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Abstract

To capture the full brightness range of natural scenes,
cameras automatically adjust the exposure value which
causes the brightness of scene points to change from frame
to frame. Given such a video sequence, we introduce a new
method for tracking features and estimating the radiomet-
ric response function of the camera and the exposure differ-
ence between frames simultaneously. We model the global
and nonlinear process that is responsible for the changes
in image brightness rather than adapting to the changes lo-
cally and linearly which makes our tracking more robust to
the change in brightness. The radiometric response func-
tion and the exposure difference between frames are also
estimated in the process which enables further video pro-
cessing algorithms to deal with the varying brightness.

1. Introduction
Extracting and tracking features is a fundamental step in

many computer vision systems since it provides means to
relate one image to another spatially. One of the most com-
monly used feature tracker especially for processing videos
is the KLT (Kanade-Lucas-Tomasi) tracker ([12, 17]) due to
its robustness and efficiency. However, there are cases that
pose problems for the KLT tracker mainly when images of a
high dynamic range scene are captured. In order to capture
the full brightness range of natural scenes, where parts are
in the shadow and others are in bright sunlight for exam-
ple, the camera has to adjust the exposure accordingly. In
consequence, the appearance of the same scene point in the
video sequence varies, breaking the basic assumption for
the KLT tracker that the brightness of the scene points stay
constant. Hence, we need methods to find radiometric re-
lationship between image features in addition to the spatial
relationship.

We introduce a new method that models the changes
in image brightness between images globally and nonlin-
early rather than treating the variation locally and linearly
by comparing local regions independently. The brightness

change can be explained by the radiometric response func-
tion which defines the mapping from the image irradiance to
the image brightness. We first introduce a method for track-
ing features and estimating the exposure changes between
frames when the camera response function is known. In
many cases the radiometric response function is not known
in prior, so we present a method for joint feature track-
ing and radiometric calibration by formulating the estima-
tion of the response function within a linear feature track-
ing scheme that can deal with varying intensity values of
features due to exposure changes. Our novel frame work
performs an integrated radiometric calibration in contrast to
previous radiometric calibration techniques which require
the correspondences as an input to the system which leads
to a chicken-and-egg problem as precise tracking requires
accurate radiometric calibration. By combining both into
an integrated approach we solve this chicken-and-egg prob-
lem.

The remainder of the paper is organized as follows. In
the next section, we will review the basics of the radiomet-
ric calibration process and the KLT tracker as well as the
related works. In section 3, we will first introduce a method
for tracking features when the response function is known
and then explain the method for simultaneous tracking and
the response function estimation. Additionally we evaluate
our method with experiments in section 4 and conclude with
discussion about our algorithm and future works.

2. Basics and Previous Works
2.1. Kanade-Lucas-Tomasi (KLT) Tracker

We first review the KLT tracker ([12, 17]). The algorithm
is based on the assumptions that the motion of the camera is
small and the appearance of features stays constant between
consecutive frames in the video sequence. The brightness
constancy assumption is stated as follows :

J(x +
dx
2

)− I(x− dx
2

) = 0 (1)

J and I are images at time t + 1 and t respectively,



x = [x, y]T is the feature location, and dx = [dx, dy]T

is the displacement vector. After linearizing the equation
and minimizing the error over a patch P , the displacement
for each feature is computed as follows [2]:

∑
x∈P

[
sx

2 sxsy

sxsy sy
2

] [
dx
dy

]
= 2

∑
x∈P

[
(I(x)− J(x))sx

(I(x)− J(x))sy

]
(2)

sx = Jx + Ix, sy = Jy + Iy (3)

where Jx = ∂J(x)
∂x , Jy = ∂J(x)

∂y , Ix = ∂I(x)
∂x , and Iy =

∂I(x)
∂y . Notice that the summation is over the patch P sur-

rounding the feature due to the assumption of locally iden-
tical motion of features.

The dynamic range of cameras is usually too small to ac-
commodate the large dynamic range of natural scenes. Ac-
cordingly, the exposure of the camera is adjusted causing
the appearance of the features to change. In the implemen-
tation by Birchfield ([2]), a simple method is used to ac-
count for the gain change between images. For each feature
patch P in the first image, an individual gain is computed
using the current estimate of the location of the patch P ′ in
the second image. The gain ratio is computed by the ratio
of mean intensity values of the two patches. The estimated
ratio is used to normalize the intensity of the neighborhoods
of the point in the second image to proceed with the tracking
process. In [1, 7] illumination invariance is also achieved
by solving for a gain and bias factor in each individually
tracked patch. In all of these approaches, the change in in-
tensity is treated locally for each individual feature. Also,
the intensity change which is a nonlinear process is linearly
approximated.

2.2. Radiometric Calibration

The radiometric response function defines the relation-
ship between the image irradiance E and the image bright-
ness I at a point x in regards to the exposure k as follows.

Ix = f(kEx) (4)

Assuming equal irradiance for corresponding points be-
tween images1, we have the following equation which
shows how corresponding points x1,x2 in two images I, J
are radiometrically related.

g(J(x2))− g(I(x1)) = K (5)

The response function g is the log-inverse of the radiometric
response function2 (log f−1) and the K is the logarithm of

1We assume that the effect of vignetting is the same for the correspond-
ing points since the displacement between consecutive frames is small in
videos.

2See [9] for proof of invertability

the exposure ratio between the two images. For simplicity,
we will just consider g as the response function and K as
the exposure difference between two images.

While there are several methods that do not require cor-
respondences such as estimating the response function from
the relation between histograms ([5]) or from a single im-
age using color distribution of local edge regions ([10, 11]),
majority of work relies on correspondences to compute the
response function. In most cases, the correspondence prob-
lem is solved by taking images of a static scene with a static
camera with different exposures ([4, 14, 15, 6]). Then the
response function is estimated by solving Eq. (5) in least
squares sense using different models for the response func-
tion such as gamma curve ([14]), polynomial ([15]), non-
parametric ([4]), and PCA model ([6]). While the restric-
tion on the camera motion was relieved in [9] by dealing
with large amount of outliers robustly, it relies on the com-
putation of dense correspondence maps and assumes that
the normalized-cross correlation used as the similarity mea-
sure can match features reliably over brightness changes.

2.3. Joint Domain and Range Image Registration

Similar to our work is the joint domain and range regis-
tration of images. In [13], Mann introduced a method for
jointly computing the projective coordinate transform (do-
main) and the brightness change (range) between a pair of
images of a static scene taken with a purely rotating cam-
era. The brightness transform which they call the compara-
metric function is approximated by using a gamma function
as the model for the response function. The joint registra-
tion process is linearized by the Taylor expansion and the
least squares solution is acquired. In a similar work, Can-
docia proposed a method for the joint registration by us-
ing a piecewise linear model for the comparametric function
([3]).

Notice that our method is different from the methods
[13, 3] in that we are interested in tracking of features which
are allowed to move unconstrained rather than a global pro-
jective transform between images. This involves estimation
of a significantly more parameters and our algorithm is able
to deal with it efficiently. In addition, we do not restrict the
movement of the camera and we can also deal with mov-
ing objects in the scene. We are also different in that we
compute the actual response function of the camera and the
exposures rather than just finding out the brightness trans-
form between images.

3. Tracking and Radiometric Calibration

We now introduce our method for brightness invariant
feature tracking and radiometric calibration. Given a video
sequence with varying exposure, we estimate the radiomet-
ric response function of the camera, the exposure differ-



ence between frames, and the feature tracks from frame
to frame. Our feature tracking in contrast to previous ap-
proaches models the global and nonlinear process that is re-
sponsible for changes in image brightness rather than adapt-
ing to the changes locally and linearly. Our radiometric
calibration is different from previous calibration works be-
cause the correspondences are output of our system rather
than being an input to the system. Our method is an online
process not a batch process which allows subsequent algo-
rithms such as stereo matching to compensate for brightness
changes.

We will first start with explaining the method for tracking
features when the response function is known and then we
will proceed to the method for the joint feature tracking and
radiometric calibration.

3.1. Tracking Features with Known Response

We first explain the method for tracking features and es-
timating the exposure difference K between two images
when the response function of the camera g is known. For
a feature x with the displacement dx, Eq. (5) becomes

g(J(x +
dx
2

))− g(I(x− dx
2

)) = K. (6)

We apply the Taylor expansion to the images (Eq. (7))
and then to the response function (Eq. (8)) to linearize the
equation above.

g(J(x) +∇J(x)T dx
2

)− g(I(x)−∇I(x)T dx
2

) = K (7)

Let J(x) = J , I(x) = I , and g′ be the derivative of the
response function g,

g(J) + g′(J)∇JT dx
2
−

[
g(I)− g′(I)∇IT dx

2

]
−K = 0

(8)
Assuming equal displacement for all pixels of a patch
around each feature Pi, the displacements for each feature
[dxi, dyi]T and the exposure difference K are estimated by
minimizing the following error function :

E(dxi, dyi,K) =
∑
x∈Pi

(β + a
dxi

2
+ b

dyi

2
−K)2 (9)

with
a = g′(J(x))Jx + g′(I(x))Ix (10)

b = g′(J(x))Jy + g′(I(x))Iy (11)

β = g(J(x))− g(I(x)) (12)

The error function is minimized when all partial deriva-
tives towards the unknowns are zero. Accordingly, the fol-
lowing equation needs to be solved for each feature.[

Ui wi

wi
T λi

]
︸ ︷︷ ︸

Ai

zi =
[

vi

mi

]
(13)

Figure 1. Solving for the displacements and the exposure : Illus-
tration of Eq. (19)

where,

Ui =
[

1
2

∑
Pi

a2 1
2

∑
Pi

ab
1
2

∑
Pi

ab 1
2

∑
Pi

b2

]
(14)

wi =
[
−

∑
Pi

a
−

∑
Pi

b

]
, λi =

∑
Pi

2 (15)

vi =
[
−

∑
Pi

βa
−

∑
Pi

βb

]
, mi = 2

∑
Pi

β (16)

zi = [dxi, dyi,K]T (17)

Note that the exposure difference K is global for all fea-
tures and we can estimate the unknown displacements for
all features (dxi, dyi, i = 1 to n) and the exposure K simul-
taneously by minimizing the following error.

E(dx1, dy1, ..., dxn, dyn,K) =
n∑

i=1

E(dxi, dyi,K) (18)

Accordingly the unknowns are found by solving the fol-
lowing linear equation.

Az =
[

U w
wT λ

]
z =

[
v
m

]
(19)

with

U =


U1 0 . . . 0
0 U2 0
...

. . .
...

0 . . . Un

 , w = [w1, . . . ,wn]T

(20)

λ =
n∑

i=1

λi, m =
n∑

i=1

mi, v = [v1, . . . , vn]T (21)

z = [dx1, dy1, . . . , dxn, dyn,K]T (22)

Fig. 1 shows the structure of Eq. (19). The matrix A is
a sparse matrix and we can take advantage of its structure
to find a computationally efficient solutions. Both sides of



the Eq. (19) are multiplied on the left by
[

I 0
−wT U−1 1

]
resulting in[

U w
0 −wT U−1w + λ

]
z =

[
v

−wT U−1v + m

]
(23)

where (−wT U−1w + λ) is the Schur complement [18] of
the matrix U. Since the inverse of U can be computed effi-
ciently as it is a 2× 2 block diagonal matrix (this inversion
corresponds to the amount of work necessary for the stan-
dard KLT) and its Schur complement is a scalar, Eq. (23)
can be solved very efficiently. The exposure difference K
is given by

(−wT U−1w + λ)K = −wT U−1v + m (24)

Once K is found, we can solve for the displacements.
For each patch i, dxi and dyi are computed by back sub-
stituting K as in Eq. (25). Hence the proposed estimation
adds one additional equation Eq. (24) to solve to the stan-
dard KLT tracking equations.

Ui

[
dxi

dyi

]
= vi −Kwi (25)

3.2. Joint Tracking and Radiometric Calibration

We now discuss the case of unknown response function.
Given a video sequence, we automatically compute the ra-
diometric response function g, the exposure difference be-
tween frames K, and the feature tracks.

We use the Empirical Model of Response (EMoR) intro-
duced by Grossberg and Nayar in [6]. They combined the
theoretical space of the response function and the database
of real world camera response functions to create the EMoR
which is a Mth order approximation :

g(I) = g0(I) +
M∑

k=1

ckhk(I) (26)

where g0 is the mean function and ck’s are the coefficients
for the basis functions hk’s. In this paper, we used a third
order approximation (M = 3) since the first three basis
functions explain more than 99.6% of the energy ([6]). The
derivative of the response function is similarly a linear com-
bination of the derivatives of the basis functions.

g′(I) = g′0(I) +
M∑

k=1

ckh′k(I) (27)

Substituting g and g′ in Eq. (8) with Eq. (26) and
Eq. (27), we get the following equation.

d+a·dx+b·dy+
M∑

k=1

ckrk +
M∑

k=1

αkpk +
M∑

k=1

βkqk−K = 0

(28)

The known variables for Eq. (28) are :

a =
g′0(J)Jx + g′0(I)Ix

2
, b =

g′0(J)Jy + g′0(I)Iy

2
(29)

rk = hk(J)− hk(I), pk =
h′k(J)Jx + h′k(I)Ix

2
(30)

qk =
h′k(J)Jy + h′k(I)Iy

2
, d = g0(J)− g0(I) (31)

The unknowns are the displacements dx and dy, the coeffi-
cients for the response function ck (k = 1 to M), the expo-
sure difference K, and variables introduced for linearization
αk = ckdx and βk = ckdy.

Again, we assume constant displacement for all pixels
in a patch around each feature and minimize the following
error function to solve for the unknowns.

E(dxi, dyi, c1, . . . , cM , αi1, . . . , αiM , βi1, . . . , βiM ,K) =

∑
Pi

(d+adxi+bdyi+
M∑

k=1

ckrk+
M∑

k=1

αikpk+
M∑

k=1

βikqk−K)2

(32)
Setting all partial derivatives towards the unknowns to zero,
we get following equation for each feature.[

Ui Wi

Wi
T Λi

]
︸ ︷︷ ︸

Ai

zi =
[

vi

mi

]
(33)

zi = [dxi, αi1, . . . , αiM , dyi, βi1, . . . , βiM , c1, . . . , cM ,K]T

(34)
Ui =

∑
Pi

µµT , Wi =
∑
Pi

µνT , Λi =
∑
Pi

ννT

(35)
vi = −

∑
Pi

d · µ, mi = −
∑
Pi

d · ν (36)

µ = [a, p1, . . . , pM , b, q1, . . . , qM ]T ,ν = [r1, . . . , rM ,−1]T

(37)
Now we can solve for all feature tracks and the global

parameters for the response function and the exposure dif-
ference similar to the case of known response function.

Az =
[

U W
WT Λ

]
z =

[
v
m

]
(38)

with

U =


U1 0 . . . 0
0 U2 0
...

. . .
...

0 . . . Un

 , W = [W1, . . .Wn]T

(39)

Λ =
n∑

i=1

Λi, v = [v1, . . . ,vn]T ,m =
n∑

i=1

mi (40)



Figure 2. Overview of our algorithm

z = [ϕ1, . . . ,ϕn, c1, . . . , cM ,K]T (41)

where

ϕi = [dxi, αi1, . . . , αiM , dyi, βi1, . . . , βiM ]T (42)

Notice that Eq. (38) has the same structure as Eq. (19)
(Fig. 1) except that the size of each sub-matrices are bigger.
Ui’s are (2M+2)×(2M+2), Wi’s are (2M+2)×(M+1),
and Λi’s are (M + 1) × (M + 1). Multiplying both sides

on the left by
[

I 0
−WT U−1 I

]
results in

[
U W
0 −WT U−1W + Λ

]
z =

[
v

−WT U−1v + m

]
(43)

The coefficients of the response function and the expo-
sure can be solved by

(−WT U−1W + Λ)υ = −WT U−1v + m (44)

where
υ = [c1, . . . , cM ,K] (45)

The solution to Eq. (44) will suffer from the exponential
ambiguity (or γ ambiguity) which means that if a response
function g and an exposure K is the solution to the problem
so are γg and γK [5]. Simply put, there are many response
functions and exposures that satisfy the equation that are of
different scales. As stated in [5], we have to make assump-
tions on either the response function or the exposure to fix
the scale. To deal with this ambiguity problem, we chose
to set the value of the response function at the image value
at 128 to a value τ . This is done by adding the following
equation to Eq. (44).

ω

M∑
k=1

ckhk(128) = ω(τ − g0(128)) (46)

The value ω in the equation controls the strength of the con-
straint.

The displacement for each feature can then solved by
back substituting the solution υ to Eq. (33).

Uiϕi = vi −Wiυ (47)

Notice that αik’s and βik’s in ϕi are the products of the
displacement and the response function coefficients : αik =
ckdxi and βik = ckdyi. Since we have already estimated
the coefficients ck’s, Eq. (47) can be factorized in a simpler
form as follows.[

dxi αi1 . . . αiM

dyi βi1 . . . βiM

]
=

[
dxi

dyi

] [
1 c1 . . . cM

]︸ ︷︷ ︸
c

(48)

Yi

[
dxi

dyi

]
= vi −Wiυ (49)

Yi(·, 1) = Ui(·, 1 : M + 1)cT

Yi(·, 2) = Ui(·,M + 2 : 2M + 2)cT (50)

3.3. Updating the Response Function Estimate

In the previous subsection, we introduced the method for
computing the response function, the exposure difference,
and the feature tracks at the same time given an image pair
from a video sequence. We now explain how we can inte-
grate the estimates of the response function from each pair
of images using a Kalman filter [19]. The state is the coeffi-
cients of the response function (φ = [c1, . . . , cM ]T ) and
it is assumed to remain constant. Hence the process noise
covariance was set to zero and the time update equations
used are

φ̂−
k = φ̂k−1

P−
k = Pk−1 (51)

where φ̂ is the estimate of the state and P is the estimate er-
ror covariance matrix. The measurement update equations



Figure 3. Feature tracking result (synthetic example) using : (first) standard KLT (second) local-adaptive KLT (third) our method with
known response (fourth) our method with unknown response. Images are from [2]

Figure 4. (First) Samples of response functions estimated from the synthetic sequence. (Second) Final estimate of the response function.

are

κk = P−
k (P−

k + R)−1

φ̂k = φ̂−
k + κk(zk − φ̂−

k )
Pk = (I− κk)P−

k (52)

where κ is the Kalman gain, zk is the measurement which
is the pair-wise estimate of the response function in our
case, and R is the measurement noise covariance. Let
D = (−WT U−1W+Λ) and b = −WT U−1v+m from
Eq. (44), the covariance matrix R is computed as follows.

R = (DT D)−1((Dυ − b)T (Dυ − b)) (53)

The Kalman estimate of the response function φ̂ =
[ĉ1, . . . , ˆcM ]T is incorporated to the response function esti-
mation in the next frame in the sequence where the problem
becomes estimating ∆ck as follows.

g(I) = g0(I) +
M∑

k=1

(ĉk + ∆ck)hk(I) (54)

3.4. Multi-scale Iterative Algorithm

Fig. 2 shows the overview of our algorithm for the
method explained in Sec. 3.2. As with the standard KLT
tracker implementation, our algorithm runs iteratively on

multiple scales. Image intensity and gradient pyramids are
first built and the computation (process A in Fig. 2) starts
from the coarsest level pyramid to the finest level. The pro-
cess A in Fig. 2 is iterated multiple times for each pyra-
mid level. The output of the algorithm are the coefficients
for the response function which are fed to the Kalman fil-
ter (Sec. 3.3), the exposure difference K, and the tracked
features which become input for the next pair of frames.
Notice that we can start the tracking process with unknown
response function and switch to tracking with known re-
sponse function explained in section 3.1 when the estimate
of the response function gets stable.

4. Experiments

We first evaluate our proposed methods with synthetic
examples using evaluation images from [2]. The brightness
of an image can be changed from I to I ′ using Eq. (55) with
a response function g together with an exposure difference
of K.

I ′ = g−1(g(I) + K) . (55)

The response function used for the evaluation with the syn-
thetic data is shown in Fig. 4. The exposure value applied
for the examples from Fig. 3 was 0.4. The feature tracking
results using the standard KLT ([12, 17]), the local adap-
tive KLT ([2]), our method with known response function



Figure 5. Feature Tracking using (First) Local-adaptive KLT (Second) Our method with known response (Third) Our method with unknown
response. The video can be seen at http://www.cs.unc.edu/∼sjkim/klt/tracks.wmv

Figure 6. (First) Samples of response functions estimated from the real video sequence (20 frames). (Second) Final estimate of the response
function. The video can be seen at http://www.cs.unc.edu/∼sjkim/klt/track-response.wmv

(Sec. 3.1), and our method with unknown response func-
tion (Sec. 3.2) are shown in Fig. 3. Expectedly, the standard
KLT does not perform well under the brightness change.
Our experiments show that the local adaptive KLT mostly
performs well when the camera motion and the bright-
ness change are small. However, the performance signif-
icantly degrades when the change in motion or brightness
increases as demonstrated in this example. Tracking results
using our methods, both with and without the knowledge of
the response function, show superior results even with sig-
nificant change in brightness which poses some problems
for other tracking methods. The exposure value computed
by our method was 0.404 with the known response func-
tion method and 0.408 with the unknown response function
method. We further tested our response function estimation
algorithm by creating a synthetic sequence with 9 images
with varying exposure values. Fig. 4 shows some samples
of the successive response function estimates and the final
estimate along with the ground truth. Some estimates are
less accurate in the lower intensity regions because the ex-
posure difference was small in those image pairs. When
the exposure difference is small, there are no changes in the
brightness in the lower brightness regions giving no con-
straints to the estimation problem.

Similar results were observed in an experiment with a
real video sequence. It was taken in a high dynamic range
scene with a Canon GL2 camera. The exposure was auto-
matically adjusted to a high value when the camera pointed
to the dark inside area and it changed to a low value as the
camera turned to the bright outside area. The comparison
of tracks using the local-adaptive KLT, our method with
known response function, and our method with unknown
response function is shown in Fig. 5. Both of our methods
are able to track more features with significantly less errors
when the change in motion and brightness is relatively large
as shown in the example.

Fig. 6 shows the result of our response function estima-
tion from this video. For the ground truth, we took multi-
ple images of a static scene with a fixed camera changing
the exposure value and fit the empirical model of response
(EMoR) to the data as the method in [9]. Samples of the
response function estimates and the final estimate are com-
pared with the ground truth in Fig. 6.

The execution time for tracking 500 features in 720x480
images on a Pentium 4 processor (2.80 GHz) was 5
frames/second for the standard KLT, the local-adaptive
KLT, and our method with known response. For our
method with unknown response, the execution time was 0.2



frames/second which includes camera response and expo-
sure estimation in addition to tracking. Only few frames are
necessary to compute the response function and our method
with the known response can be used for tracking after-
wards. The overhead would be about 5% to 10% when
tracking an 1-minute video.

5. Conclusion
We have introduced a novel method that unifies the prob-

lems of feature tracking and radiometric calibration into a
common framework. For feature tracking, it is commonly
required that the brightness of features stays constant or the
variations are dealt locally and linearly when the change is
actually global and nonlinear. This limitation is not accept-
able in many applications like ground reconaissance video
for large scale outdoor scene modeling which needs to cap-
ture a high dynamic environment with a low dynamic cam-
era system. To overcome these limitations, we proposed a
joint feature tracking, radiometric response function and ex-
posure estimation framework. This solves the chicken-and-
egg problem in which the tracking requires accurate radio-
metric calibration for accuracy which in turn relies on pre-
cise tracks. Our computationally efficient algorithm takes
advantage of the structure of the estimation problem which
leads to a minimal computational overhead. In the future,
we plan to build higher level applications based on the pro-
posed method. The tracked features even in presence of
the brightness change and the computed response function
along with the exposure values could advance the quality
and robustness of the known structure from motion tech-
niques [16] by incorporating the information for the depth
from stereo and providing radiometrically aligned images
for texture-mapping. We also plan to add vignetting estima-
tion to the process by using the tracks over multiple frames.
Finally, we will also explore the possibility of applying our
method for creating high dynamic range (HDR) videos [8].
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