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Abstract. This paper introduces a multi-view stereo matcher that gen-
erates depth in real-time from a monocular video stream of a static scene.
A key feature of our processing pipeline is that it estimates global camera
gain changes in the feature tracking stage and efficiently compensates for
these in the stereo stage without impacting the real-time performance.
This is very important for outdoor applications where the brightness
range often far exceeds the dynamic range of the camera. Real-time per-
formance is achieved by leveraging the processing power of the graphics
processing unit (GPU) in addition to the CPU. We demonstrate the
effectiveness of our approach on videos of urban scenes recorded by a
vehicle-mounted camera with auto-gain enabled.

1 Introduction

In the last few years visualizations of the world from aerial imagery became
popular in applications like GoogleEarth and Microsoft Virtual Earth. These
data have a poor quality for ground-based visualization. To achieve high-quality
ground-level visualization one needs to capture data from the ground. A system
that automatically generates texture-mapped, ground-level 3D models should
be capable of capturing large amounts of data while driving through the streets
and of processing these data efficiently. We introduce a capture system and a
processing approach that fulfills these requirements. It reconstructs 3D urban
scenes from video data automatically.

The processing has the goal to automatically process very large amounts of
video data acquired in an unconstrained manner. This forces us to take shape
from video out of the laboratory and to achieve a fieldable system. Additionally
the system design is strongly driven by the performance goal of being able to
process the large video datasets in a time comparable to the acquisition time. A
first overview of our system was presented in [1]. In this paper we introduce the
improvements of the system to deal with high dynamic ranges over time of the
captured scene and the achievement of real-time processing for the system.

One of the challenges that the system has to overcome is the high dynamic
range of the captured scene. In order to capture the full brightness range of
natural scenes where parts are in the shadow and others are in bright sunlight
the camera has to use automatic gain control. Accordingly the appearance of
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the same scene point in the video images varies. Most current techniques do not
account for those changes automatically. We introduce a real-time tracking tech-
nique that estimates the global gain change between consecutive video frames
while tracking salient features. The novel proposed stereo algorithm efficiently
adapts for those gain changes and runs in real-time on the graphics card.

The paper is organized in the following way. First we discuss the work related
to the introduced system and its components. Section 3 gives an overview of the
system. Then we introduce our new improved real-time feature tracking which
additionally delivers the gain of the images. Afterwards the improved real-time
stereo-estimation that employs the estimated gain in section 5 is introduced. In
section 6 the evaluation of the proposed algorithms is presented.

2 Related work

Several researchers in photogrammetry and computer vision address the prob-
lem of 3D reconstruction from images. There are many systems which are highly
flexibile and are economic in size, weight and cost. The challenges for those sys-
tems are mostly the well-documented inaccuracies in 3D reconstruction from 2D
measurements. We approach the problem using passive sensors only, employing
the work on structure from motion and shape reconstruction within the com-
puter vision community in the last two decades [2-5]. Since this literature is too
large to survey here, the interested reader is referred to [6-9]. Our emphasis here
is to develop a fully automatic reconstruction system which is able to operate in
continuous mode without the luxury of capturing data from selected viewpoints
since capturing is performed from a moving vehicle constrained to the vantage
points of urban streets.

An essential step in image based reconstruction is the identification of salient
features and the tracking of those throughout the sequence. Commonly the KLT
tracker [10] is used to perform this task. It inherently assumes a constant ap-
pearance of the feature through out the video. In the implementation by Birch-
field [11], a simple method is used to account for the gain change between images.
For each feature patch in the first image, an individual gain is computed using
the current estimate of the location of the patch in the second image. The gain
ratio is computed by the ratio of mean intensity values of the two patches. The
estimated ratio is used to normalize the intensity of neighborhoods of the point
in the second image to proceed with the tracking process. Notice that even
though the gain ratio is a global parameter for the image it is computed for each
individual feature independently. In [12,13] illumination invariance is achieved
by solving for a gain and bias factor in each individually tracked patch. Those
approaches again treat the gain as individual parameter of each patch. With a
linear camera response function or a known response function, we can solve for
the gain as a global parameter instead of for each tracked patch which is both
computationally more efficient as well as more stable with respect to noise.

To achieve a 3D reconstruction of the scene a dense stereo estimation is re-
quired. We will use planesweeping stereo which was first introduced by Collins [14].



It provides a simple way to correlate multiple images without the need for rec-
tification between image pairs. Planesweeping has since proven to be an ideal
candidate for efficient implementation. It is especially well suited for an imple-
mentation on the graphics processing unit (GPU) since it is heavily optimized
to perform the key operation of planesweeping stereo, namely, rendering images
onto a planar surface. In [15] Yang and Pollefeys presented a real-time stereo
using the GPU. The proposed algorithm performs correlation-based stereo using
images from two or more distinct cameras. One important way in which our
algorithm differs from theirs, is that we assume a system with a single camera
in motion.

Our system is targeted towards the reconstruction of urban environments. A
system that reconstructs simple geometric models of urban environments from
ground based video of a moving stereo camera was introduced in [16,17]. Alter-
natively there are also approaches of the reconstruction of urban environments
from LIDAR [18]. The next section will give a brief overview over the components
of our system.

3 System overview

The proposed processing pipeline performs the following steps to achieve a fast
3D reconstruction. First the system identifies salient features in each video
stream. These salient features are then tracked through the video. Lost salient
features are replaced by new features in order to maintain a sufficient number
of features for the following processing steps. For this step, our novel proposed
tracking technique also estimates the global gain change between consecutive
frames to accommodate the varying brightness of the different scene parts.

The tracked features are used to estimate the relative camera positions
needed for stereo depth estimation over time with a single camera. Afterwards
the estimated camera poses and the gains are employed by our novel stereo with
gain adaptation to estimate the depth of all pixels in each video frame. In the
next sections we will explain the different components of the system.

4 Feature tracking with gain estimation

The process of finding and tracking good features is a vital step for an automatic
3D reconstruction system. One of the most widely used methods for tracking
features is the KLT tracker ([19,20]). The KLT tracking algorithm computes
the displacements of features (dz,dy) between consecutive video frames when
the image brightness constancy constraint (Eq. (1)) is satisfied.

Iz +dx,y+dy, t+dt) = 1(x,y,t) (1)

The brightness constancy constraint (Eq. (1)) means that the appearance of an
object in consecutive images doesn’t change. Usually this is achieved by keeping
exposure time and gain of the camera constant. For our application of driving in
urban environments this limitation is not acceptable. We need to vary the gain
of the camera to capture the full brightness range of natural scenes.



If the gain of the camera changes to adjust to the brightness of the scene, the
brightness constancy constraint (Eq. (1)) is no longer satisfied. Accordingly the
performance of the KLT tracker degrades significantly. We propose a variant of
the KLT tracker that estimates the gain change of the camera which is a global
parameter for the image if the camera response function is linear.

Assuming that the radiometric response function of the camera is linear, we
incorporate the gain ratio 8 = 14 df3 between the image at time ¢ and the image
at time ¢ + dt to Eq. (1) to obtain the following equation

Iz +dx,y+dy, t+dt) = (1+dB)I(z,y,t). (2)

Assuming equal displacement for all pixels of a patch around each feature (F;),
the displacement for each feature (dz;,dy;) and the gain ratio [ are estimated
by minimizing the following error function:

E(dxi, dyi,dB) = Y (I(x+ dai,y + dyi,t + dt) — (1+dB)I(x,y,1)*,  (3)
z,yeEP;

where n is the number of features. Applying the Taylor expansion, Eq. (3) can
be approximated by

E(dwi,dy;, dB) = > (Indw; + I,dy; + I, — dBI)?, (4)
z,yePb;
where I = I(z,y,t), I, = %, I, = gTI/’ I = %. This expression is minimized
when all partial derivatives towards the unknowns are zero. Accordingly for each
feature the following equation needs to be solved
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The unknown displacements (dz;, dy;) and the global gain ratio 8 can be esti-
mated by minimizing the error E(dz1,dys, ..., dz,, dy,, 5) for all features simul-
taneously. Accordingly Equation (4) can be written as

pe- (23] ]
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Since the matrix A is a sparse matrix, we can take advantage of the structure to
find a computationally efficient solution. Both sides of the Eq. (6) are multiplied

on the left by [—WTIU_l 1

[ e s)x= [

From Eq. (7), the global gain ratio 8 =1 + d8 can be solved by

} resulting in

(—wTU 'w + \)dp = Zn: > oI, (8)

i=1 P,

Notice that the inverse of U can be computed by inverting each 2 x 2 diagonal
block in U separately (which corresponds to the amount of work needed for the
traditional KLT). Once df is found, solving for displacements becomes trivial.
For each patch i, dz; and dy; are solved by back substituting dF. Hence the
proposed estimation adds one additional equation (8) to solve to the original
KLT tracking equations.

5 Gain adaptive multi-view real-time stereo

The multi-view stereo module takes as input the camera poses, gains and images
from a single video stream and estimates a depth map that contains the depth
for each pixel of the frame assuming the scene is static. It uses the plane-sweep
algorithm of Collins[14], which is an efficient multi-image matching technique
that is based on projective texture mapping. The multi-view stereo algorithm is
summarized in Algorithm 1.

In stereo, it is critical to account for changes in exposure in the images while
computing the cost Cr, Cr in step 2 in Algorithm 1. We show how to account
for changes using the gain ratio 8 obtained from KLT tracking as described in
section 4. To compare intensity values recorded in different images, they must
first be normalized for the gain change. According to equation 2, this is done for
consecutive frames simply by multiplying by the image’s gain ratio §; which is
the ratio of the gain of image i + 1 and the gain of image i. For non-consecutive
frames, the gain ratio 3(i,j) between frame i and frame j may be obtained by
multiplying the gain ratios of the frames in between

j-1
Bij = H/Bl and B, = B;;
1=i



Thus in stereo, we define the dissimilarity measure Cy, (resp. Cr) between the
reference view I,..; and the warped view I} as follows

CL(yax) = Z |ﬂi,resz((yax) - Iref(yax”a (9)

i<ref

where (; r.f is the gain ratio between image I,.; and image [;. Note that by
normalizing with respect to the reference image we avoid the necessity to handle
the full dynamic range.

To achieve real-time performance, the steps 2, 3, 4 in Algorithm 1 are per-
formed on GPU. In step 2, for each view, the four vertices are projected onto

Algorithm 1 Multi-view Stereo
1: A plane is swept through space in steps along a predefined direction, typically
parallel to the optical axis of the reference view.
2: At each position of the plane, all images (I;) are projected on the plane and rendered
in the reference view (Ir.s), and two slices of matching cost are calculated as:

Co(y:a) = > |BuresLi(y,@) = Lres (y, @)

i<ref

Crly,®) = Y |Bresali(y, @) — Lres (y, )|

i>ref

where I] are the projected views.

3: Under the local smoothness assumption, a boxcar filtering is performed throughout
the two sets of the slices of matching cost. For each pixel, the one with smaller match
cost is selected.

4: Depth values are computed by selecting the minimal aggregated correlation volume
at each pixel.

the reference view by the plane that is swept through space in steps, and the
indices of the remaining pixels are computed by the interpolation of the four
vertices representing the image corners (using vertex shader, a programmable
unit in the graphics hardware). In addition, since the graphics hardware is most
efficient at processing 4-channel (RGB + alpha) color images, this allows us to
compute four depth hypotheses at once. Once the projective mapping is com-
pleted, we use the pixel shader to calculate the gain corrected absolute difference
(10) of the projected views and the reference view, which is written to an output
texture. Since the time performance of our stereo is bound by the projective tex-
ture mapping on the GPU, gain correction does not add a measurable overhead.
One may observe that by delaying gain correction until after image warping we
must perform the per-pixel multiplication for every plane hypothesis. The image
could be normalized before warping, thus saving computation time. However,
this would require higher precision for image storage to account for the possi-
ble dynamic range of natural scenes. Moreover a higher precision would add a
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Fig. 1. On the right are the indices of the textures, on the left textures that are used
to save the aggregation results.

significant requirement for memory bandwith. To avoid this overhead the image
values are stored as 8-bit integers and only converted to higher precision floating
point numbers during the computation of the dissimilarity. In our implementa-
tion, we have verified that there is no observable time penalty for applying gain
correction.

Cost aggregation is performed in step 3. We implement a GPU boxcar filter
with multiple passes. In the first pass, we take advantage of the graphics card’s
bilinear texture interpolation to compute a 2 x 2 boxcar filtering result. For a
given pixel (z,y) we access the cost image C' at address (z + 0.5,y + 0.5). The
graphics card’s built-in bilinear interpolation returns the average of four pixel
costs, (C(z,y) + C(z+1,y) + C(z,y + 1) + C(x + 1,y + 1)) /4, which we then
multiply by 4 before storing the result in an 8-bit texture. This avoids losing
precision to discretization for low-cost regions while the potential saturation in
high-cost regions has no impact on the best cost result. The result is written to
an output texture C7 which stores the 2 x 2 boxcar result. In each subseqgent
pass, the results from previous boxcars are combined to produce a boxcar result
of twice the size in each dimension. Thus in pass ¢ for pixel (z,y), we compute
the 2% x 2¢ boxcar result from the previous result C;_1 as C;_1(x,y) + C;_1(x +
2171 ) + Ci (2, y + 2071 + Gy (z + 2071y + 2071). Figure 1 summarizes
the algorithm. The advantage of this approach is that the memory access is
continuous. Although more texture memory accesses are required, this approach
is faster than alternative approaches.

6 Experimental results

The experimental evaluation of the of the proposed techniques is discussed in
the following. First we evaluate the feature tracking with gain estimation from
section 4. The improvement of the stereo estimation by involving the estimated
gain will be discussed afterwards.



First the gain value of a natural image was changed by multiplying all gray
values with a constant § to test the gain estimation in the tracking. This image
was used to compare the tracking performance of the original KLT tracker and
our new KLT tracker with gain estimation. Fig. 6 shows result for a gain ratio
of 8 = 0.8. While the normal KLT shows poor performance, our new algorithm
perform comparably to the case with no gain change. Our technique estimated
a gain ratio of g = 0.7997 for this test.

e I

Fig. 2. (left) First image and the extracted features (top right) second image (gain =
0.8) and the features tracked by the normal KLT tracker (bottom right) second image
(gain = 0.8) and the features tracked by our new KLT tracker

Additionally the system was evaluated on video captured by a 1024x768 res-
olution Point Grey Flea with a 40 degree field of view and a linear response
function. The camera operated at 30 fps and all camera settings were held fixed
except for automatic gain control to account for the large variation in illumina-
tion of the scene. The camera was mounted on a vehicle moving at roughly 10
km/h during video capture. This particular camera also featured the ability to
embed the automatically selected gain factor in the image data. We used this
information to verify the gain estimation of our KLT tracker.

The object of interest was the exterior wall of a building approximately 6
meters from the camera. This building was surveyed to obtain a ground truth
model of the building with centimeter accuracy!. Additionally, a GPS/INS sys-
tem was mounted on the vehicle to assist in pose estimation and to provide a
geo-located coordinate frame for comparison with the ground truth model.

The change of the gain for the sequence of 400 images was computed with
the new proposed tracker and is shown in Figure 3. To evaluate our new stereo
algorithm, we selected a part of the video in which the gain changes significantly.
This change is caused by capturing first in bright sunlight and afterwards in

! data are courtesy of the DARPA UrbanScape project



shadow. For the experiments we used a camera that is able to report the current
gain value to have an approximate ground truth measurement. The recovered
cumulative gain ratio is 1.4668 over 11 frames.
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Fig. 3. Estimated gain for the video sequence and example images.

We measure the results of our stereo implementation by comparing the recov-
ered depth to the ground truth model. Each point in the depth map is converted
into a 3D point in the geo-located coordinate frame. The error is then computed
as the minimum distance to the ground truth surface.

In Figure 4 we see that our system is able to correctly handle the large change
in gain and produce an accurate depth map. The gain-corrected depth map has
1.9 cm average error. Without accounting for gain, the depth map produced has
severe errors: 37.4 cm on average.

Fig. 4. (a) video frame, (b) novel gain corrected stereo, (c) standard stereo.



7 Conclusions

We presented a novel system for real-time streaming stereo computation. To
achieve a robust approach we proposed a new 2D-tracking approach that esti-
mates the gain change in a video sequence while tracking the 2D features. This
improved the 2D tracking performance and delivered the gain value. Addition-
ally we proposed a mechanism to use the computed gain value to improve stereo
depth estimation. Finally we showed that the novel system has a significantly
improved performance that allows the streaming of video with auto-gain.
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