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Abstract

This contribution addresses the problem of obtaining 3D
models from image sequences. A 3D surface description of
the scene is extracted completely from a set of uncalibrated
camera images of the scene. No prior knowledge about the
scene or about the camera is needed to build the 3D models.
The only assumptions are the rigidity of the scene objects
and opaque object surfaces.

The modeling system described here uses a 3-step ap-
proach. First, the camera pose and intrinsic parameters
are calibrated by tracking salient feature points throughout
the sequence. Next, consecutive images of the sequence are
treated as stereoscopic image pairs and dense correspon-
dence maps are computed by area matching. Finally, dense
and accurate depth maps are computed by linking together
all correspondences over the viewpoints. The depth maps
are converted to triangular surfaces meshes that are tex-
ture mapped for photo-realistic appearance. The feasibility
of the approach has been tested on both real and synthetic
data and is illustrated here on several outdoor image se-
quences.

1. Introduction

The use of three-dimensional surface models for the pur-
pose of visualization is gaining importance. Highly realistic
3D models are readily used to visualize and simulate events,
like in flight simulators, in the games and film industry or
for product presentations. The range of applications spans
from architecture visualization over virtual television stu-
dios, virtual presence for video communications to general
“virtual reality” applications.

A limitation to the widespread use of these techniques
is currently the high costs of such 3D models since they
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have to be produced manually. Especially if existing ob-
jects are to be reconstructed, the measurement process for
obtaining the correct geometric and photometric data is te-
dious and time consuming. Traditional solutions include the
use of stereo rigs, laser range scanners and other 3D digi-
tizing devices. These devices are often very expensive, re-
quire careful handling and complex calibration procedures
and are designed for a restricted depth range only.

In this work an image based approach is proposed which
avoids most of the problems mentioned above. The scene
which has to be modeled is recorded from different view-
points by a video camera. The relative position and orienta-
tion of the camera and its calibration parameters will auto-
matically be retrieved from the image data by the proposed
algorithms. Hence, there is no need for measurements in the
scene or calibration procedures whatsoever. There is also
no restriction on range, it is just as easy to model a small
object, as to model a complete landscape. The proposed
method thus offers a previously unknown flexibility in 3D
model acquisition. In addition, any photographic recording
device - e.g. camcorder, digital camera, or even standard
photographic film camera - is sufficient for scene acquisi-
tion. Hence, increased flexibility is accompanied by a de-
crease in cost.

In this contribution we will discuss the complete and au-
tomatic modeling system that is capable of computing ac-
curate and dense 3D surface models from uncalibrated im-
age sequences. We review the state of the art for scene re-
construction from images in section 2. Section 3 gives an
overview of the proposed system and discusses the steps
needed for depth estimation from image sequences. Sec-
tion 4 deals with the 3D model generation and the cre-
ation of textured surfaces. In sect. 5 several experiments on
real outdoor sequences are performed. Objects of different
scale are modeled and different imaging sensors are used
to demonstrate the quality and flexibility of the proposed
reconstruction system.



2 State of the art

There have been numerous approaches to reconstruct
and to visualize existing 3D environments from image se-
quences. Two main directions of research have evolved:
geometry-based and image-based scene representations.
Both methods aim at realistic capture and fast visualization
of 3D scenes from image sequences.

Image-based rendering approaches like plenoptic mod-
eling [24], lightfield rendering [22] and the lumigraph [11]
have lately received a lot of attention, since they can cap-
ture the appearance of a 3D scene from images only, with-
out the explicit use of 3D geometry. Thus one may be able
to capture objects with very complex geometry and with
non-lambertian surface reflectivity that can not be modeled
otherwise. Basically one caches all possible views of the
scene and retrieves them during view rendering. The price
to pay for this approach is a very high amount of data and a
tedious image acquisition. In fact, one has to obtain the ra-
diance of the scene from light rays in all possible positions
and orientations, which is a 5-dimensional function.

Panoramic image mosaics are another way to repre-
sent the environment from a restricted set of viewpoints.
Panoramics are obtained by rotating the camera around a
fixed viewpoint and allow highly realistic rendering from
this viewpoints [15, 30].

Geometric 3D modeling approaches generate polygonal
(triangular) surface meshes of a scene. A limited set of
calibrated camera views of the scene is sufficient for re-
construction. Texture mapping adds the necessary fidelity
for photo-realistic rendering to the object surface. Methods
were reported that generate complete environments from
sets of panoramic images when the camera pose is known
by instrumentation [31], and for semi-automatic modeling
of architectural scenes when the class of objects is restricted
to simple shapes [4, 29].

Common to all approaches is the image acquisition part.
Images of the observed scene have to be taken and evaluated
to obtain a realistic representation. Here we can distinguish
between calibrated and uncalibrated image acquisition. In
the case of fully calibrated image sequences the pose and
orientation for each acquisition viewpoint is known a pri-
ory, through the use of external camera calibration devices
or when using mechanical pose control with a camera on
a robot arm. The need to obtain a precise calibration from
external measurements places severe restrictions on the im-
age acquisition process and limits the applicability for real
scenes.

In the uncalibrated case no prior knowledge of camera
poses and intrinsic camera parameters is assumed and all
parameters, camera pose and intrinsic calibration as well as
the 3D scene structure have to be estimated from the 2D im-
age sequence alone. The advantage of this approach is that
simple photographs of the scene can be used without any

prior knowledge and without additional calibration equip-
ment. Even old footage taken with any camera system can
be used for reconstruction. The method proposed in this
contribution is placed in this framework. Since we do not
rely on any prior calibration or scene information, we can
handle a wider range of scenes than the above mentioned
methods.

Faugeras and Hartley first demonstrated how to ob-
tain uncalibrated projective reconstructions from image se-
quences alone [7, 12]. Since then, researchers tried to
find ways to upgrade these reconstructions to metric (i.e.
Euclidean but unknown scale, see [8, 33, 27]). Newest
results report full self-calibration methods even for vary-
ing intrinsic parameters like focal length, which allows
the unrestricted use of the camera, for example zoom-
ing [13, 26, 28]. To employ these self-calibration methods
for sequence analysis they must be embedded in a complete
scene reconstruction system. Beardsley et al. [1] proposed a
scheme to obtain projective calibration and 3D structure by
robustly tracking salient feature points throughout an im-
age sequence. This sparse object representation outlines
the object shape, but gives not sufficient surface detail for
visual reconstruction. Highly realistic 3D surface models
need the dense depth estimation and can not rely on few
feature points alone. The work of Fitzgibbon and Zisser-
man recently extended the approach to model objects from
all sides [9].

In [28] we extended the method of Beardsley in two
directions. On the one hand the projective reconstruction
was updated to metric even for varying internal camera pa-
rameters, on the other hand a dense stereo matching tech-
nique [5] was applied between two selected images of the
sequence to obtain a dense depth map for a single view-
point. From this depth map a triangular surface wire-frame
was constructed and texture mapping from one image was
applied to obtain realistic surface models. In [18] the ap-
proach was further extended to multi viewpoint sequence
analysis. Newest results show that the proposed method al-
lows a combined framework for image- and geometry-based
scene reconstructions [19, 20]. In this contribution we con-
centrate on the reconstruction of geometric 3D scene mod-
els.

3. Geometric Modeling from Image Sequences

Robust camera calibration and accurate depth estimation
are the key problems to be solved. In our system we use a
3-step approach that is visualized in fig. 1 with the example
of modeling a building facade:

e Camera self-calibration is obtained by robust tracking
of salient feature points over the image sequence,

e dense depth maps are computed between adjacent im-
age pairs,



e depth maps are linked together by multiple view point

linking to fuse depth measurements from all images
into a consistent model. The model is stored as a tex-

tured 3-D surface mesh.
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Figure 1. System overview: from the image
sequence (I(z,y)) the projective reconstruc-
tion is computed; the projection matrices P
are then passed on to the self-calibration
module which delivers a metric calibration
Py4; the next module uses these to compute
dense depth maps D(z,y); all these results
are assembled in the last module to yield a
textured 3-D surface model. The little pyra-
mids in front of the building symbolize the
different camera positions.

3.1. Camera Calibration through Feature Tracking

Camera calibration? is obtained by tracking salient im-
age features throughout the sequence. The difficulty of this
step is to robustly find at least a few but very reliable corre-
spondences that are needed for camera calibration. Salient
feature points like strong intensity corners are matched us-
ing robust (RANSAC) techniques for that purpose. In a two-
step procedure a projective calibration and feature point re-
construction is recovered from the image sequence which
is then updated to metric calibration with a self-calibration
approach.

Retrieving the projective framework. At first feature
correspondences are found by extracting intensity corners
in different images and matching them using a robust cor-
ner matcher [32]. In conjunction with the matching of the
corners a restricted calibration of the setup is calculated (i.e.
only determined up to an arbitrary projective transforma-
tion). This allows to eliminate matches which are incon-
sistent with the calibration. The 3D position of a point is
restricted to the line passing through its image point and
the camera projection center. Therefore the corresponding
point is restricted to the projection of this line in the other
image. Using this constraint, more matches can easily be
found and used to refine this calibration.

The matching is started on the first two images of the
sequence. The calibration of these views define a projec-
tive framework in which the projection matrices of the other
views are retrieved one by one. In this approach we follow
the procedure proposed by Beardsley et al [1]. We therefore
obtain projection matrices (3 X 4) of the following form:

Pl = [I|0] and Pk = [H1k|€1k] (1)

with H;; the homography for some reference plane from
view 1 to view k and ey, the corresponding epipole.

Retrieving the metric framework. Such a projective cal-
ibration is certainly not satisfactory for the purpose of 3D
modeling. A reconstruction obtained up to a projective
transformation can differ very much from the original scene
according to human perception: orthogonality and paral-
lelism are in general not preserved, part of the scene can be
warped to infinity, etc. To obtain a better calibration, con-
straints on the internal camera parameters can be imposed
(e.g. absence of skew, known aspect ratio, ...). By exploit-
ing these constraints, the projective reconstruction can be
upgraded to metric (Euclidean up to scale). In the met-
ric case the camera projection matrices have the following

2By calibration we mean the actual internal calibration of the camera as
well as the relative position and orientation of the camera for the different
views with respect to an arbitrary coordinate system.



form:

fa 8 ug
P;, = Kz[Rz|-th1] with K; = fy Uy 2)
1

where R; and t; indicate the orientation and position of the
camera for view ¢ and K; contains the internal camera pa-
rameters: f, and f, stand for the horizontal and vertical
focal length (in pixels), u = (u,,u,) is the principal point
and s is a measure of the image skew.

A practical way to obtain the calibration parameters from
constraints on the internal camera parameters is through ap-
plication of the concept of the absolute quadric [33, 28].
In space, exactly one degenerate quadric of planes exists
which has the property to be invariant under all rigid trans-
formations. In a metric frame it is represented by the fol-
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transforms points M — TM (and thus P — PT 1Y), then
it transforms 0 — TQT T (which can be verified to yield
Q when T is a similarity transformation). The projection of
the absolute quadric in the image yields the intrinsic camera
parameters independent of the chosen projective basis®:

lowing 4 x 4 symmetric rank 3 matrix {2 = [

KK, < P;QP/ (3)

where o< means equal up to an arbitrary non-zero scale fac-
tor. Therefore constraints on the internal camera parame-
ters in K; can be translated to constraints on the absolute
quadric. If enough constraints are at hand, only one quadric
will satisfy them all, i.e. the absolute quadric. At that point
the scene can be transformed to the metric frame, which
brings €2 to its canonical form. For a detailed analysis of
the calibration procedure see [28].

3.2. Dense Correspondence Matching

Only a few scene points are reconstructed from fea-
ture tracking. Obtaining a dense reconstruction could be
achieved by interpolation, but in practice this does not
yield satisfactory results. Often some important features
are missed during the corner matching and will therefore
not appear in the reconstruction.

These problems can be avoided by using algorithms
which estimate correspondences for almost every point in
the images. At this point algorithms can be used which
were developed for calibrated stereo rigs. Since we have
computed the calibration between successive image pairs
we can exploit the epipolar constraint that restricts the cor-
respondence search to a 1-D search range. In particular it is
possible to re-map the image pair to standard geometry with

3Using Equation 2 this can be verified for a metric basis. Transforming
P - PT~!land Q — TQT T will not change the projection.
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Figure 2. Object profile triangulation from or-
dered neighboring correspondences.

the epipolar lines coinciding with the image scan lines. The
correspondence search is then reduced to a matching of the
image points along each image scan-line.

The epipolar constraint obtained from calibration re-
stricts corresponding image points to lie in the epipolar
plane* which also cuts a 3D profile out of the surface of
the scene objects. The profile projects onto the correspond-
ing epipolar lines in I; and Iy where it forms an ordered
set of neighboring correspondences (see figure 2). For well
behaved surfaces this ordering is preserved and delivers an
additional constraint, known as ’ordering constraint’. Scene
constraints like this can be applied by making weak assump-
tions about the object geometry. In many real applications
the observed objects will be opaque and composed out of
piecewise continuous surfaces. If this restriction holds then
additional constraints can be imposed on the correspon-
dence estimation. Kochan[21] listed as many as 12 dif-
ferent constraints for correspondence estimation in stereo
pairs. Of them, the two most important ones apart from the
epipolar constraint are:

e Ordering Constraint: For opaque surfaces the order
of neighboring correspondences on the correspond-
ing epipolar lines is always preserved. This order-
ing allows the construction of a dynamic programming
scheme which is employed by many dense disparity
estimation algorithms [10], [3], [5].

e Uniqueness Constraint: The correspondence between
any two corresponding points is bidirectional as long
as there is no occlusion in one of the images. A corre-
spondence vector pointing from an image point to its
corresponding point in the other image always has a
corresponding reverse vector pointing back. This test
is used to to detect outliers and occlusions.

For dense correspondence matching a disparity estima-
tor based on the dynamic programming scheme of Cox

4The epipolar plane is the plane defined by the the image point and the
camera projection centers
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Figure 3. Scanline search for best disparity
profile that exploits the constraints.

et al. [3], is employed that incorporates the above men-
tioned constraints. It operates on rectified image pairs
(I;, I,) where the epipolar lines coincide with image scan
lines. The matcher searches at each pixel in image I; for
maximum normalized cross correlation in Iy by shifting a
small measurement window (kernel size 5x5 to 7x7 pixel)
along the corresponding scan line. The selected search step
size AD (usually 1 pixel) determines the search resolution.
Matching ambiguities are resolved by exploiting the order-
ing constraint in the dynamic programming approach (see
Fig. 3). The algorithm was further adapted to employ ex-
tended neighborhood relationships and a pyramidal estima-
tion scheme to reliably deal with very large disparity ranges
of over 50% of image size [5].

3.3. Sequence Linking

The pairwise disparity estimation allows the compu-
tation of image to image correspondence between adja-
cent rectified image pairs, and independent depth estimates
for each camera viewpoint. An optimal joint estimate is
achieved by fusing all independent estimates into a common
3D model. The fusion can be performed in an economical
way through controlled correspondence linking. The ap-
proach utilizes a flexible multi viewpoint scheme by com-
bining the advantages of small baseline and wide baseline
stereo [18].

As small baseline stereo we define viewpoints with a
baseline much smaller than the observed average scene
depth. This configuration is usually valid for image se-
quences were the images are taken as a spatial sequence
from many slightly varying view points. The advantages are
an easy correspondence estimation and small regions of oc-
clusion® between adjacent images. Disadvantage is clearly
the limited depth resolution due to the small triangulation
angle between the view points.

5 As occlusions we consider those parts of the object that are visible in
a single image only, due to object self-occlusion.

Figure 4. Depth fusion and uncertainty reduc-
tion from correspondence linking along the
line of sight S; for a reference image P;.

The wide baseline stereo in contrast is used mostly with
still image photographs of a scene where few images are
taken from a very different viewpoint. Here the depth res-
olution is superior but correspondence and occlusion prob-
lems appear, because the views are very different and large
image regions without correspondence may occur.

The multi viewpoint linking combines the virtues of both
approaches by concatenating corresponding points over
multiple images. In addition it will produce denser depth
maps than either of the other techniques, and allow for ad-
ditional features during depth and texture fusion [18]. In the
linking process care is taken to deal with occlusions and to
check for measurement outliers.

3.3.1 Depth fusion

Assume an image sequence with K = 1 — N images, and
1 being an arbitrary image of that sequence. The image ¢ is
called reference image and all measurements are related to
this image. The goal is to compute a dense depth map for
a given reference image 4 and its view point P;. Starting
from the reference image i, the correspondences between
adjacentimages k={i+1,..,N}andk={i—1,...,1} are
linked in a chain. The depth for each reference image point
x; is computed from the correspondence linking that deliv-
ers two lists of image correspondences relative to the refer-
ence, one linking down from ¢ — 1 and one linking up from
i — N. For each valid pair of corresponding points (x;, X )
we can triangulate a depth estimate d(z;, z) along the line
of sight S,; of the corresponding pixel with the range ey,
representing the depth uncertainty. Figure 4 visualizes the
decreasing uncertainty interval during linking.

While the disparity measurement resolution AD in the
image is kept constant (at 1 pixel), the reprojected depth
error ey decreases with an increasing triangulation angle.
Outliers are detected by controlling the statistics of the
depth estimate computed from the correspondences. All



depth values that fall within the uncertainty interval around
the mean depth estimate are treated as inliers. They are
fused by a 1-D Kalman filter to obtain an optimal mean
depth estimate. Outliers are undetected correspondence
failures and may be arbitrarily large. As threshold to de-
tect the outliers we utilize the depth uncertainty interval ey,

3.3.2 Occlusions

If an object region is visible in image ¢ but not in k, we
speak of an occlusion. Occlusions are eliminated by incor-
porating a multi viewpoint matcher that operates symmetri-
cally to a particular viewpoint 7. Points that are occluded in
the view 4 + 1 are normally visible in the view ¢ — 1 and vice
versa. The exploitation of links starting up and down from
viewpoint ¢ resolves most of the occlusions and produces a
very dense depth map.

4. Surface Modeling

The dense depth maps as computed by the correspon-
dence linking must be approximated by a 3D surface repre-
sentation suitable for visualization. So far each object point
was treated independently. To achieve spatial coherence for
a connected surface, the depth map is spatially interpolated
using a parametric surface model. The boundaries of the
objects to be modeled are computed through depth segmen-
tation. In a first step, an object is defined as a connected re-
gion in space. Simple morphological filtering removes spu-
rious and very small regions. We then employ a bounded
thin plate model with a second order spline to smooth the
surface and to interpolate small surface gaps in regions that
could not be measured. If the object consists of dominant
planar regions, the local surface normal may be exploited to
segment the object into planar parts [17].

The spatially smoothed surface is then approximated by
a triangular wire-frame mesh to reduce geometric complex-
ity and to tailor the model to the requirements of Computer
Graphics visualization systems.

4.1. Texture Fusion

Texture mapping onto the wire-frame model greatly en-
hances the realism of the models. As a texture map one
could take the texture map of the reference image only and
map it to the surface model. However, this creates a bias to-
wards the selected image, and imaging artifacts like sensor
noise, unwanted specular reflections or the shading of the
particular image are directly transformed onto the object. A
better choice is to fuse the texture from the image sequence
in much the same way as depth fusion.

The viewpoint linking builds a controlled chain of cor-
respondences that can be used for texture enhancement as

well. A texture map in this context is defined as the color
intensity values for a given set of image points, usually the
pixel coordinates. While depth is concerned with the po-
sition of the correspondence in the image, texture uses the
color intensity value of the corresponding image point. For
each reference image position one may now collect a list of
color intensity values from the corresponding image posi-
tions in the other viewpoints. This allows to enhance the
original texture in many ways by accessing the color statis-
tics. Some features that can be derived naturally from the
texture linking algorithm are described below.

Specular reflection and artifact removal. The surface
reflectance of the object is modeled by a viewpoint indepen-
dent diffuse and a viewpoint dependent specular reflection.
In this case the color intensity statistics can be modeled as
Gaussian noise contaminated with an outlier tail distribution
that contains the reflection. By collecting the correspond-
ing color intensities over a series of different viewpoints,
one can detect the specular reflectance as outlier and re-
tain the diffuse reflection using median filtering. The same
statistics hold if a fast moving object temporarily occludes
the observed object, like a pedestrian passing in front of a
building to be modeled. The exploitation of a robust mean
texture will therefore capture the static object only and the
artifacts are suppressed [14].

Super-resolution texture. The correspondence linking is
not restricted to pixel-resolution, since each between-pixel-
position in the reference image can be used to start a cor-
respondence chain as well. Color intensity values will then
be interpolated between the pixel grid. If the object is ob-
served from many different view points and possibly from
different object distances, the finite pixel grid of the images
for each viewpoint is generally slightly displaced. This dis-
placement can be exploited to create super-resolution tex-
ture by fusing all images on a finer resampling grid. The
super-resolution grid in the reference image can be chosen
arbitrarily fine, but the measurable real resolution of course
depends on the displacement and resolution of the corre-
sponding images [25].

4.2 Multiscale Integration

Sometimes it is not possible to obtain a unique metric
framework for large objects like buildings since one may
not be able to record images continuously around it. For
scenes with high complexity we also need an adaptive level
of detail since not all scene parts need to be modeled with
the same resolution. In that case the different sequences
have to be registered to each other. A problem here is to
achieve consistency of the models. We follow a coarse-to-
fine multiscale approach. The scene is first recorded from



some distance to get an overview of the complete object on
a coarse scale. Next we move nearer to the object to record
details that can be fitted into the overview model on a finer
scale. The registration of the differently scaled models is
currently performed semi-automatic with a CAD modeling
tool like 3D-StudioMax. Three reference points for each
model are selected interactively at each scale and the de-
tail models are then fitted automatically to the overview
model, based on the transformations computed between
the reference points. In the future we plan to automate
this procedure further based on existing surface registration
schemes [2].

5. Experiments

In this section the performance of the modeling system
is tested on different outdoor sequences.

5.1. Castle sequence

The Castle sequence consists of 22 images of 720x576
pixel resolution taken with a standard semi-professional
camcorder that was moved freely in front of a building. Fig-
ure 5 shows the images 1,8,14, and 22 of the sequence.

To judge the geometric and visual quality of the recon-
struction, different perspective views of the model were
computed and displayed in Figure 6. In the shaded view, the
geometric details like the window and door niches are seen.
A close-up view from a position that a human observer
would take reveals the high visual quality of the model. To
demonstrate the texture fusion capabilities of the algorithm,
the specular reflection in the upper right window was re-
moved by a texture median filtering and a super-resolution
texture with zoom factor of 4 was generated from the im-
age sequence. The bottom of Fig.6 shows the reference im-

Figure 5. Images 1, 8, 14, and 22 of the castle
sequence.

Figure 6. Top: textured views. Middle left:
shaded view. Middle right: close-up view.
Bottom left: 4x zoomed original region, Bot-
tom right: median-filtered super-resolution
texture.

age (left) and the generated median super-resolution texture
without reflection (right).

5.1.1 Performance Evaluation

The above reconstructions showed some qualitative results.
The quantitative performance of our modeling approach can
be tested in different ways. One measure is the visibility
V that defines the number of views linked to the reference
view. The more views are linked, the higher the reliability
of the measurement. Another important feature of the se-
quence linking algorithm is the density and accuracy of the
depth maps. To describe its improvement over the 2-view
disparity estimator, we define the fill rate F' and the average
relative depth error E as additional measures. F' [in %] de-
fines the number of estimated pixels vs. all image pixels. E
[in %] is the average depth uncertainty of a point w.r.t. the
point distance.

The 2-view disparity estimator is a special case of the
proposed linking algorithm, hence both can be compared
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Figure 7. Statistics of the castle sequence.
Left: Influence of sequence length NV on vis-
ibility V' and relative depth error E. Right:
Influence of minimum visibility V,,,;,, on depth
error E and fill rate F for N = 11.

on an equal basis. The 2-view estimator operates on the
image pair (4,7 + 1) only, while the multi view estimator
operates on a sequence 1 < ¢ < N with N >= 3. The
above defined statistical measures were computed for dif-
ferent sequence lengths N. Figure 7 displays visibility and
relative depth error for sequences from 2 to 15 images, cho-
sen symmetrically around the reference image. The average
visibility V' shows that for up to 5 images nearly all views
are utilized. For 15 images, at average each pixel is linked
over 9 images. The amount of linking is reflected in the rel-
ative depth error that drops from 5% in the 2 view estimator
to about 1.2% for 15 images.

Linking two views is the minimum case that allows tri-
angulation. To increase the reliability of the estimates, a
surface point should occur in more than two images. We
can therefore impose a minimum visibility V,;,;, on a depth

Figure 8. Shaded representation of surface
model using 2 views (left) and 11 views (right).

estimate. This will reject unreliable depth estimates effec-
tively, but will also reduce the fill-rate of the depth map. The
graph in Fig. 7 (right) shows the dependency of the depth
error and fill rate on minimum visibility for N=11. The fill
rate drops from 92% to about 70%, but at the same time the
depth error is reduced to 0.5% due to outlier rejection.

The effects of error reduction with sequence linking can
be visualized when the surface models are rendered with
shading. Fig 8 shows the shaded models of the castle for
the 2-view estimator (left) and the 11-view estimator (right).
The shape of the 2-view model is very coarse and no de-
tails are visible, due to the quantization artifacts that are
inherent to the method. In fact, the complete scene contains
only about 20 discrete disparity values. This leads to a very
blocky appearance of the model. In the model linked from
11 views the quantization artifacts are reduced greatly due
to the increased effective baseline, and many fine details
like the window niches and the doors are modeled.

5.2. Pillar sequence

As an example for varying camera parameters, eight im-
ages of a stone pillar with curved surfaces were taken. Fig-
ure 9 show 2 of the recorded images. While filming and
moving away from the object the zoom was changed (2x)
to keep the image size of the object constant. In spite of
the changes in focal length the metric frame could be re-
trieved through self-calibration. In Figure 10 some perspec-
tive views of the reconstruction are given, rendered both
shaded and with surface texture mapping. The shaded view
shows that even most of the small details of the object are
modeled.

To assess the metric properties for the pillar, 27 differ-
ent lengths were measured on the real object and compared
with the metric model to obtain the scale factor. Averag-
ing all measured distances gave a consistent scale factor of
40.25 with a standard deviation of 5.4% overall. For the
interior distances (avoiding the inaccuracies at the bound-
ary of the model), the reconstruction error dropped to 2.3%.
These results demonstrate the metric quality of the recon-
struction even for complicated surface shapes and varying
focal length.

Figure 9. Images 1 and 8 of pillar sequence.



Figure 10. Perspective views of the recon-
struction (with texture and shading).

5.3. Sagalassos Virtual exhibition: A Test Case

The proposed system was tested on a large variety
of scenes with different cameras of varying quality (35
mm photo camera on Photo-CD, digital still camera, cam-
corders) and was found to work even under difficult acqui-
sition circumstances. As a special test case, field trials were
carried out at the archaeological excavation site of Sagalas-
sos in Turkey. This is a challenging task since the archae-
ologists want to reconstruct even small surface details and
irregular structures. Measurements with highly calibrated
photogrammetric workstations failed since those systems
could not withstand the high temperatures at the site. The
goal of this field test was to prove the feasibility of our ap-
proach for a variety of scenes and to model objects for a
virtual exhibition that can be presented over the internet.

5.3.1 Sagalassos Site

The Site sequence in figure 11 is a good example of a large
scale modeling using off-the-shelf equipment. Nine images
of the complete excavation site of Sagalassos in Turkey (ex-
tension a few km?) were taken with a conventional photo-
graphic camera while walking along the valley rim. The
film was then digitized on Photo-CD.

The Site reconstruction in figure 11 (bottom) gives a
good overview of the valley relief. Some of the dominant
objects like the Roman Bath and the Market place, as well
as landmarks like big trees or stones are already modeled at
this coarse scale but without any detail.

5.3.2 Detail models of the Roman bath

This sequence is a typical example of a detailed model. It
consists of one part of the Roman bath that was modeled
with high resolution from six images. Figure 12 shows 3
of the original images and the fused depth map. The rela-
tive depth error was estimated to 0.8% and the depth map is

Figure 11.Images 2 and 9 of the site sequence
(top) and overview model of the complete site
(bottom).

very dense. Figure 13 reveals the high reconstruction qual-
ity which gives a realistic impression of the object. The
close-up view confirms that each stone is modeled, includ-
ing relief and small indentations. The indentations belong
to erosion gaps between the stones.

5.3.3 Multiscale Integration of different Level of Detail

The models acquired at different scales are registered to
each other for adaptive level of detail. For the example of
the Roman bath we reconstructed models at three different
scales: the site overview model, the detailed part of the bath
model, and an intermediate model that overlooks the com-
plete area of the baths. These reconstructions thus naturally
fill in the different levels of details (LOD) which should be
provided for optimal rendering. In Figure 14 reconstruc-

Figure 12. Images 1, 3 and 6 of Roman Bath
sequence. Lower right: estimated depth map
(dark = near, light = far).



Figure 13. Textured and shaded views of Ro-
man bath model. The close-up view shows
that even small details like single stones are
modeled.

tions of the Roman baths are given for the three different
levels of details. These models are then registered to each
other and inserted in the overview model. For scene visu-
alization, the viewer may automatically switch between the
different LOD depending on object distance, thus allowing
an efficient scene representation. Fig 15 shows the integra-
tion result. On of the major problems here is the seamless
integration of the surface textures from the different levels
of detail. The different texture resolution of overview and
detailed model leads to a severe blurring in the foreground.

Figure 14. Models of the Roman baths at dif-
ferent scales: complete baths on intermedi-
ate level (top), zoom onto the baths in the
overview model of Figure 11 (bottom left), de-
tailed right corner of the baths from fig 13
(bottom right).

Figure 15. Multilevel model of Roman bath
with three LOD.

On way to handle this problem would be to synthesize tex-
ture for the overview model with higher resolution to im-
prove the appearance.

5.3.4 Augmenting the site with CAD models

Another interesting approach is the merging of the recon-
structed real site model with hypothesized buildings that
were constructed from archaeological findings. This tech-
nique allows the reconstruction of the site as it once might
have been. In the case of Sagalassos some building hypothe-
sis were translated to CAD models [23] and integrated with
our reconstructions. The result can be seen in Figure 16.
This scene augmentation is a powerful visualization tool
that fits naturally with our modeling approach.

Figure 16. Virtualized landscape of Sagalas-
sos combined with CAD-models of recon-
structed monuments.

6. Conclusion

An automatic 3D scene reconstruction system was de-
scribed that is capable of building metric textured 3D mod-
els from images of a freely moving, uncalibrated camera.
The technique extracts metric surface models without prior
knowledge about the scene or the camera other than assum-
ing rigidity of the objects. The approach was tested with dif-
ferent off-the-shelf camera types and for scenes of varying
scale and complexity. The algorithms estimate very dense
depth maps and achieve a depth accuracy of typically 1%
of scene depth. The approach was tested on a variety of



real outdoor sequences and has proven its robustness. The
high quality of the reconstructed objects, the different scene
types, and the use of off-the-shelf equipment demonstrate
the versatility and flexibility of the proposed scene recon-
struction approach.

Work remains to be done in constructing multiscale mod-
els from varying LOD. The surface texture resolution of the
different levels need to be adapted and the models need to
be integrated geometrically into a consistent surface model.
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