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Abstract. A system is presented that takes a single image as an in-
put (e.g. showing the interior of St.Peter’s Basilica) and automatically
detects an arbitrarily oriented symmetry plane in 3D space. Given this
symmetry plane a second camera is hallucinated that serves as a virtual
second image for dense 3D reconstruction, where the point of view for
reconstruction can be chosen on the symmetry plane. This naturally cre-
ates a symmetry in the matching costs for dense stereo. Alternatively, we
also show how to enforce the 3D symmetry in dense depth estimation for
the original image. The two representations are qualitatively compared
on several real world images, that also validate our fully automatic ap-
proach for dense single image reconstruction.

1 Introduction

Symmetry is a key design principle in man-made structures and it is also fre-
quently present in nature. Quite some effort has been spent to detect or ex-
ploit symmetry in computer vision (e.g. [6, 11, 14, 4, 20, 9, 2, 3]). Unlike previous
researchers, in this contribution we investigate how 3D symmetry can be ex-
ploited to automatically obtain a dense three-dimensional perception of some
scene from a single image, in particular when the scene is symmetric with respect
to some virtual symmetry plane. The intuition is that when the observer is not
exactly in this symmetry plane, then each object and its symmetric counterpart
are seen from a (slightly) different perspective. These two different perspectives
onto essentially the same thing can be exploited as in standard two-view stereo
to obtain a dense, three-dimensional model (see fig. 1). The key steps are es-
sentially comparable to structure from motion [13], however we run the whole
pipeline on a single image, where we assume the intrinsic camera parameters
to be known beforehand: Within-image feature matching, robust estimation of
autoepipolar geometry and symmetry plane followed by dense depth estimation.
Our key contributions are a novel, straight-forward 3D formulation of the single
image symmetry scenario which is analog to multi-image structure from motion,
a single-texture plane-sweep for a symmetric viewpoint to create a cost volume,
and enforcing 3D symmetry in the global optimization by equality constraints in
the minimum-surface formulation. The next section will relate this contribution
to previous work, before the following sections detail the steps of the approach.

presented at DAGM 2011 (LNCS 6835), see also http://tinyurl.com/depthfromsymmetry
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Fig. 1. From left to right: Input image taken at St.Peter’s Basilica, detected symmetry
(lines connecting features), some rendered oblique view of a very coarse, untextured
but shaded model, reconstructed from the single image.

2 Previous work

Previous work related to this contribution can roughly be divided into two cat-
egories. The first category describes the general ideas of symmetry exploitation
and uses interactive techniques like clicking correspondences or works on re-
stricted scenarios. Gordon [6] seems to be the first to have described the idea of
shape from symmetry, later Mitsumoto et al. consider mirrors [11]. Much later,
also [4] considers symmetric scene geometry but seems to be unaware of Gor-
don’s work. In terms of dense reconstruction, Shimshoni et al. show interesting
results on reconstructing textureless, lambertian objects [14], but they assume a
weak perspective camera, horizontal symmetry and a single light source. Their
iterative approach starts from a rough estimate of the light source and symmetry
plane to optimize normals and scene parameters using shape-from-shading. In
other works, geometric relations using planar mirrors have been considered (e.g.
[5]) or silhouette-based reconstruction therein [20].

The second category of approaches is concerned about automatic detection
of symmetry. Here, with the advances of automatic matching, feature-based es-
timation of planar homologies present in symmetry and repetition (e.g. [15])
became possible, also with non-fronto-parallel planes. In terms of 2D symmetry,
Loy and Eklundh [9], observed that SIFT features[8] can either be extracted on
mirrored regions or that the SIFT descriptor itself can be rearranged for in-image
matching to find mirrored features. Detection was then extended by Cornelius et
al. [2, 3] to planar but non-frontal scenes. Wu et al. [16] detected and reconstruct
repetitions on rectified planar facades with relief structures. For more details on
computational symmetry, we refer to the recent survey paper by Liu et al. [17].

In general, we observe that there is no fully automatic approach to recon-
struct a dense, textured 3D model from a single image showing a symmetric
scene, which we show in this contribution. Furthermore, we give a novel, clear
derivation of the geometry of the symmetric scene which nicely shows the du-
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ality of interpreting an image point as being the projection of a reflected point
in one camera or the projection of the original point in a “reflected” camera.
Finally, we obtain a dense reconstruction that particularly enforces consistent
depth for symmetric points. Posing the depth estimation as a labeling problem,
we show how to integrate symmetry as equality constraints into a voxel-based
(continuous) minimum-cut. The symmetry of the scene allows to compute depth
with respect to a central view on the symmetry plane or for the original image,
where we compare advantages and drawbacks for both solutions.

3 Symmetric Scene Geometry

Fig. 2. Left: Reflection of points on a plane with normal n according to equation 2.
Center images: dual interpretation of mirrored point and mirrored camera of equation
3. Right: normal constraint of eq.6: the normal n must lie in all backprojection planes
of symmetry correspondences.

In this contribution we focus on symmetric scenes, i.e. scenes with a global
symmetry plane so that for each point X on one side of the plane there is a
corresponding 3D point X ′ on the opposite side of the plane.

It is easy to see that the image X ′e of a Euclidian 3D point Xe given a mirror
plane with normal n through the origin can be obtained by

X ′e = Xe − 2(nTXe)n =
(
I 3 − 2nnT

)
Xe (1)

Now consider that the symmetry plane can have an arbitrary position (not neces-
sarily going through the origin, but by passing it at distance d) and it is expressed
in homogeneous coordinates as π =

(
nT − d

)
. A reflection by this plane (see

figure 2, left image) can then be written linearly in homogeneous coordinates as

X′ =
(

I 3 − 2nnT −2dn
0T

3 1

)
︸ ︷︷ ︸

Mπ

X (2)
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Here, Mπ is a projective transformation that encodes the mirroring.
Consider now a (intrinsically calibrated) camera observing the point X at

image position x ' PX, where we assume P being the canonic camera at the
origin and looking into positive z-direction (cf. to [7]): P = (I 3 03). It will observe
the mirrored point X′ at x′ ' PX′, which can also be written using Mπ as

x′ '
P′︷ ︸︸ ︷

P · Mπ · X︸ ︷︷ ︸
X′

(3)

This equation shows a duality of possible interpretations: M can be absorbed
into the projection matrix, defining a new camera that observes an image with
x and x′ swapped, or, M can be absorbed into the point to project the mirrored
point (see figure 2, center images). In case we absorb it into the mirrored camera
we obtain the 3× 4 projection matrix

P′ = PMπ = (I 3 03)
(

I 3 − 2nnT −2dn
0T

3 1

)
=

I 3 − 2nnT︸ ︷︷ ︸
S

−2dn

 (4)

Please note that S is an orthogonal 3 × 3-matrix with determinant -1 (not a
rotation matrix), however P′ is still a valid projection matrix. If we compute the
essential matrix between P′ and P (or between the image and itself) we obtain

E ' [n]×
(
I 3 − 2nnT

)
' [n]× (5)

which is autoepipolar [7].

4 Estimating the Symmetry Plane

Obtaining Correspondences Since the goal is to recover the symmetry plane
in three-dimensional scenes, local regions and their symmetric counterparts may
look significantly different. In fact, since perspective effects and illumination dif-
ferences may appear (depending on the distance of the camera to the symmetry
plane and depending on illumination and scene normals), this is a wide-baseline
matching problem. Similar to previous authors, who were looking for symmetry
only in 2D[9] or on planes [3, 2], we exploit the fact that local affine features (cf.
to [10] for an overview) locally compensate for perspective effects. Since classi-
cal shape + dominant orientation normalization (cf. to [8]) does not allow for
general affine transformation but only for those with positive determinant (re-
flections are not compensated by this), for each feature we explicitly extract also
a mirrored descriptor as proposed by [9]1. Then we find within image correspon-
dences between mirrored and non-mirrored descriptors according to proximity
in descriptor space.
1 If speed is not a concern, just mirroring the whole image along any direction, ex-

tracting features and re-assigning descriptors to the coordinates in the original image
is sufficient.
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Symmetry Plane Normal By definition we know that the line connecting a
point X and its symmetric counterpart X ′ is in direction of the symmetry plane
normal (as long as X is not on the symmetry plane and thus identical to X ′).
The plane that is spanned by the camera center and the two viewing rays to
the two 3D points contains also this line and consequently the symmetry plane’s
normal vector must lie in this plane (compare figure 2, right image). Let (x,x′)
be a pair of corresponding (symmetric) features. Then(

[x′]× x
)T︸ ︷︷ ︸

ax

n = 0 (6)

If we use a second correspondence (y,y′) then the analogue constraint must hold
and consequently n has to lie in the null space of the matrix composed of the
rows ai: (

ax

ay

)
n = 0 (7)

Obviously, n ' ax × ay fulfills this equation. This is a minimal solution to the
3D symmetry normal from 2 points, which is essentially the same as estimating
the epipole for autoepipolar matrices or a vanishing point from images of parallel
line segments (cf. to [7]). Please note that this is similar in spirit to [3], however
we explicitely write it down for 3D scenes.

Since points on the symmetry plane do not provide constraints, we reject
all correspondences with less than 10% image width displacement and apply 2-
point RANSAC with the above minimal solver to estimate the symmetry plane
normal. Afterwards we apply maximum likelihood estimation for the normal as
common also for standard vanishing point estimation approaches [7].

Camera geometry Since we are aiming at dense stereo, some baseline is re-
quired to reconstruct the scene geometry. We will now construct a second virtual
camera to perform the stereo. Assume for now that the original image has not
been taken from exactly inside the symmetry plane. Then, since image-based re-
constructions are only up to scale, we can define the baseline of our to cameras
to be 2. However, since n and −n are projectively equivalent, there are still two
options for the second camera center that need to be resolved, e.g. by checking
in which of the configurations the correspondences are in front of the cameras.

As explained in equation 4, we know that a camera with the projection matrix
P′ would observe an image with coordinates of x and x′ swapped. This camera
can be converted to a more intuitive right-handed representation by multiplying
the projection matrix by −1, subsequent K,R,C-decomposition (this camera is
then looking away) and appropriate rotation, e.g. to obtain a rectified standard
stereo setup. However, we decided for a more direct approach and use the (left-
handed) P′ directly in plane-sweep stereo.

We observe that the proposed approach fails in case the camera center is
on the symmetry plane, which corresponds to the case of no baseline in stan-
dard stereo. Being close to the symmetry plane means only small baseline and
potentially only a few measurable disparity steps.
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5 Dense Depth Estimation

Dense Stereo and Plane-Sweep Beside using a rectified configuration for
dense stereo computation, there are two natural choices for the reference frame
used to represent the depth map. Both approaches are based on the plane-sweep
methodology. Note that the image to use for the mirrored view is exactly the
original image, since symmetric 3D points are treated as the same 3D point by
construction. Thus, no additional image has to be synthesized for the mirrored
camera.

The first option is to utilize a virtual view between the original and the
mirrored camera residing on the mirror plane (see Fig. 3(a)). A fronto-parallel
plane sweep approach for stereo with respect to this central view is similar to
computational stereo after image rectification, but in this setting both matching
images are moving in horizontal direction. This setup has a few advantages, but
one major disadvantage. First, by using a symmetric matching score (i.e. sym-
metric with respect to swapping image patches), and if a symmetric smoothness
term is utilized, then the result depth map is naturally symmetric without ex-
plicit enforcement. Second, the central view configuration usually minimizes the
perspective distortion when using larger aggregation windows for the matching
score, since the plane of symmetry is often orthogonal to the surface of man-
made objects. Thus, fronto-parallel planes with respect to the central camera
tend to be aligned with surface elements leading to better matching scores. The
disadvantage of the central reference view configuration is, that there is no fixed
reference image unaffected by the current depth hypothesis, and therefore one
pixel (or patch) e.g. in the left (original) image may match several pixels/patches
in the mirrored view. This leads to noticeable artefacts induced especially by tex-
tureless regions (see Fig. 4(b) and (c)).

(a) Central configuration (b) Non-central configuration

Fig. 3. The two setups used for dense depth estimation via plane sweep
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The other natural configuration uses the original camera as reference view,
and the mirrored camera as matching image (see Fig. 3(b)). The symmetry of the
3D geometry induced by the resulting depth map is lost, and must be explicitly
enforced if desired. Since in this configuration the symmetry requirement of the
reconstructed object cannot easily be formulated in terms of the resulting depth
map, global methods for depth map computation are difficult to extend with
symmetry constraints. We utilize the globally optimal stereo method based on
finding the minimum-cost surface separating a near plane from a far plane in
3D [1, 12, 18]. In the following section we describe, how 3D symmetry constraints
can be incorporated into a class of global stereo methods.

Global Stereo with Symmetry Constraints The basic model for globally
optimal stereo is

E(u) =
∫
Ω×L

φ(∇u) dx dl,

where u : Ω × L → {0, 1} represents the sublevel function of the desired label
assignment Λ : Ω → L. φ is a family of positively 1-homogeneous functions
implicitly indexed by grid positions (x, l) ∈ Ω × L. In order to avoid the trivial
solution u ≡ 0 we fix the boundaries, u(x, 0) = 0 and u(x, L) = 1.

Each grid position (x, l) (i.e. a camera ray with an associated depth label)
corresponds to a point X in 3D space. Thus, u can be interpreted as 3D oc-
cupancy function whether a voxel corresponding to (x, l) is filled (u(x, l) = 1)
or empty (u(x, l) = 0). Knowing that the object to be modeled is symmetric
with respect to a mirror plane nTX = 1, implies that both 3D locations X
and its reflection X ′ = (I − 2nnT)X + 2n are either occupied or empty, i.e.
have the same state. The constraints can be translated to a set of equality con-
straints for corresponding locations in the domain Ω × L, u(x, l) = u(x′, l′) for(
(x, l), (x′, l′)

)
∈ C. Here C is a set of corresponding locations within the viewing

frustum.
Overall the depth labeling task can be written as (after relaxing the binary

constraint u(x) ∈ {0, 1} to u(x) ∈ [0, 1])

E(u) =
∫
Ω×L

φ(∇u) dx dl,

subject to u(x, l) ∈ [0, 1], u(x, 0) = 0, u(x, L) = 1, and u(x, l) = u(x′, l′) for(
(x, l), (x′, l′)

)
∈ C. This is a non-smooth convex problem. On a discrete grid

and with φ being a weighted L1 norm this can be solved with a graph cut
method [1]. The additional equality constraints can be enforced by infinite links
between the respective nodes in the graph (and therefore both sites have to be
on the same side of the cut). Using similar arguments as in [19] it can be shown
that u attains essentially binary values also in the case of general positively
1-homogeneous functions φ.
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Implementation Details We utilize the L1 difference between 5 × 5 pixel
patches of Sobel-filtered images as our image matching score. Consequently, pixel
brightness differences due to shading effects are largely addressed by this choice
of the similarity function. We increase the robustness of the matching score by
truncating its value to a maximum of 5 (with respect to normalized pixel in-
tensities in [0, 1]). This is very helpful to limit the influence of non-symmetric
high-frequency textures on the overall result. Global optimization to obtain a
smooth depth map is based on a primal-dual gradient method. Spatial smooth-
ness is enforced by utilizing the isotropic total variation. The final depth value
(potentially at subpixel accuracy) is extracted from u as the 0.5-isolevel.

6 Experiments

We evaluated our approach on a set of real images from a range of several sce-
narios (see Fig. 4): facades, indoor environments with a large depth range, depth
discontinuities and occlusions, and finally rather textureless and only approxi-
mately symmetric objects. In order to cope with inaccuracies of the estimated
symmetry plane normal, and to be robust with respect to texture asymmetries
at small scales, we downsized the images to quarter resolution (of originally 3-6
MegaPixel). The plane sweep method evaluates 120 depth values, and the weight
parameter for the data fidelity term is set to 5.

Since a quantitative evaluation is difficult due to missing ground truth, we
qualitatively compare the different approaches. First it can be observed that
the global but unconstrained solution does not produce symmetric 3D scenes,
whereas the other approaches do. Qualitatively the depth maps returned by the
different dense stereo methods are similar, although they differ in details. While
the central approach seems to be attractive because of its intrinsic 2D symmetry
of the depth map, we noticed that it can introduce undesired artefacts: in the
central configuration a single pixel of the original view can be consistent with
different depth hypotheses and thus be assigned to multiple depths. Objects
with small depth variations and concave environments are clearly most suitable
for symmetry-based single view reconstruction, due to the absense of strong
occlusions (Fig. 4, first two rows).

7 Conclusion

After anaylzing the underlying 3D geometry, we have presented a novel auto-
matic approach to densely reconstruct a symmetric scene from a single image. In
particular we suggested and compared different representations of the 3D scene
(depth with respect to a virtual central view or with respect to the original
camera), and enforced the reconstructed scene to be symmetric by equality con-
straints between corresponding 3D locations in a minimal surface formulation.

Future work might exploit multiple local symmetries, and could also investi-
gate in detecting the support of the detected symmetry in the image, i.e. separate
symmetric and non-symmetric scene elements.
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(a) Input image (b) Non-central conf. (c) Central conf.

(d) Input image (e) Unconstrained (f) Symm. constr. (g) Central conf.

Fig. 4. Results for our datasets. First row: while the central configuration naturally
leads to symmetric depth maps, some artefacts induced by textureless regions are
visible (see the apexes of the towers in (b) and (c)). Bottom rows: input images (d)
and depth maps obtained for the non-central configuration without explicit symmetry
constraints (e), with symmetry constraints (f), and for the central configuration (g).
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