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Abstract

In this paper the problem of obtaining 3D models from
image sequences is addressed. The proposed method deals
with uncalibrated monocular image sequences. No prior
knowledge about the scene or about the camera is neces-
sary to build the 3D models. The only assumptions are the
rigidity of the scene objects and opaque object surfaces.

The modeling system uses a 3-step approach. First,
the camera pose and intrinsic parameters are calibrated
by tracking salient feature points throughout the sequence.
Next, consecutive images of the sequence are treated as
stereoscopic image pairs and dense correspondence maps
are computed by area matching. Finally, dense and ac-
curate depth maps are computed by linking together all
correspondences over the viewpoints. The depth maps are
converted to triangular surfaces meshes that are texture
mapped for photo-realistic appearance. The feasibility of
the approach has been tested on both real and synthetic data
and is illustrated here on several outdoor image sequences.

1. Introduction

The use of three-dimensional surface models for the pur-
pose of visualization is gaining importance. Highly realistic
3D models are readily used to visualize and simulate events,
like in flight simulators, in the games and film industry or
for product presentations. The range of applications span
from architecture visualization over virtual television stu-
dios, virtual presence for video communications to general
”virtual reality” applications.

A limitation to the widespread use of these techniques is
currently the high cost of such 3D models since they have to
be produced manually. Especially if existing objects are to
be reconstructed the measurement process for obtaining the
correct geometric and photometric data is tedious and time
consuming. Traditional solutions include the use of stereo
rigs, laser range scanners and other 3D digitizing devices.

These devices are often very expensive, require careful han-
dling and complex calibration procedures and are designed
for a restricted depth range only.

In this work an image based approach is proposed which
avoids most of the problems mentioned above. The scene
which has to be modeled is recorded from different view-
points by a video camera. The relative position and ori-
entation of the camera and its calibration parameters will
automatically be retrieved from the image data by the al-
gorithms. Hence, there is no need for measurements in the
scene or calibration procedures whatsoever. There is also
no restriction on range, it is just as easy to model a small
object, as to model a complete landscape. The proposed
method thus offers a previously unknown flexibility in 3D
model acquisition. In addition, any photographic recording
device - e.g. camcorder, digital camera, or even standard
photographic film camera - is sufficient for scene acquisi-
tion. Hence, increased flexibility is accompanied by a de-
crease in cost.

The proposed method is placed in the framework of
uncalibrated scene reconstruction that is a recent research
topic in the computer vision society. In the uncalibrated
case all parameters, camera pose and intrinsic calibration
as well as the 3D scene structure have to be estimated
from the 2D image sequence alone. Faugeras and Hart-
ley first demonstrated how to obtain uncalibrated projective
reconstructions from image sequences alone [6, 8]. Since
then, researchers tried to find ways to upgrade these re-
constructions to metric (i.e. Euclidean but unknown scale,
see [7, 20, 17]). Newest results report full self-calibration
methods even for varying intrinsic parameters like focal
length, which allows the unrestricted use of the camera, for
example zooming [9, 16, 18].

To employ these self-calibration methods for sequence
analysis they must be embedded in a complete scene recon-
struction system. Beardsley et al. [1] proposed a scheme
to obtain projective calibration and 3D structure by ro-
bustly tracking salient feature points throughout an image
sequence. This sparse object representation outlines the ob-
ject shape, but gives not sufficient surface detail for visual



reconstruction. Highly realistic 3D surface models need
the dense depth estimation and can not rely on few feature
points alone.

In [18] the method of Beardsley e.a. was extended in
two directions. On the one hand the projective reconstruc-
tion was updated to metric even for varying internal camera
parameters, on the other hand a dense stereo matching tech-
nique [4] was applied between two selected images of the
sequence to obtain a dense depth map for a single view-
point. From this depth map a triangular surface wire-frame
was constructed and texture mapping from one image was
applied to obtain realistic surface models. In [14] the ap-
proach was further extended to multi viewpoint sequence
analysis.

In this contribution we will discuss the complete and au-
tomatic modeling system that is capable to compute accu-
rate and dense 3D surface models from uncalibrated image
sequences. Section 2 discusses the steps needed for depth
estimation from image sequences. It involves feature point
tracking for projective calibration, metric self-calibration,
dense depth map estimation and sequence fusion. Section 3
deals with the 3D model generation and the creation of tex-
tured surfaces. In sect. 4 several experiments on real out-
door sequences are performed. Objects of different scale are
modeled and different imaging sensors are used to demon-
strate the quality and flexibility of the proposed reconstruc-
tion system.

2. Dense Depth Estimation
from Image Sequences

Accurate and robust depth estimation is the key problem
in a 3D modeling system. It is solved using a 3-step ap-
proach:�

Camera self-calibration and metric structure is ob-
tained by robust tracking of salient feature points over
the image sequence.�
Dense correspondence maps are computed between
adjacent image pairs of the sequence.�
All correspondence maps are linked together by multi-
ple view point linking to fuse depth measurements over
the sequence.

2.1. Camera Calibration through Feature Point
Tracking

Camera calibration1 is obtained by tracking salient im-
age features throughout the sequence. The difficulty of this

1By calibration we mean the actual internal calibration of the camera as
well as the relative position and orientation of the camera for the different
views with respect to an arbitrary coordinate system.

step is to robustly find at least a few but very reliable corre-
spondences that are needed for camera calibration. Salient
feature points like strong intensity corners are matched us-
ing robust (RANSAC) techniques for that purpose. In a two-
step procedure a projective calibration and feature point re-
construction is recovered from the image sequence which
is then updated to metric calibration with a self-calibration
approach.

Retrieving the projective framework. At first feature
correspondences are found by extracting intensity corners
in different images and matching them using a robust cor-
ner matcher [19]. In conjunction with the matching of the
corners a restricted calibration of the setup is calculated (i.e.
only determined up to an arbitrary projective transforma-
tion). This allows to eliminate matches which are incon-
sistent with the calibration. The 3D position of a point is
restricted to the line passing through its image point and
the camera projection center. Therefore the corresponding
point is restricted to the projection of this line in the other
image. Using this constraint, more matches can easily be
found and used to refine this calibration.

The matching is started on the first two images of the
sequence. The calibration of these views define a projec-
tive framework in which the projection matrices of the other
views are retrieved one by one. In this approach we follow
the procedure proposed by Beardsley et al [1]. We therefore
obtain projection matrices ( ����� ) of the following form:�
	��� ��� ���

and
������ ��	���� ��	����

(1)

with
��	��

the homography for some reference plane from
view 1 to view � and

��	 �
the corresponding epipole.

Retrieving the metric framework. Such a projective cal-
ibration is certainly not satisfactory for the purpose of 3D
modeling. A reconstruction obtained up to a projective
transformation can differ very much from the original scene
according to human perception: orthogonality and paral-
lelism are in general not preserved, part of the scene can be
warped to infinity, etc. To obtain a better calibration, con-
straints on the internal camera parameters can be imposed
(e.g. absence of skew, known aspect ratio, ...). By exploit-
ing these constraints, the projective reconstruction can be
upgraded to metric (Euclidean up to scale). In the met-
ric case the camera projection matrices have the following
form:�"!#�%$&!� '(!)�

-
'(!+*,!+�

with
$&!-�/.021�3 4 5631�78597: ;<

(2)

where
' !

and
* !

indicate the orientation and position of the
camera for view = and

$>!
contains the internal camera pa-

rameters: 1�3 and 1�7 stand for the horizontal and vertical



focal length (in pixels), ? �A@ 5B3�C 597�D is the principal point
and 4 is a measure of the image skew.

A practical way to obtain the calibration parameters from
constraints on the internal camera parameters is through ap-
plication of the concept of the absolute quadric [20, 18].
In space, exactly one degenerate quadric of planes exists
which has the property to be invariant under all rigid trans-
formations. In a metric frame it is represented by the fol-

lowing �"�E� symmetric rank 3 matrix F �HG �I��8�KJ . If L
transforms points MONPL
M (and thus

� N � LRQ 	
), then

it transforms FSNTL
FULEV (which can be verified to yieldF when L is a similarity transformation). The projection of
the absolute quadric in the image yields the intrinsic camera
parameters independent of the chosen projective basis2:$ ! $ V!XW � ! F � V! (3)

where W means equal up to an arbitrary non-zero scale fac-
tor. Therefore constraints on the internal camera parame-
ters in

$>!
can be translated to constraints on the absolute

quadric. If enough constraints are at hand, only one quadric
will satisfy them all, i.e. the absolute quadric. At that point
the scene can be transformed to the metric frame (which
brings F to its canonical form).

2.2. Dense Correspondence Matching

Only a few scene points are reconstructed from fea-
ture tracking. Obtaining a dense reconstruction could be
achieved by interpolation, but in practice this does not
yield satisfactory results. Often some important features
are missed during the corner matching and will therefore
not appear in the reconstruction.

These problems can be avoided by using algorithms
which estimate correspondences for almost every point in
the images. At this point algorithms can be used which
were developed for calibrated stereo rigs. Since we have
computed the calibration between successive image pairs
we can exploit the epipolar constraint that restricts the cor-
respondence search to a 1-D search range. In particular it is
possible to re-map the image pair to standard geometry with
the epipolar lines coinciding with the image scan lines [13].
The correspondence search is then reduced to a matching of
the image points along each image scan-line. In addition to
the epipolar geometry other constraints like preserving the
order of neighboring pixels, bidirectional uniqueness of the
match, and detection of occlusions can be exploited. These
constraints are used to guide the correspondence towards
the most probable scan-line match using a dynamic pro-
gramming scheme [4].

2Using Equation 2 this can be verified for a metric basis. TransformingY>Z[Y]\�^6_
and ` Z[\ ` \ba

will not change the projection.

For dense correspondence matching a disparity estima-
tor based on the dynamic programming scheme of Cox
et al. [3], is employed that incorporates the above men-
tioned constraints. It operates on rectified image pairs@+c ! C c � D where the epipolar lines coincide with image scan
lines. The matcher searches at each pixel in image

c !
for

maximum normalized cross correlation in
c �

by shifting a
small measurement window (kernel size 5x5 to 7x7 pixel)
along the corresponding scan line. The selected search
step size dEe (usually 1 pixel) determines the search res-
olution. Matching ambiguities are resolved by exploiting
the ordering constraint in the dynamic programming ap-
proach [13]. The algorithm was further adapted to employ
extended neighborhood relationships and a pyramidal es-
timation scheme to reliably deal with very large disparity
ranges of over 50% of image size [4].

2.3. Sequence Linking

The pairwise disparity estimation allows to compute im-
age to image correspondence between adjacent rectified im-
age pairs, and independent depth estimates for each camera
viewpoint. An optimal joint estimate is achieved by fus-
ing all independent estimates into a common 3D model.
The fusion can be performed in an economical way through
controlled correspondence linking. The approach utilizes a
flexible multi viewpoint scheme by combining the advan-
tages of small baseline and wide baseline stereo [14].

As small baseline stereo we define viewpoints with a
baseline much smaller than the observed average scene
depth. This configuration is usually valid for image se-
quences were the images are taken as a spatial sequence
from many slightly varying view points. The advantages are
an easy correspondence estimation and small regions of oc-
clusion3 between adjacent images. Disadvantage is clearly
the limited depth resolution due to the small triangulation
angle between the view points.

The wide baseline stereo in contrast is used mostly with
still image photographs of a scene where few images are
taken from a very different viewpoint. Here the depth res-
olution is superior but correspondence and occlusion prob-
lems appear, because the views are very different and large
image regions without correspondence may occur.

The multi viewpoint linking combines the virtues of both
approaches by concatenating corresponding points over
multiple images. In addition it will produce denser depth
maps than either of the other techniques, and allow for ad-
ditional features during depth and texture fusion [14]. In the
linking process care is taken to deal with occlusions and to
check for measurement outliers.

3As occlusions we consider those parts of the object that are visible in
one image only, due to object self-occlusion.
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Figure 1. Depth fusion and uncertainty reduc-
tion from correspondence linking.

2.3.1 Depth fusion

Assume an image sequence with = � : Ngf images. Start-
ing from a reference view point = the correspondences be-
tween adjacent images

@ =ih : C =Bhkj CmlnlolnC f D and
@ =qp : C =qpj CmlnlnloC : D are linked in a chain. The depth for each reference

image point r-s is computed from the correspondence link-
ing that delivers two lists of image correspondences relative
to the reference, one linking down from =>N :

and one
linking up from =qNtf . For each valid corresponding point
pair

@ r s C rBu D we can triangulate a depth estimate v @xw ! C w � D
along y 3 ! with

� �
representing the depth uncertainty. Fig-

ure 1 visualizes the decreasing uncertainty interval during
linking.

While the disparity measurement resolution d�e in the
image is kept constant (at 1 pixel), the reprojected depth
error

���
decreases with the baseline. Outliers are detected

by controlling the statistics of the depth estimate computed
from the correspondences. All depth values that fall within
the uncertainty interval around the mean depth estimate are
treated as inliers. They are fused by a 1-D kalman filter to
obtain an optimal mean depth estimate. Outliers are unde-
tected correspondence failures and may be arbitrarily large.
As threshold to detect the outliers we utilize the depth un-
certainty interval

� �
.

2.3.2 Occlusions

If an object region is visible in view point = but not in � , we
speak of an occlusion. Occlusions are eliminated by incor-
porating a multi viewpoint matcher that operates symmetri-
cally to a particular viewpoint = . Points that are occluded in
the view =�h :

are normally visible in the view =zp :
and vice

versa. The exploitation of links starting up and down from
viewpoint = will resolve for most of the occlusions and will
produce a very dense depth map.

3. Surface Modeling

The dense depth maps as computed by the correspon-
dence linking must be approximated by a 3D surface repre-
sentation suitable for visualization. So far each object point
was treated independently. To achieve spatial coherence for
a connected surface, the depth map is spatially interpolated
using a parametric surface model. The boundaries of the
objects to be modeled are computed through depth segmen-
tation. In a first step, an object is defined as a connected re-
gion in space. Simple morphological filtering removes spu-
rious and very small regions. We then employ a bounded
thin plate model with a second order spline to smooth the
surface and to interpolate small surface gaps in regions that
could not be measured. If the object consist of dominant
planar regions, the local surface normal may be exploited to
segment the object into planar parts [12].

The spatially smoothed surface is then approximated by
a triangular wire-frame mesh to reduce geometric complex-
ity and to tailor the model to the requirements of Computer
Graphics visualization systems. The mesh triangulation
currently utilizes the reference view only to build the model.
The surface fusion from different view points to completely
close the models remains to be implemented [11]. Some-
times it is not possible to obtain a single metric frame-
work for large objects like buildings since one may not
be able to record images continuously around it. In that
case the different frameworks have to be registered to each
other. This will be done using available surface registration
schemes [2].

3.1. Texture Fusion

Texture mapping onto the wire-frame model greatly en-
hances the realism of the models. As texture map one could
take the reference image texture alone and map it to the sur-
face model. However, this creates a bias towards the se-
lected image and imaging artifacts like sensor noise, un-
wanted specular reflections or the shading of the particu-
lar image is directly transformed onto the object. A better
choice is to fuse the texture from the image sequence in
much the same way as depth fusion.

The viewpoint linking builds a controlled chain of cor-
respondences that can be used for texture enhancement as
well. A texture map in this context is defined as the color
intensity values for a given set of image points, usually the
pixel coordinates. While depth is concerned with the po-
sition of the correspondence in the image, texture uses the
color intensity value of the corresponding image point. For
each reference image position one may now collect a list of
color intensity values from the corresponding image posi-
tions in the other viewpoints. This allows to enhance the
original texture in many ways by accessing the color statis-



tics. Some features that can be derived naturally from the
texture linking algorithm are described below.

Specular reflection and artifact removal. The surface
reflectance of the object is modeled by a viewpoint indepen-
dent diffuse and a viewpoint dependent specular reflection.
In this case the color intensity statistics can be modeled as
Gaussian noise contaminated with an outlier tail distribution
that contains the reflection. By collecting the corresponding
color intensities over a series of different viewpoints one
can detect the specular reflectance as outlier and retain the
diffuse reflection using median filtering. The same statis-
tics hold if a fast moving object temporarily occludes the
observed object, like a pedestrian passing in front of a build-
ing to be modeled. The exploitation of a robust mean texture
will therefore capture the static object only and the artifacts
are suppressed [10].

Super-resolution texture. The correspondence linking is
not restricted to pixel-resolution, since each between-pixel-
position in the reference image can be used to start a corre-
spondence chain as well. Color intensity values will then be
interpolated between the pixel grid. If the object is observed
from many different view points and possibly from different
object distances, the finite pixel grid of the images for each
viewpoint is generally slightly displaced. This displacement
can be exploited to create super-resolution texture by fusing
all images on a finer resampling grid. The super-resolution
grid in the reference image can be chosen arbitrarily fine,
but the measurable real resolution is of course depending
on the displacement and resolution of the corresponding im-
ages [15].

4. Experiments

In this section the performance of the modeling system
is tested on the outdoor sequences Castle, Pillar, Fountain,
Roman Bath, and Site.

4.1. Castle sequence

The Castle sequence consists of 22 images of 720x576
pixel resolution taken with a standard semi-professional
camcorder that was moved freely in front of a building. Fig-
ure 2 shows the images 1,8,14, and 22 of the sequence.

To judge the geometric and visual quality of the recon-
struction, different perspective views of the model were
computed and displayed in Figure 3. In the shaded view,
the geometric details like the window and door niches are
seen. A close-up look from a position that a human observer
would take reveals the high visual quality of the model.

A more quantitative evaluation was obtained by measur-
ing angles in the reconstructed scene between parallel lines

Figure 2. Images 1, 8, 14, and 22 of the castle
sequence.

(
: l �|{[� l } degrees) and orthogonal lines ( ~�j l�� {[� l � de-

grees). These results[18] confirm the good metric recon-
struction obtained by the method.

4.2. Pillar sequence

As an example for varying camera parameters 8 images
of a stone pillar with curved surfaces were taken. Figure 4
show 2 of the recorded images. While filming and moving

Figure 3. Top: textured views. Bottom left:
shaded view. Bottom right: close-up view.



Figure 4. Images 1 and 8 of pillar sequence.

away from the object the zoom was changed ( jB� ) to keep
the image size of the object constant. In spite of the changes
in focal length the metric frame could be retrieved through
self-calibration. In Figure 5 some perspective views of the
reconstruction are given, rendered both shaded and with
surface texture mapping. The shaded view shows that even
most of the small details of the object are modeled.

To assess the metric properties for the pillar, 27 differ-
ent lengths were measured on the real object and compared
with the metric model to obtain the scale factor. Averag-
ing all measured distances gave a consistent scale factor of
40.25 with a standard deviation of 5.4% overall. For the
interior distances (avoiding the inaccuracies at the bound-
ary of the model), the reconstruction error dropped to 2.3%.
These results demonstrate the metric quality of the recon-
struction even for complicated surface shapes and varying
focal length.

Figure 5. Perspective views of the reconstruc-
tion (with texture and shading).

Figure 6. Left: Image 1 and 5 of the fountain
sequence.

4.3. 3-D Modeling at Sagalassos: A Test Case

The system was tested on a variety of scenes with dif-
ferent cameras of varying quality (35 mm photo camera on
Photo-CD, digital still camera, cam-corders) and was found
to work even in difficult acquisition circumstances. As spe-
cial test case field trials were carried out at the archaeolog-
ical excavation site of Sagalassos in Turkey. This is a chal-
lenging task since the archaeologists want to reconstruct
even small surface details and irregular structures. Mea-
surements with highly calibrated photogrammetric worksta-

Figure 7. Depth map, intensity coded (dark =
near, light = far). Textured and shaded side
views of model, shaded top view.



Figure 8. Images 1, 3 and 6 of Roman Bath
sequence. Lower right: estimated depth map
(dark = near, light = far).

tions failed since those systems could not withstand the high
temperatures at the site. We show here three of the different
objects selected for modeling.

Fountain. The Fountain sequence consists of 5 images of
an old fountain at Sagalassos, taken with a digital camera
with 573x764 pixel resolution. Figure 6 shows two images
of the sequence and fig. 7 the fused dense depth map and
views of the 3-D reconstruction. The geometric and visual
reconstruction quality for the fountain is very high. The
depth map has a fill rate (percentage of valid depth estimates
over all image pixels) of 96% and an average relative depth
error of 0.1% [14]. Even fine details like the relief carved
into the stones are preserved, and the side and top views of
the overall model show a detailed 3D structure.

Roman Bath. The next example shows the reconstruc-
tion of parts of the Roman bath from 8 uncalibrated images
taken with a standard photo camera. Figure 8 shows 3 of
the images and the fused depth map. The relative depth er-
ror was estimated to 0.8% and the depth map is very dense.
Figure 9 reveals the high reconstruction quality which gives
a realistic impression of the object. The close-up view con-
firms that each stone is modeled, including relief and small
indentations. The indentations belong to erosion gaps be-
tween the stones.

Sagalassos Site. The Site sequence in figure 10 is a good
example of a large scale modeling using off-the-shelf equip-
ment. 9 images of the complete excavation site of Sagalas-
sos in Turkey (extension a few ���&� ) were taken with a con-
ventional photographic camera while walking along the val-
ley rim. The film was then digitized on PhotoCD.

Figure 9. Textured and shaded views of Ro-
man bath model. The close-up view shows
that even small details like single stones are
modeled.

The Site model in figure 11 gives a good reconstruction
of the valley relief. Some of the dominant objects like the
Roman Bath and the Agora, as well as landmarks like big
trees or stones are already modeled at this coarse scale. It
is intended to register the detailed object models like the
Fountain or the Roman Bath to the Site and to build a vir-
tual excavation site that one can visit as part of a virtual
archaeological show case.

Figure 10. 4 of 9 Images of the site sequence.



Figure 11. Textured views of the site recon-
struction.

5. Conclusion

An automatic 3D scene reconstruction system was de-
scribed that is capable of building metric textured 3D mod-
els from uncalibrated image sequences. The technique is
capable of extracting metric surface models without prior
knowledge about the scene or the camera other than assum-
ing rigid objects. The approach was tested with different
off-the-shelf camera types and for scenes of varying scale
and complexity. Typically a depth accuracy of below 1% of
scene depth could be computed for dense depth maps with a
fill rate of over 70%. The high quality of the reconstructed
objects, the different scene types, and the use of off-the-
shelf equipment prove the versatility and flexibility of the
proposed scene reconstruction approach.
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