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Abstract

In this contribution we focuson the calibration of very
long image sequencefom a hand-heldcamer that sam-
plestheviewing sphee of a scene View sphee samplingis
importantfor plenoptic(image-basedmodelingthat cap-
turesthe appeananceof a sceneby storingimagesfromall
possibledirections. The plenopticapproad is appealing
sinceit allows in principle fast scenerenderingof scenes
with comple geometryand surfacereflectionswithoutthe
needfor an explicit geometricalscenemodel. However
the acquired images have to be calibrated, and current
appmoadcesmostlyusepre-calibrated acquisitionsystems.
Thislimits thegeneality of theapproad.

We proposea way out by using an uncalibrated hand-
heldcamenr only. Theimage sequencés acquired by sim-
ply wavingthe camer aroundthe sceneobjects,creating
a zigza scanpath over the viewing sphee. We extendthe
sequentialcamen tradking of an existing structue-from-
motionapproad to thecalibration of a meshof viewpoints
Novel views are geneilted by piecavise mappingand in-
terpolatingthe new image from the neaestviewpointsac-
cording to the viewpointmesh.Local depthmapestimates
enhanceaherenderingprocess Extensiveexperimentswith
groundtruth dataandhand-heldsequencesonfirmtheper-
formanceof our apprac.

1. Intr oduction

Thereis an ongoingdebatein the computervision and
graphicscommunity betweengeometry-basedndimage-
basedscenaeconstructiomndvisualizatiormethods Both
methodsimatrealisticcaptureandfastvisualizationof 3D
scenedrom imagesequences.

Image-basedenderingapproachesik e plenopticmod-
eling [13], lightfield rendering[12] andthe lumigraph[6]
havelatelyreceivedalot of attention sincethey cancapture
theappearancef a 3D scendrom imagesonly, withoutthe
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explicit useof 3D geometry Thusonemaybeableto cap-
ture objectswith very complex geometrythat can not be
modeledotherwise Basicallyonecachesll possibleviews
of thesceneandretrievesthemduringview rendering.

Geometric3D modelingapproachegeneratexplicit 3D
scenegeometryandcapturescenedetailsmostly on polyg-
onal (triangular) surface meshes. A limited set of cam-
eraviews of the sceneis sufiicient to reconstructhe 3D
scene. Texture mapping addsthe necessarfidelity for
photo-realisticrenderingof the object surface. Recently
progresshasbeenreportedon calibratingandreconstruct-
ing scenedrom generalhand-heldcamerasequencewith
a Structue fromMotion approach5, 14].

The problemcommonto both approachess the need
to calibratethe camerasequence.Typically one usescal-
ibrated camerarigs mountedon a specialacquisitionde-
vice like arobot[12], or a dedicateccalibrationpatternis
usedto facilitate calibration[6]. Recentlywe proposedo
combinethe structurefrom motion approachwith plenop-
tic modelingto generatdightfieldsfrom hand-heldcamera
sequence$d]. When generatindightfields from a hand-
held camerasequencegpnetypically generatefiundredof
imagesbut with a specificdistribution of the cameraview-
points. Sincewe wantto capturethe appearancef the ob-
jectfrom all sideswewill try to sampletheviewing sphere,
thusgenerating@meskhof view points To fully exploit hand-
held sequencesye will alsohave to deviate from the re-
strictedlightfield datastructureand adopta moreflexible
renderingdatastructurebasedon theviewpointmesh.

In this contributionwe tacklethe problemof camerecal-
ibration from very mary imagesunderspecialconsidera-
tion of denseviewspheresampling. The necessargamera
calibrationand local depth estimatesare obtainedwith a
structurefrom motion approach.We will first give a brief
overview of existing image-basedenderingand geomet-
ric reconstructiortechniques. We will thenfocuson the
calibration problemfor plenoptic sequences.Finally we
will describethe image-basedenderingapproachthat is
adaptedo our calibration.Experiment®on calibration,geo-



metricapproximatiorandimage-basedenderingconclude
this contribution.

2. Previous work

Plenopticmodelingdescribeshe appearancef a scene
throughall light rays(2-D) thatareemittedfrom every 3-D
scenepoint, generatinga 5D-radiancefunction [13]. Re-
centlytwo equvwalentrealizationsof the plenopticfunction
wereproposedn form of thelightfield [12], andthe lumi-
graph[6]. They handlethe casewhenwe obsene an ob-
ject surfacein free space hencethe plenopticfunction is
reducedo four dimensionglight raysareemittedfrom the
2-dimensionasurfacein all possibledirections).

Lightfield data representation. The original 4-D light-

field datastructureemploys a two-planeparameterization.

Eachlight ray passeshroughtwo parallelplaneswith plane
coordinategs,t) and(u,v). Thustheray is uniquelyde-
scribedby the 4-tuple (u,v, s,t). The (s,t)-planeis the
viewpointplanein which all camerdocal pointsareplaced
on regular gridpoints. The (u,v)-planeis the focal plane
whereall camerdamageplanesareplacedwith regularpixel
spacing.The opticalaxesof all camerasare perpendicular
to the planes.This datastructurecoversonesideof anob-
ject. For afull lightfield we needto construcskix planepairs
onacubeboundingthe object.

New views canbe renderedrom this datastructureby
placinga virtual cameraon an arbitraryview point andin-
tersectingthe viewing rays with the planesat (s, t, u,v).
This, however, appliesonly if the viewing ray passes
through original cameraview points and pixel positions.
For rays passingin betweenthe (s,t) and (u,v) grid co-
ordinatesan interpolationis appliedthat will degradethe
renderingquality dependingnthescenggeometryln fact,
the lightfield containsan implicit geometricalassumption:
The scenegeometryis planarand coincideswith the focal
plane.Deviation of thescenggeometryfrom thefocal plane
causesmagewarping.

The Lumigraph. The discussiorabove revealstwo ma-
jor problemswvhenacquiringlightfieldsfrom realimagese-
guences. First, the needto calibratethe cameraposesin
orderto constructthe viewpoint plane,andsecondhe esti-
mationof localdepthmapsfor view interpolation.Theorig-
inal lumigraphapproach6] alreadytacklesbothproblems.
A calibrationof the camerais obtainedby incorporatinga
backgroundwith a known calibrationpattern. The known
specificmarkersonthebackgroundareusedto obtaincam-
eraparameteiand poseestimation[18]. They provide no
meando calibratefrom scenecontentonly. For depthinte-
grationthe objectgeometryis approximatedy construct-
ing a visual hull from the objectsilhouettes.The hull ap-
proximategshe global surfacegeometrybut cannot handle

local concaities. Furthermorethe silhouetteapproachis

notfeasiblefor generabcenesandviewing conditionssince
aspecificbackgrounds neededThis approacthis therefore
confinedto laboratoryconditionsand doesnot provide a

generalsolutionfor arbitraryscenes.If we wantto utilize

the image-base@pproachfor generalviewing conditions
we needto obtainthe cameracalibrationand to estimate
local depthfor view interpolation.

Structur e-From-Motion. The problemof simultaneous
cameracalibration and depth estimationfrom image se-
guence$asheenaddressetbr quitesometimein thecom-
putervisioncommunity In theuncalibrateccaseall param-
eterscamergoseandintrinsic calibrationaswell asthe3D
scenestructurehave to be estimatedrom the 2D imagese-
guencealone.FaugerasandHartley first demonstratetiov
to obtainuncalibratedorojective reconstructiongrom im-
agesequencealone[3, 7]. Sincethen,researchersiedto
find ways to upgradethesereconstructiongo metric (i.e.
Euclideanbut unknowvn scale,see[4, 17]). Recentlya
methodwas describedo obtainmetric reconstructiongor
fully uncalibratedsequencesvenfor changingcameragpa-
rameterswith methodsof self-calibration[14]. For dense
structurerecovery a stereomatchingtechniqueis applied
betweerimagepairsof thesequencéo obtainadensedepth
mapfor eachviewpoint. Fromthis depthmapa triangular
surfacewire-frameis constructe@ndtexturemappingfrom
theimageis appliedto obtainrealisticsurfacemodels[8].
The approachallows metric surfacereconstructiorin a 3-
stepapproach:

1. cameracalibrationis obtainedby tracking of feature
pointsovertheimagesequence,

2. densedepth mapsfor all view points are computed
from correspondencdeetweeradjacentmagepairsof
thesequence,

3. thedepthmapsarefusedto approximatehe geometry
and surfacetexture is mappedonto it to enhancehe
visualappearance.

3. Calibration of viewpoint meshes

In this contritution we proposeto extend the sequen-
tial structure-from-motiompproactio thecalibrationof the
viewpoint sphere.Plenopticmodelingamountsto a dense
samplingof the viewing spherethat surroundshe object.
Onecaninterpretthe differentcameraviewpointsas sam-
plesof a generalizedsurfacewhich we will call the view-
pointsurface It canbe approximatedsa triangularview-
point meshwith camergpositionsasnodes.In the specific
caseof lightfieldsthisviewing surfaceis simply aplaneand
thesamplingis theregularcameragrid. If aprogrammable



robotwith acameraarmis athand,onecaneasilyprogram
all desiredviews andrecorda calibratedimagesequence.
For sequencefrom a hand-heldvideocamerdowever we
obtaina generalsurfacewith possiblecomplex geometry
andnon-uniformsampling.To generatéheviewpointswith
asimplevideocamerapnemightwantto sweepghecamera
aroundthe object,thuscreatinga zig-zagscanningpathon
the viewing surface. The problemthat ariseshereis that
typically very long image sequencesf several hundreds
of views have to be processed.If we processhe images
strictly in sequentialorder as they come from the video
stream,thenimageshave to be tracked one by one. One
canthink of walking alongthe pathof cameraviewpoints
givenby therecordingframeindex [9]. This maycauseer-
ror accumulationin viewpointtracking,becaus®bjectfea-
turesare typically seenonly in a few imagesandwill be
lostaftersomeframesdueto occlusionandmismatching It
would thereforebe highly desirableto detectthe presence
of a previously tracked but lost featureandto tie it to the
new image.

Thecaseof disappearingndreappearingeaturess very
commonin viewpointsurfacescanning Sincewe sweephe
cameran azigzagpathover theviewpoint surface we will
generataows and columnsof an irregular meshof view-
points. Evenif theviewpointsarefar apartin the sequence
frameindex they may be geometricallycloseon the view-
point surface. We can thereforeexploit the proximity of
cameraviewpointsirrespectvely of their frameindex.

3.1 Sequentialcameratracking

Thebasictool for theviewpointtrackingis thetwo-view
matcher Image intensity featuresare detectedand have
to be matchedbetweenthe two imagesl;, I, of the view
points P;, P,. Herewe rely on a robust computationof
the Fundamentamatrix Fj;, with the RANSAC (RANdom
SAmpling Consensusjnethod[16]. A minimum setof 7
featurescorrespondencas picked from a largelist of po-
tentialimagematcheso computea specificF'. For thispar
ticular F' the supportis computedrom the otherpotential
matchesThis procedurds repeatedandomlyto obtainthe

mostlikely F;;, with bestsupportn featurecorrespondence.

Thenext stepafterestablishmendf £ is thecomputation
of the3 x 4 camerarojectionmatricesP; andP;. Thefun-
damentamatrix alonedoesnot suffice to fully computethe
projectionmatrices.In abootstrapstepfor thefirst two im-
ageswe follow the approactby Beardslg etal. [1]. Since
thecamerecalibrationmatrix K is unknavn a priori we as-
sumean approximatek to startwith. The first camerais
thensetto Py = K[I|0] to coincidewith theworld coordi-
natesystemandthesecondcameraP; canbederivedfrom
theepipolee andF' as
P = K [[e]F + ea”|re] with [e], = [ G o0 S ]

—ep e 0

P, is definedup to a global scaler and the unknown
planer;,s, encodedn a” (seealso[15]). Thuswe canonly
obtaina projective reconstructionThevectora” shouldbe
chosensuchthatthe left 3 x 3 matrix of P; bestapprox-
imatesan orthonormalrotation matrix. The scaler is set
suchthatthe baselindengthbetweerthe first two cameras
is unity. K anda” will be determinedater duringcamera
self-calibration.

Oncewe have obtainedthe projectionmatriceswe can
triangulatethe correspondingmagefeaturesto obtainthe
correspondingprojective 3D object features. The object
points are determinedsuchthat their reprojectionerror in
theimagesis minimized. In additionwe computethe point
uncertaintycovarianceto keeptrack of measurementin-
certainties. The 3D objectpoints sene asthe memoryfor
consistentameratracking,andit is desirableto track the
projectionof the 3D pointsthroughasmary imagesaspos-
sible.

Eachnew view of the sequencés usedto refinetheini-
tial reconstructiorandto determinethe cameraviewpoint.
Here we rely on the fact that two adjacentframesof the
sequencare taken from nearbyview points, hencemary
objectfeatureswill bevisiblein bothviews. Theprocedure
for addinga new frameis muchlike the bootstrapphase.
Rolustmatchingof F; ;11 betweerthecurrentandthe next
frame of the sequenceelatesthe 2D image featuresbe-
tweenviews I; and I; ;. Sincewe have alsothe 2D/3D
relationshipbetweerimageandobjectfeaturedor view I,
we cantransferthe objectfeaturedo view I;; aswell. We
canthereforethink of the 3D featuresasself-inducedcali-
brationpatternanddirectly solve for the camergprojection
matrixfrom theknown 2D/3D correspondende view I;
with a robust (RANSAC) computationof P, ;. In alast
stepwe updatethe existing 3D structureby minimizingthe
resultingfeaturereprojectiorerrorin all images A Kalman
filter is appliedfor each3D point andits positionand co-
varianceare updatedaccordingly Unreliablefeaturesand
outliersareremoved,andnewly foundfeaturesareadded.

3.2 Viewpoint meshweaving

The sequentiahpproactasdescribedabove yieldsgood
resultsfor thetrackingof shortsequenceNew featuresare
addedin eachimageandthe existing featuresare tracked
throughoutthe sequence Due to sceneocclusionsandin-
evitable measurementutliers, however, the featuresmay
be lost or wrongly initialized, leadingto erroneousesti-
matesandultimatelytrackingfailure. Sofar several strate-
gieshave beendevelopedto avoid this situation. Recently
Fitzgibbonet al. [5] addressedhis problemwith a hierar
chical matchingschemethat matchespairs, triplets, short
subsequenceand finally full sequences.However, they
trackalongthelinearcamergpathonly anddo notconsider



theextendedrelationshipn a meshof viewpoints

By exploiting thetopologyof the cameraviewpoint dis-
tribution on the viewpoint surface we can extend the se-
guentialtrackingto a simultaneousnatchingof neighbor
ing viewpoints. The viewpointmeshis definedby the node
geometry (cameraviewpoints) and the topology (which
viewpoints are nearestneighbors). We start sequentially
asdescribedabore to computethe geometryof the cam-
erafrom the connectvity with the previous viewpoint. To
establisithe connectity to all nearestiewpointswe have
now two possibilities: Look-aheadand backtracking. For
look-aheadbne computegmagerelationshipetweenthe
currentandall future frames. Suchan approacthasbeen
developedfor collectionsof imageg10]. It hasthe adwvan-
tagethatit canhandleall imagesn parallel,but thecompu-
tationalcostsarequite high. For backtrackinghe situation
is more fortunate,sincefor previous camerasve have al-
readycalibratedtheir position. It is thereforeeasyto com-
pute the geometricaldistancebetweenthe currentand all
previous camerasand to find the nearestviewpoints. Of
courseone hasto accountfor the non-uniformviewpoint
distribution and to selectonly viewpoints that give addi-
tional information. We have adopteda schemeto divide
the viewing surfaceinto angularsectorsaroundthe cur-
rent viewpoint and to selectthe nearestcamerashat are
most evenly distributed aroundthe currentposition. The
searclstrat@y is visualizedin fig. 1. Thecamergroduces
a pathwhosepositionshave beentracked up to viewpoint
i — 1 alreadyresultingin ameshof viewpoints(filled dots).
The new viewpoint i is estimatedfrom thoseviewpoints
that areinside the shadedpart of the sphere. The cut-out
sectionavoids unnecessargvaluation of nearbycameras
i — 1,7 — 2,.... Theradiusof the searchspherds adapted
to thedistancebetweerthe lasttwo viewpoints.

Oncewe have found the local topology to the nearest
view pointswe canupdateour currentpositionby additional
matching. In fact, eachconnectingedgeof our viewpoint
meshallowsthecomputatiorof F;;, betweertheviewpoints
1 andk. More important,sincewe arenow matchingwith
imagesway backin the sequencewe cancouplethe 3D
structue muchmore effectively to imagematches.Thus,
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Figure 1. Search strategy to determine the topology
between the viewpoints.

a 3D featurelivesmuchlongerandis seenin moreimages
thanwith simplesequentiatracking(seefig 4). In addition
to the couplingof old featureswve obtaina muchmoresta-
ble estimateor thesingleviewpointaswell. Eachimageis
now matchedwith (typically 3-4) imagesin differentspa-
tial directionswith reducegherisk of critical or degenerate
situations.

4. Rendering from the viewpoint mesh

For image-basedendering virtual cameraviews areto
be reconstructedrom the setof calibratedviews. The lu-
migraphapproacH6] synthesizes regularviewpoint grid
through rebinning from the estimatedirregular cameras.
Becauseof interpolatingthe grid from the original data,
informationis lost and blurring effectsoccur To prevent
thedisadwantage®f therebinningstep we renderviews di-
rectly from the originally recordedmages.In the simplest
way this is achieved by projectingall imagesontoa com-
mon planeof “mean geometry”’by a 2D projectve map-
ping. Having a full triangulationof the viewpoint surface,
we projectthis meshinto the virtual camera.For eachtri-
angleof the mesh,only the views thatspanthetriangleare
contrikutingto thecolor valuesinside.Eachtriangleactsas
a window throughwhich the threecorrespondingnapped
texturesare seenin the virtual camera. The texturesare
overlayedwith applyingalphablending,usingbarycentric
weightsdependingn thedistanceo the correspondingyri-
anglecorner

Combining imagesand geometry. The texture interpo-
lation canbe improved with local depthmaps. Depending
on the virtual cameraposition, a planeof meangeometry
is assignedadaptvely to eachimagetriplet which formsa
triangle. Adaptive to the sizeof eachtriangleandthe com-
plexity of geometryfurthersubdiisionof eachtrianglecan
improvetheaccurag of therendering.Theapproachs de-
scribedmorein depthin [11]. Astherenderings a2D pro-
jectivemappingijt canbedonein realtime usingthetexture
mappingandalphablendingfacilitiesof graphicshardware.

5. Experimental results

To evaluateour approachwe recordeda testsequence
with known groundtruth from a calibratedrobotarm. The
cameras mountecbnthearmof arobotof typeSCORBA-
ER VII. Thepositionof its gripperarmis known from the
anglesof the5 axesandthedimension®f thearm. Optical
calibrationmethodsvereappliedto determingheeye-hand
calibrationof thecameraw.r.t. the gripperarm. We achieve
a meanabsolutepositioningerror of 4.22mm or 0.17 de-
greerespectiely[2]. Therepetitionerrorof therobotis 0.2
mm and0.03deggreesrespectrely. Becausef thelimited



Figure 2. Image 1 and 64 of the 88 original camera
images of the sphere sequence .

sizeof therobot, we arerestrictedto scenesvith maximal
sizeof about100mmin diameter

For the groundtruth experimentthe robot sampleda
8 x 8 sphericalviewing grid with aradiusof 230mm. The
viewing positionsenclosedca maximumangleof 45 degrees
which givesanextensionof thesphericaviewpointsurface
patchof 180x 180mm?. Thesceneconsistof a cactusand
somemetallic partson a pieceof rough white wallpaper
Two of theoriginalimagesareshawvn in fig. 2. Pleasenote
the occlusionsyeflectionsandillumination changesn the
images.

We comparedthe viewpoint meshweaving algorithm
with the sequentialtracking and with ground truth data.
Fig. 3 showns the camerapath and connecwity for the
sequentialtracking (left) and viewpoint weaving (right).
Weaving generates topologicalnetwork thattightly con-
nectsall neighboringviews. On averageeachnodewas
linked to 3.4 connections. The graphin fig. 4 illustrates
very clearly the survival of 3D points. A single point may
betrackedthroughoutthe sequencéut is lost occasionally
dueto occlusion. However asthe camerapassesearto a
previous positionin the next sweepit is revivedandhence
trackedagain.Thisresultsin fewer 3D points(# Pts)which
aretrackedin moreimagedq# Im/Pts). Somestatisticof the
trackingaresummarizedn tablel. A minimumamountof

Figure 3. Left: Camera track and view points for se-
quential tracking. Right: Camera topology mesh and
view points for viewpoint mesh weaving. The cam-
eras are visualiz ed as pyramids, the black dots dis-
play some of the tracked 3D points.

50

Figure 4. Distrib ution of tracked 3D points (vertical)
over the 64 images (horizontal). Left: Sequential
tracking. Right: viewpoint mesh weaving. Please
note the specific 2D pattern in the right graph that
indicates how a tracked point is lost and found back
throughout the sequence .

3 imagesis requiredbeforea featureis keptas 3D point.
For viewpointweaving, 3D pointsareusuallytrackedin the
doubleamountof imagesascomparedo sequentiatrack-
ing, and the averagenumberof image matches(#Pts/Im)
is increased. Importantis also that the numberof points
thataretrackedin 3 imagesonly (# Min Pts)dropssharply
Thesepointsareusuallyunreliableandshouldbediscarded.

Table 1. Tracking statistics over 64 images.

Algorithm: sequential| viewpoint

tracking| weaving
# Pts 3791 2169
#Im/Pts(ave.) 4.8 9.1
# Im/Pts(max.) 28 48
# Pts/Im(ae.) 286 306
# Min Pts 1495 458

A quantitatve evaluationof thetrackingwasperformed
by comparingthe estimatedmetric cameraposewith the
known Euclideanrobot positions. We anticipatetwo types
of errors: 1) a stochastianeasurememoiseon the cam-
eraposition,and 2) a systematicerror dueto a remaining
projective skew from imperfectself-calibration. For com-
parisorwe transformthe measurednetriccamergpositions
into theEuclidearrobotcoordinatdrame.With aprojective
transformatiorwe caneliminatethe skew andestimatethe
measuremergrror. We estimatedhe projective transform
from the 64 correspondingamergoositionsandcomputed
theresidualdistanceerror. The distanceerrorwasnormal-
ized to relative depthby the meansurfacedistanceof 250
mm. The meanresidualerror droppedfrom 1.1% for se-
guentialtrackingto 0.58%for viewpoint weaving (seeta-
ble 2). The positionrepeatabilityerror of therobotitself is
0.08%.

If we assumethat no projective skew is presenthena
similarity transformwill suffice to mapthe coordinatesets



Table 2. Ground truth comparison of 3D camera posi-
tional error between the 64 estimated and the known
robot positions [in % of the mean object distance of

250 mm].
Camergosition projective similarity
TrackingError[%] | mean| dev | mean| dev
sequential 1.08 | 0.69| 2.31 | 1.08
2D viewpoints 0.57 | 0.37| 1.41 | 0.61

ontoeachother A systematicskew however will increase
theresidualerror. To testfor skew we computedhe simi-
larity transformfrom the correspondinglatasetsandevalu-
atedtheresidualerror Herethemeanrerrorincreaseavith a
factorof about2.4to 1.4%whichsstill is very goodfor pose

andstructureestimationfrom fully uncalibratedsequences.

5.1 Hand-held office sequence

We testedour approachwith an uncalibratechand-held
sequence A digital consumenwideo camera(Sory DCR-
TRV900 with progressie scan)was sweptfreely over a
clutteredsceneon a desk, covering a viewing surface of
aboutl m2. Theresultingvideo streamwasthendigitized
onanSGI02by simplygrabbingl87framesatmoreor less
constanintervals. No carewastakento manuallystabilize
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Figure 5. Top: Two images from hand-held office se-
qguence . Bottom left: Distrib ution of 3D feature points
(7014 points, vertical) over the image sequence (187
images, horizontal). Bottom right: Viewpoint mesh
with cameras as pyramids and 3D points (in black).

Figure 6. 3D surface model of office scene rendered
with shading (left) and texture (right).

the camerasweep.Fig. 5 (top) displaystwo imagesof the
sequenceThecameraviewpointsaretrackedandtheview-
pointmeshtopologyis constructedvith theviewpointmesh
weaving. Fig. 5 (bottom)shows the statisticsof thetracked
3D featurepoints(left) andthe resultingcameraviewpoint
meshwith 3D points (right). The point distribution (left)
shaws the characteristiaveaving structurewhenpointsare
lost andfound backthroughoutthe sequenceThe camera
trackingillustratesnicely thezigzagscanof thehandmove-
mentasthe camerascannedhescene.Theviewpointmesh
is irregulardueto thearbitraryhandmovementsTheblack
dotsrepresenthereconstructe@D scengpoints.

Thestatisticalevaluationgivesanimpressve accounion
thetrackingabilities. Thecameravastrackedover 187im-
ageswith at average452 matches/imageA total of 7014
points were generatecand matchedon the averagein 12
imageseach.A certain3D pointwaseventrackedover181
imageswith imagematchesn 95images.

Scenereconstruction and viewpoint mesh rendering.

Fromthecalibratedsequenceve cancomputeary geomet-
ric or imagebasedscenerepresentation.As an example
we show in fig. 6 a geometricsurfacemodel of the scene
with local scenegeometrythat was generatedvith dense
surfacematching.More detailson 3D reconstructiorfrom

plenopticsequencearediscussedn [10]. Someresultsof

image-basedenderingfrom the viewpointmeshareshavn

in Fig. 7. Novel views wererenderedwith differentlevels

of local geometry(top). In the closeupviews (bottom)a

detailwasviewed from differentdirections. The changing
surfacereflectionsarerenderedcorrectly dueto the view-

dependentmaging. A more detailedaccountof the ren-

deringtechniqueghatincorporatdocal depthmapscanbe

foundin [11].

6. Further Work and Conclusions

We have proposeda cameracalibration algorithm for
geometricandplenopticmodelingfrom uncalibratechand-



Figure 7. Top: novel scene view rendered with in-
creasing level of geometric detail. Left: single depth

plane; right: 1 depth plane per viewpoint triangle .
Bottom: Two closeup views from diff erent viewing
directions. Please note the changing surface reflec-
tion on the object surface .

heldimagesequenceduringimageacquisitionthecamera
is sweptoverthescendo sampleheviewing spherearound
an object. The approachconsidersthe two-dimensional
topology of the viewpoints and weaves a viewpoint mesh
with highaccurag androbustnessit significantlyimproves
theexisting sequentiastructure-from-motiompproactand
allows to fully calibratehand-heldcamerasequencesghat
are targetedtowards plenoptic modeling. The calibrated
viewpointmeshwasusedfor thereconstructiorof 3-D sur
facemodelsandfor image-basedenderingwhich evenal-
lowsto rendermreflectingsurfaces.
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