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Abstract

We present an approach for 3D reconstruction from mul-
tiple video streams taken by static, synchronized and cali-
brated cameras that is capable of enforcing temporal con-
sistency on the reconstruction of successive frames. Our
goal is to improve the quality of the reconstruction by find-
ing corresponding pixels in subsequent frames of the same
camera using optical flow, and also to at least maintain the
quality of the single time-frame reconstruction when these
correspondences are wrong or cannot be found. This allows
us to process scenes with fast motion, occlusions and self-
occlusions where optical flow fails for large numbers of pix-
els. To this end, we modify the belief propagation algorithm
to operate on a 3D graph that includes both spatial and
temporal neighbors and to be able to discard messages from
outlying neighbors. We also propose methods for introduc-
ing a bias and for suppressing noise typically observed in
uniform regions. The bias encapsulates information about
the background and aids in achieving a temporally consis-
tent reconstruction and in the mitigation of occlusion re-
lated errors. We present results on publicly available real
video sequences. We also present quantitative comparisons
with results obtained by other researchers.

1. Introduction

Multiple-view reconstruction has been one of the most
active areas in computer vision. Considerable progress has
been made and the reconstructed models are within mil-
limeters from the ground truth. Examples of such accurate
reconstructions and a comparison among them can be found
at the Multi-View Stereo Evaluation webpage[4]. While 3D
static reconstruction is widely useful, the domain of dy-
namic reconstructions is much larger. It includes applica-
tions such as visualization for training, consultation, enter-
tainment, free-viewpoint video and 3D TV. Besides tempo-
ral consistency, we aim at achieving two other goals: geo-
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(a) Consecutive video frames

(b) Depthmap using
standard BP-based stereo

Figure 1. Parts of three consecutive frames from the MSR break-
dancing dataset [23] and a depthmap reconstructed using standard
BP. Notice the large motions from frame to frame and the high-
lighted limitations of single time-frame reconstructions, such as
the “webbing” under the breakdancer’s arm and the noise on the
wall.

metric accuracy and rendering from viewpoints beyond the
set of the input camera viewpoints. While good visualiza-
tion results can be achieved using video-based rendering ap-
proaches that process each time-frame' independently, such
as the one by Zitnick et al. [23], they do not always satisfy
the other two requirements, namely geometric accuracy and
the ability to visualize the reconstruction from a viewpoint
that is very different than the input cameras.

Methods for estimating what is termed 3D scene flow
have been reported in the literature [17, 18, 5, 9, 22, 6, 7]
but they typically require reasonable estimates of the optical
flow in the images for most of the pixels including the ones
on moving parts. Our approach can utilize optical flow mea-
surements when they are correct, but is also robust to large
errors that typically occur when there is large motion in the
scene (Fig. 1(a)). The consequences of large motion are
that pixel correspondences cannot be detected due to large
displacements and rotations, as well as that many pixels be-
come occluded and un-occluded and thus have no optical

I'The term “time-frame” is used in this paper to refer to a set of images
captured at the same time



flow. A fundamental goal of our approach is that it should
not achieve inferior performance compared to single-frame
reconstruction when optical flow fails.

Processing is performed on video streams captured by
static, synchronized and calibrated cameras. The objective
is a sequence of depthmaps for the reference camera that
are geometrically accurate and temporally consistent. We
begin by constructing the initial observation for the pixels
of the reference camera using a multi-camera implementa-
tion of the locally adaptive support-weight method of Yoon
and Kweon [21]. The final depth estimates are obtained us-
ing a stereo algorithm based on enhanced belief propagation
(BP) that operates on the observations for multiple frames.
In Section 3 we describe in more detail the following en-
hancements to address temporal reconstruction and errors
in the estimated depthmaps such as those in Fig. 1(b):

e Robust BP which dynamically adapts the graph by re-
moving outliers among the neighbors of each node.

e Biased BP which uses an additional PDF similar to the
observation to influence pixels, those similar in color
to the background and having low confidence, towards
a bias from a higher level algorithm. This bias can be
obtained many ways, including by segmentation and
plane-fitting or by constructing a colored model of the
background depth after observing all the frames. The
strength of the bias is adjusted locally based on color
similarity and confidence.

e Quiet BP which addresses noise propagation in uni-
form areas by not re-using the initial observation dur-
ing message updates after initialization. Its objective is
to mitigate the negative effects of loops in belief prop-
agation.

In Section 5, we present results on the binocular stereo
datasets of the Middlebury Stereo Evaluation webpage
[14, 3], one of the 3D TV Network of Excellence datasets
available at [1] and the Microsoft Research breakdancing
sequence available at [2]. We also present quantitative com-
parisons with reconstructions of the latter dataset obtained
by Zitnick et al. [23]. We are grateful to the authors for
making their results publicly available. We acknowledge
that the focus of their research was not the geometric accu-
racy of the reconstruction, but rather multi-camera video-
based view interpolation that enables free-viewpoint video
playback. There are, however, useful conclusions that can
be drawn from this comparison.

2. Related Work

This section is a brief overview of multiple-view recon-
struction algorithms that explicitly address temporal consis-
tency for non-rigid scenes. See the Middlebury Multi-View

Stereo Evaluation webpage [4] and references therein for
work on the static case.

Vedula et al. [17, 18] introduced scene flow which is
the 3D equivalent of optical flow: a dense motion field for
all surface points from frame to frame. A key choice is to
perform regularization in the images instead of the scene
surfaces. A different approach was taken in [19] in which
space carving [8] is used to carve away voxels that violate
photoconsistency constraints in the 6D space of the coordi-
nates of two temporally corresponding voxels. This results
in tighter shape approximation than applying space carving
to the two frames separately.

Carceroni and Kutulakos [5] use dynamic surfels as
primitives that encode local shape, reflectance and motion
of a small surface patch. In contrast to [18], regularization
takes place on the surface. The approach is limited to a
small number of surfels due to the high complexity of the
proposed surfel sampling algorithm and requires known il-
lumination of the scene. Neumann and Aloimonos [9] em-
ploy a time-varying multi-resolution surface that is fitted
to the data using spatio-temporal multiple-view information
and silhouette constraints. The subdivision, unlike [5], can
be updated from frame to frame.

Pons et al. [12] propose a common variational frame-
work for multiple-view reconstruction and scene flow es-
timation. The solution is obtained via a level set that
evolves the shape in order to minimize image prediction
error. Scene flow is estimated in the 3D domain where a
vector field is evolved according to the same image pre-
diction criterion. Goldluecke and Magnor [6] extend the
iso-surface extraction approach to temporal reconstructions
and seek a 3D iso-surface in 4D using a variational method.
The desired iso-surface represents the evolution of the scene
surfaces in time.

Tao et al. [16] present a method based on image seg-
mentation that models the scene as a set of planes. It is well
suited for scenes with uniform surfaces where optical flow
is correct for segments but not pixels. Temporal depth hy-
potheses for each plane are verified in the following frame.
The method is able to produce sharp surface boundaries due
to image segmentation and the fitting of a plane to each seg-
ment. We achieve similar results by introducing a bias in
belief propagation.

Zhang and Kambhamettu [22] present two viewpoint-
based approaches for the estimation of 3D scene flow. One
is based on a piecewise affine motion model and operates on
N frames assuming constant velocity for each patch. The
second approach computes structure and motion simultane-
ously taking into account image segmentation information
and using validation between two depthmaps to detect reli-
able matches. Gong [7] proposed an algorithm for the esti-
mation of disparity flow, which is a motion field that maps
pixels and disparities to the corresponding pixels and dis-



parity values in the next frame. The disparity flow fields are
used to predict the new disparity maps by biasing the cost
volume in favor of the predicted values.

A limitation of methods such as [18, 19, 6] is that they
require accurate spatial and temporal correspondences for
most points of the scene. This makes them inapplicable to
scenes with very fast motions or with significant occlusions
and self-occlusions. The surfel sampling algorithm [5] may
be more effective when exact correspondences cannot be
found but it is limited by the requirement for known illumi-
nation, its high computational complexity and the indepen-
dent optimization of adjacent surfels. Our approach is more
similar to [22] and [7] since it is viewpoint-based and most
importantly able to recover from failures of optical flow.

3. Temporal Belief Propagation

In this section, we describe our modifications to the be-
lief propagation framework. We begin with an overview of
belief propagation, then discuss a simple extension to tem-
poral belief propagation. This leaves us with unsatisfactory
results though, so we provide two enhancements which im-
prove the results significantly. These modifications address
fundamental problems in temporal multiple-view stereo and
are general: we expect them to be applicable to a variety of
problems.

3.1. Belief Propagation Background

Before describing our research, we briefly present an
overview of belief propagation [10, 20]. It is an opti-
mization algorithm based on a message passing system that
stores at each node a separate message for each of that
node’s neighbors. Belief propagation algorithms can be
used for, among other things, optimization with an energy
function for a pairwise Markov Random Field (MRF) as:
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This energy function is defined on a graph, with P the set
of all nodes and N the set of node pairs, i.e. the set of
edges. The set of nodes j € N (i) with (4, ) € A is termed
the neighborhood of node ¢. Each node takes a labeling z;,
from some finite state space (e.g. disparity values). In these
equations, ¢; (x;) will be referred to as the observation - the
data consistency term, and ;;(x;, x;) as the compatibility
term - the smoothness term.
Keeping the observation at each node constant, the belief
at a node ¢ can be defined as:
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where m; is the message from node j to node ¢ about the

state of 4. The message m; is a vector of the dimensional-
ity of the state space and its components are proportional to

how likely the corresponding labeling (state) is for  accord-
ing to 7. Each message can be viewed as a discrete PDF.
The messages are updated according to:
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The product is over all messages coming to node ¢ except
the one coming from node j. Noted that BP offers no guar-
antees of optimality for graphs with loops, such as the ones
used in computer vision problems. In the remainder of this
section we discuss modifications to the BP framework that
make it more effective for the problem of temporal multiple-
view reconstruction.

3.2. Temporal Belief Propagation

Traditionally, the graph BP is performed on is the 2D
image lattice with the neighborhood of a pixel being its
4-neighbors. This enforces spatial smoothness and has
achieved outstanding results in binocular stereo with spe-
cific modifications to account for occlusion and other ef-
fects [15]. In order to integrate temporal smoothness, we
need to define a graph in which pixels are also connected to
their temporal neighbors. In this paper, we propose to use
a graph consisting of three image lattices, one each for the
previous, current and next frame of the reference camera.
Each pixel is connected to its four image neighbors, one
pixel in the previous frame and one in the next frame. This
results in a graph with nodes of cardinality six on which the
basic BP algorithm can be used without modifications.

Note that constructing the graph by simply connecting
pixels with the same image coordinates across frames is in-
correct when dealing with dynamic scenes. Therefore, we
use optical flow to detect pixel correspondences in time. See
Section 4 for more details. The challenge here is that optical
flow often fails, especially for the parts of the scene with the
fastest motion (Fig. 1(a)). Including these erroneous con-
nections in the graph causes problems to the reconstruction.

Connecting nodes across frames implies that temporally
corresponding pixels have nearly the same depth. Depend-
ing on the formulation of ¢, “nearly the same” commonly
includes cases where linearly interpolating the motion is
correct - those approximated by constant first derivative.
This assumption does not apply generally, e.g. when an ob-
ject is accelerating toward the camera, but it tends to apply
well in many common cases.

3.3. Robust Belief Propagation

To address the problems caused by propagating mes-
sages between nodes that do not belong to the same surface,
we propose a scheme for dynamically adjusting the struc-
ture of the graph. It detects and removes outliers among the
incoming messages based on variance reduction [11]. If a



message is inconsistent with the others, removing it results
in a reduction of total per state variance that can be com-
puted using all incoming messages.
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If the reduction R(m;;) is positive, the edge between nodes
¢+ and 7 is removed from the graph and the node under con-
sideration (5) remains connected with fewer neighbors. It is
worth pointing out here that this process applies to all edges,
not only the ones connecting temporal neighbors. Due to
the small size of the neighborhood, we never remove more
than two edges. Figure 2 shows the six messages for a point
on the elbow of the breakdancer (Fig. 1(a)), where optical
flow has failed. The two temporal neighbors are detected as
outliers and removed.

Notice that it is common, e.g. in [15], to use pixel color
similarities to weaken propagation across color edges. Our
method correctly makes the implicit “same surface” deci-
sion in the presence of high frequencies in the image. In
low-frequency portions of the image where discontinuities
exist, e.g. a foreground and background object of the same
color, our approach can again correctly detect discontinu-
ities due to the differing P F' shapes. Finally, our ap-
proach updates the outlier decisions after every iteration
since the beliefs change after propagation. Thus, edge deci-
sions are refined as correct depths are converged upon.

all\m” (4)

3.4. Biased Belief Propagation

To address errors caused by occlusion and lack of tex-
ture, we propose an enhancement to belief propagation
called Biased BP. The bias PDF, #, acts as an additional
observation and its purpose is to correct corrupted observa-
tions, which typically occur at occluded regions, while hav-
ing minimal impact on nodes where the observations are re-
liable. Since the occluded regions cannot be easily handled
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Figure 2. The six incoming messages for a node on the elbow of
the breakdancer seen in Fig. 1(a). Since optical flow has failed,
the two messages in blue come from background pixels and are
inconsistent with the majority. They are detected using Eq. (4)
and discarded.

by stereo, the bias acts as a higher-level prior. The con-
struction of the bias is not critical for the algorithm. Two
different options are presented in Section 4. The strength of
the bias is modulated by a weight w, which is set on a per-
node basis. Its purpose is two-fold: to detect whether the
color of the input image is similar to the background model
and to decide whether the current confidence in the belief is
low. The weights are defined according to:
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The first exponential term modulates the weight according
to color similarity between the current image /; and the
background color 5;. The second term examines the obser-
vation of node 7 as well as all incoming messages to it and
finds the maximum element among them. If this is small,
indicating no strong likelihood for any depth, the weight is
large. No normalization is necessary here since beliefs and
messages are normalized PDFs. The normalization param-
eter for the color, v, can be estimated from the bias model
as discussed in Section 4.
The resulting energy equation and update rule become:

E(f)= - E(ln ¢i(zi) + wi InO;(x;))
ieP
— > Ingy(wi, ) (6)
(i,5)EN
Mij (737) — H;?X wili(xi) Pi (xz)%y (xi7$j) H My ()

REN ()\j
@)

3.5. Quiet Belief Propagation

As mentioned in the introduction of this section, BP is
not optimal in the presence of loops in the graph. The
loops reinforce the observation ¢; since it is a component
in all outgoing messages, which, having traversed loops, re-
turn and reinforce the observation in future updates. We
have shown in synthetic simulations, not included here due
to lack of space, that strong signals do not propagate far
in fields with uniform observations perturbed by a small
amount of noise. This occurs because noisy nodes whose
most likely states happen to agree reinforce each other and
produce “alternative” strong beliefs. This effect is more
pronounced as the “loopiness” of the graph, the number of
cycles per node, increases. We have managed to address
this problem by using the observation to initialize all mes-
sages, but then removing it from the update equation. The
message initialization and update rules for quiet BP are:

17 <_¢z( z) (8)

H mii(z). )

keN (i)\j

mij(xj) — maxzb“ i, %j)



The effect of this approach is that noise in the observa-
tion does not act as a partial “filter” to future message up-
dates. One could conceive that a drawback of this is that
messages from far away that are different than the observa-
tion can come in and dominate if not filtered by the obser-
vation. In practice, a strong observation signal is still re-
inforced through the loops, while a weak observation blurs
out. We were able to improve our results on both synthetic
and real data.

4. Temporal Multiple-View Reconstruction us-
ing Enhanced Belief Propagation

In this section we describe the application of all enhance-
ments we made to belief propagation applied to the problem
of temporal reconstruction from multiple video streams.
The observation is constructed using the locally adaptive
support-weight method of Yoon and Kweon [21]. We gen-
erate a set of depth hypotheses for each ray of the reference
camera and each hypothesis is projected on all other cam-
eras. The pairwise similarity between the reference and tar-
get camera is computed in a window of radius 11 according
to [21], taking into account the color similarity of pixels as
well as the distance to the central pixel. The aggregated
similarities are averaged over all target images, to account
for potentially different numbers of cameras in which the
hypothesis is visible. Due to memory limitations, we only
use 40 hypotheses per pixel in 1024 x 768 images, which
explains the blockiness in some of our results.

BP is performed on a sliding window containing three
frames of the reference view, each with an observation com-
puted as above. All pixels become nodes in the graph and
are connected with their 4-neighbors and with their tempo-
ral neighbors in the previous and next frames. When these
correspondences are correctly detected, reconstruction re-
sults improve both in dynamic parts of the scene due to
the combination of spatial and temporal smoothness and in
static parts where temporal consistency reduces the errors
and improves the visual quality of the reconstruction by re-
ducing jittering. When optical flow fails, messages from
unrelated nodes corrupt the beliefs and degrade the qual-
ity or the reconstruction. Robust BP is used to remove this
effect. We estimate optical flow using [13].

Robust BP (Section 3.3) is applied to remove edges con-
necting nodes with inconsistent PDF's from the graph. This
applies to both temporal and spatial neighbors. Figure 3
shows the edges that are disconnected from each node for
a frame of the breakdancing sequence. Temporal neigh-
bors are typically disconnected in areas with large motion,
while spatial neighbors are disconnected at discontinuities.
In Fig. 5(b) we show that in the case of static binocular
stereo, edges across depth discontinuities are removed us-
ing this approach. This step achieves one of the goals of our

(b) Disconnected edges

(a) An input frame

Figure 3. Edges disconnected per pixel for a frame of the break-
dancing sequence. Green: disconnected temporal neighbors, red:
disconnected vertical neighbors and blue: disconnected horizon-
tal neighbors. Observe that this errors on the conservative side:
discarding more than necessary.

research, which is to ensure that quality does not degrade
when the establishment of temporal correspondences fails.

Occlusion is a major source of errors for stereo. Since
the observation for occluded pixels is corrupted, we resort to
a higher-level mechanism to correct these errors. It is based
on the observation that occluded pixels typically belong to
the background. If we could detect the occlusion, then we
could assign the depth of the background (static part of the
scene) to occluded pixels if their color is consistent with the
background. Biased BP accomplishes that by using a prior
for the background depth whose influence is stronger when
the color of the pixel under consideration is similar to that
of the background model and the confidence of the depth
estimate for the pixel is low. See Section 3.4 for details.
Here we briefly describe two methods for constructing the
bias, but any suitable prior can be used instead. The first is
similar to the work of [16], but applicable to more general
types of scenes. We segment the image in regions of uni-
form color and robustly fit a plane to each segment using the
current depth estimates. This method can also be used for
single time-frame reconstructions. The second method uses
the observations for all frames of the input video sequences
to construct a colored depth map as the background model.
For each pixel we select the most likely depth estimate in
each frame and cluster all these estimates in a 4D HSV plus
depth space. We select the median color and depth of the
furthest significant cluster as the background model of each
pixel. Figure 4 shows that the breakdancer has been suc-
cessfully removed from the background. The parameter -,
in Eq. (5) is estimated from the color distribution in ei-
ther the segment or the background cluster depending on
the method used.

Since the graph we operate on is 3D and each node is
6-connected, the number of cycles is very high. As a re-
sult noisy observations severely degrade the performance
of BP in uniform ambiguous regions. Quiet BP addresses
this problem by inputting the observation into the messages
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(a) Background color (b) Back

Figure 4. The background model for the first 100 frames of the
breakdancing sequence. Since the spectators move very little, their
median positions are part of the background model.
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(b) Disconnected edges

(a) Depthmap for Tsukuba

Figure 5. The depthmap we obtained for the Tsukuba dataset (us-
ing two images) and the edges disconnected by our robust scheme.
Blue and red correspond to horizontal and vertical disconnected
edges respectively.

only once, thus allowing smoothness in both space and time
to play a larger role.

5. Experimental Results

In this section we present experimental results on a va-
riety of datasets combining all the modifications we intro-
duced in Section 3.

5.1. Binocular Stereo

We first tested our algorithm on the Middlebury Stereo
Evaluation webpage datasets [3]. Since the data consists of
image pairs, there are no temporal neighbors and we con-
struct the bias by fitting planes to image segments. Robust
BP successfully disconnects nodes across depth discontinu-
ities (Fig. 5). Furthermore, QuietBP suppresses noise from
uniform areas. Our results rank sixth overall in the evalu-
ation as of April 2007. These results very promising since
our method is not tailored for the binocular case.

5.2.3D TV data

We also reconstructed data from the 3DTV data repos-
itory [1]. The “Janine” dataset consists of eight video
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Table 1. Quantitative evaluation for the new Middlebury image
pairs (acceptable error at 1.0 disparity level). Error rates and ranks
as superscripts.

Image pair | nonoccluded | all discontinuities
Tsukuba 0.942 1.74° 5.052

Venus 0.35° 0.86° 4.347

Teddy 8111t 13.3° 18.510

Cones 5.0913 11.1° 11.810

streams and presents several challenges, including complex
occluders (the plants), over-exposed uniform walls and a
relatively wide baseline. Due to large inconsistencies in
color calibration we were forced to drop one of the video
streams. The plane-fitting method was used to construct the
bias for this example. The depth map after initialization and
the final depthmap we obtain can be seen in Fig. 6.

5.3. Comparison with Video View Interpolation

We performed extensive qualitative and quantitative
comparisons with the video view interpolation approach of
Zitnick et al. [23]. The videos were collected using eight
synchronized cameras forming a 30° arc and are available at
[2]. We emphasize at this point, that their approach does not
aim at geometrically accurate reconstruction, but rather at
the synthesis of realistic views using a small number of the
nearest viewpoints. The comparisons are not meant to sug-

(b) Observation

(c) Final depthmap

Figure 6. 3DTV data. Top row: three frames from the seven cam-
eras. Notice the occlusion by the plants, the wide field of view
and the over-exposed walls. Bottom row: initial depthmap and
depthmap obtained by our method. Noise in the uniform areas is
significantly reduced while details such as the pen and the folds on
the clothes are preserved.
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(a) A row on the wall (b) Median depths and

standard deviations

Figure 7. A frame of the breakdancing sequence with row 40 high-
lighted and a plot of the median depth and variance for all pixels
of row 40 under the approach of [23] in purple (top curve) and our
approach labeled in green (bottom curve). Note that our result is
more planar and its standard deviation is smaller.

gest that our approach is better than theirs, especially since
many of the aspects we focus on are out of the scope of
video view interpolation. Their publicly available datasets
and depthmaps have been invaluable to our research as in-
puts and baseline result respectively.

We first examine the time consistency of the reconstruc-
tions from frame to frame. A video in the supplemental ma-
terial shows the depthmap for camera 3 of the breakdancing
sequence computed by [23] who process each frame inde-
pendently (on the left) and by our approach (on the right).
Notice the “motion” in the walls and the floor which is re-
duced with our approach. We also performed a quantitative
analysis on row 40 of the first 100 frames of camera 3. Since
this row is entirely background the depth of all pixels should
remain constant throughout the sequence. We computed the
median depth for each pixel as well as the standard devia-
tion of the estimates around the median value. Results can
be seen in Fig. 7 for both methods. Note that the median
values of the depth are not in agreement. This is because
we use all cameras for the reconstruction thus increasing the
accuracy due to the larger baseline. The fact that our depth
estimates are more accurate is verified in the next experi-
ment. What concerns us in this experiment is consistency
across time which improves the quality of the visualization
(see also supplemental video). The average standard devi-
ation over all pixels was 13.94 for the method of [23] and
3.04 for our method. The minimum and maximum values
of the standard deviation were 0.12 and 55.08 for [23] and
0 and 21.46 for our method.

We also computed the reprojection error of the recon-
structions for camera 3 projected into camera 7, which is
on one end of the arc. It should be noted here that the
method of [23] does not use far away cameras to produce
the interpolated views. Their reconstructions are used as
baseline for the comparison with no claims that we outper-

Figure 8. Zoomed in portions of the reprojections of the colored
depthmap for camera 3 to camera 7. Left: using the depthmaps of
[23]. Right: our results. Ghosting artifacts are reduced using our
approach.

form them in something that was out of their scope. Figure
8 shows zoomed in portions of the reprojection of the col-
ored depthmap of camera 3 to camera 7. Ghosting artifacts,
which are more obvious for the reconstructions of [23], are
signs of inaccuracy in depth estimation. The RMS of the
reprojection error in RGB, without compensating for occlu-
sions, for the first 10 frames of the sequence was 29.36 for
[23] and 20.84 for our method.

A depthmap and renderings of the reconstructed model
from a novel viewpoint can be seen in Fig. 9. The bound-
aries of the breakdancer are sharp in our depthmap (Fig.
9(b)) even though we do not explicitly address boundary
localization. This is an effect of Biased BP that correctly
forces partially occluded background pixels towards the
background depth. Notice that there is also no “webbing”
between the arm and the body as in Fig. 9(a) or when using
standard BP (Fig. 1(a)). The static, uniform parts of the
scene are smooth in both cases, but they are also temporally
consistent using our method as shown in the supplemental
videos. The background model of Fig. 4 is used to fill in
the occluded parts in the renderings. See the supplemental
videos for a temporal reconstruction of the sequence.

Our method is computationally expensive and we have
not explored even obvious ways of optimizing the imple-
mentation. The processing time for creating the observa-
tion for one frame of the breakdancing sequence is almost
4 minutes and processing three frames (at 1024 x 768) as
described above takes 15 minutes for 150 iterations of BP.

6. Conclusions

We have presented an approach for temporal reconstruc-
tion of multiple video-streams based on an enhanced belief
propagation framework. Our approach improves the tem-
poral consistency of results whenever possible, but at the



(a) Depthmap by [23]

,‘ < 1 , A
(c) Extrapolated rendering (d) Extrapolated rendering
without background using the background

Figure 9. A depthmap obtained by [23] and one by our method.
The edges of the breakdancer are sharp in our depthmap in spite of
not explicitly addressing boundary localization. (c) and (d) show
renderings from viewpoints outside the camera arc. The back-
ground model is used in (d) to fill in occluded parts. Note that the
mesh renderings do not connect points across depth differences
above a threshold, so pixels on object boundaries are not rendered.

same time performs no worse than static multiple-view re-
construction if temporal correspondences are wrong. To
achieve this, we construct graphs that include both spa-
tial and temporal neighbors. We have augmented BP with
the capability to disconnect neighbors whose beliefs are in-
compatible. We also made enhancements that address er-
rors caused by occlusion. We believe that these enhance-
ments are general enough to be applicable to other prob-
lems besides temporal multiple-view reconstruction. Our
future work will focus on improving the efficiency of the
implementation. We also intend to compute more than one
depthmap and incorporate cross-validation in a similar way
as [22,7].
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