, F̄), scale estimation was conducted, but no fusion
took place. In the third configuration, both the scale estima-
tion and the fusion step were active (S,F). The outputs of
these three setups can be seen in Fig. 8.

y
[m

]

x [m]

0.0 1.0 2.0 3.0

1.7%

0.0

1.0

2.0

3.0

x [m]

0.0 1.0 2.0 3.0

1.3%

0.0

1.0

2.0

3.0

x [m]

0.0 1.0 2.0 3.0

0.8%

0.0

1.0

2.0

3.0

Figure 8. Dataset ’Circle’ with different algorithm configurations:
(S̄, F̄), (S, F̄) and (S,F) with drifts. The ground truth is colored
in blue, the motion estimates are red (right) and green (left).

The motion estimate becomes increasingly accurate
from left to right. It is important to note, that in the left
and middle configurations, each camera suffers from an in-
dividual drift as they do not fuse the estimates in a common
reference frame. The setup (S,F) exhibits the least drift
with only 0.8%.

Furthermore, common performance criteria are the ratio
of the norm of the incremental translations (estimated vs.
ground truth) and the relative translation vector error. The
quotient of the estimated translation and the ground truth
translation should stick to one for a sound motion estimation
system. The second quality factor takes also the direction
of the translations into account, and should ideally be zero.
Both ratios are computed at keyframe instances only and

Keyframes

|| tVO
R1 R1R2

||

|| tGT
R1 R1R2

||

0 50 100 150 200

0.0

0.5

1.0

1.5

2.0

Keyframes

|| tVO
R1 R1R2

− tGT
R1 R1R2

||

|| tGT
R1 R1R2

||

0 50 100 150 200

0.0

0.5

1.0

1.5

2.0

Figure 9. Ratios of norms of incremental translations and relative
translation vector errors at keyframe instances.

illustrated in Fig. 9, where the superscript VO stands for the
estimated and GT for the ground truth quantity.

Table 1 opposes our results to those obtained in [4] in
terms of the above mentioned criteria. The comparison
shows that the means of our method are relatively close to
one or zero respectively, with reasonably small standard de-
viations. Note that our method continuously delivers scale
results whereas the method in [4] has been applied to an
outdoor dataset captured on a ground vehicle, attempting
to estimate challenging Ackermann-like motion. Therefore,
the compared approach was able to deliver meaningful scale
results only at particular instants.

Method Ratio of Norms Vector Error
Our system 1.005± 0.071 0.079± 0.061

Approach by [4] 0.90± 0.28 0.23± 0.19

Table 1. Results of our system contrasted to results by [4].

Next, we examine the relation between the accuracy of
the scale estimation, the number of inliers in the RANSAC
scheme, and the degeneracy of the rig motion. The covari-
ance of the estimated scales is derived from the LS-problem
(6). The motion degeneracy is estimated by the scalar prod-
uct of the translation and rotation axes. It indicates whether
the camera undergoes planar motion or motion with almost
no rotation or translation. The three quantities are indicated
in Fig. 10.

[m
ra

d
]

Keyframes

| t
L1 L1L2

· n
L2L1

|

#Inlier-Constraints

σλ

0 20 40 60 80 100 120 140 160 180 200

0 20 40 60 80 100 120 140 160 180 200

0 20 40 60 80 100 120 140 160 180 200

0
0.05
0.10

0

5

10

0

0.1

0.2

Figure 10. Relation of scale estimation accuracy, number of inliers
in the RANSAC scheme and motion degeneracy.

The influence of the multi-frame buffer is visible at
the beginning of the dataset, where only few frames are
buffered and the scale estimation in turn has a large stan-
dard deviation. This dataset does not contain much degen-
erate motion for scale estimation.

4.3. Straight Trajectory

In this dataset, the rig experienced a straight motion
with only little rotation. As in the previous circular motion
dataset, the algorithm is tested in three different configura-
tions, which are shown in Fig. 11.
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Figure 11. Dataset ’Straight’ with the configurations: (S̄, F̄),
(S, F̄) and (S,F) with corresponding drifts (left to right).

Again, a steady improvement of accuracy from left to
right is observed. Note that there is clearly more drift
present than in the circular dataset. However, the setup with
scale estimation and fusion still performs best with only
1.8%.

The standard deviation of the scale estimation, number
of inliers in the RANSAC scheme and motion degeneracy
of the rig are shown in Fig. 12.

[m
ra

d
]

Keyframes

| t
L1 L1L2

· n
L2L1

|

#Inlier-Constraints

σλ

0 20 40 60 80 100 120

0 20 40 60 80 100 120

0 20 40 60 80 100 120

0
0.05
0.10

0

5

10

0

0.1

0.2

Figure 12. Scale estimation accuracy, number of inliers in the
RANSAC scheme, and motion degeneracy of the rig.

One can observe that there are less inliers in the
RANSAC scheme and that the standard deviation for the
scale estimation is slightly higher compared to the circu-
lar dataset, which is due to the smaller amount of rotation
between keyframes. The effect of the buffer length on the
variance of the scale estimation can again be observed at the
beginning of the dataset.

4.4. Real-Time Implementation

Our non-overlapping stereo system runs in real-time and
employs the single camera VO framework from [15] on
each camera individually, augmented by a windowed BA in
order to increase robustness and accuracy of the estimated
motion and structure. Moreover, it employs an enhanced

version of the rotation-variant BRIEF [3] descriptor. It takes
prior inter-frame in-plane rotation information into account
in order to accordingly rotate the descriptor extraction pat-
tern, and thus increase the robustness of feature matching
even in case of rotation. The computational time remains
similar and the descriptor similarity can still be efficiently
evaluated by means of the Hamming distance. Note that,
even though this VO framework employs information from
an additional IMU in order to recover relative rotation pri-
ors in between successive frames, we still do not make use
of the IMU for scale estimation here. Hence, the individ-
ual motion estimates could just as well be delivered by a
vision-only based monocular odometry.

The implementation is integrated into the Robot Operat-
ing System (ROS) [23] and makes use of the OpenCV [2]
and Eigen [9] libraries. The entire odometry system runs at
a frame rate of 15 Hz on a 32 bit Intel Core i7 2.8 GHz ma-
chine with 4 GB RAM. The average computation times for
double pose estimation between two frames (multi-threaded
execution), scale estimation, and the fusion step are indi-
cated in table 2. The time required for the scale estima-
tion and the optimal fusion step is negligible in comparison
to the runtime needed for the two monocular VOs. Given
the fact that the proposed method is of modular nature, any
monocular VO with pose covariance output can in principle
be employed.

Step Runtime [ms]
2x Monocular VO 69.5
Scale Estimation 0.1
Optimal Fusion 0.07

Table 2. Runtime analysis.

5. Conclusion
In this paper, we have presented a novel method for

estimating metric 6DOF motion of a stereo rig with non-
overlapping fields of view. To the best of our knowledge,
it is the first metric VO system of this type that is demon-
strated in real-time and employs information from two cam-
eras which do not share their FOV. The proposed technique
sustainably determines metric scale from rigid transforma-
tion constraints, and fuses cues from individual monocu-
lar VOs for an optimal result. Degenerate motion con-
straints which render the scale unobservable are robustly
detected and excluded. Comprehensive performance eval-
uation by means of a comparison to accurate ground truth
motion information underlines the accuracy and robustness
of our metric motion estimates, and our results are better
than those reported in the literature.
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