Implementation of a robust 3D-image
reconstruction algorithm on a TMS320C67x DSP

Marc Leeman, Rudy Lauwereins, Marc Pollefeys

Abstract— This paper describes optimisations done on the
implementation of a metric 3D-image reconstruction algo-
rithm on a TMS320C6701 DSP. From the optimised code,
an abstraction is made for a description on a higher level.
The algorithm takes a series of uncalibrated 2D images taken
with a handheld camera and produces a 3D-image of the
scene.

Keywords— 3D-model, reconstruction, ’C67x, memory op-
timisation, memory access, harris, corner detection, loop
transformation

I. INTRODUCTION

3D-image reconstruction is both ane interesting as chal-
lenging topic to work on. On one hand, there is an ever
increasing interest in the use of these techniques in all kinds
of fields of application and on the other hand, most of the
available techniques are limited by their extensive and as
such expensive setup or the ability to capture and recon-
struct only small artifacts.
The algorithm developped by Pollefeys et al.[1] solved these
issues by starting from 2D images made with a standard
hand-held camera. Furthermore, the algorithm doesn’t
have any limitations as to the size of the scene to be recon-
structed: going from detailed sculptures in a temple wall
to Roman theatres in archeology.
Between having a working algorithm and having the algo-
rithm ready for customer appliences, a lot of implementa-
tion, transformation and optimisation work has to be done.
Due to the heavy computational requirements of the al-
gorithm, the most powerful and at that time soon avail-
able DSP, the choice was made for the Texas Instruments
TMS320C67x floating point DSP. This paper will focus on
one of the first steps in the 3D-image reconstruction algo-
rithm.

II. 3D-IMAGE RECONSTRUCTION ALGORITHM
A. introduction

Contrary to other 3D-reconstruction algorithms that

mostly use some callibration information, this method
starts with no a-priory knowled of the scene that is to be
reconstructed. A such, the costly setup for retrieving calli-
bration is omitted. Next to this, this method is usable for
a wide range of applications and capture techniques: from
reconstructing large Roman theatres from areal footage to
the capture of detailed temple carvings in a South-East
Asean temple.
The method for reconstruction retrieves the information
for reconstructing the 3D scene gradually. in the following
section, an overview of the different steps will be given to
situate the in this paper elaborated module [2].

Fig. 1. epipolar geometry

B. Projective Reconstruction

Initially, the images of the scene are completely unre-
lated. The only assumption made is that the consecutive
image do not differ too much. This allows th restrict the
search range for finding corresponding features in differ-
ent images and match the features fhrough intensity cross-
correlation.

Not all features are as easily matched. An interest point
detector should satisfy two criteria:

o the extraction of the points should be as much as possible
independent of camera pose and illumination changes.

o the neighbourhood of the selected points should contain
as much information as possible to allow matching.

From the existing cornerdetectors, the Harris corner detec-
tor gives the best results according to the two mentioned
criteria [3].

The first two images of the sequence are used to determine
a reference frame. In both images, the N most prominent
corners are detected using the Harris cornerdetector.
Finding matches in pairs of pictures is done in two phases.
First, the corners are the matched using normalised cross
correlation. Since the images are not supposed to differ
that much, it can be expected that the matching points
are to be found in the same region. Using pictures that
differ relatively more would only make the matching effort
larger since the matching corners are to be found in larger
areas. In the initial phase, the threshold value for accept-
ing a corner is set high to avoid false matches.

These matches are used to find the epipolar geometry or
the Fundamental Matriz. The epipolar geometry describes
the relationship that the location of a certain point is lim-
ited in one picture if it has been identified in another. For
a point m on the picture R taken with a camera with its
focal point at C, its corresponding position on the second
picture R’ is limited along its epipolar line I'. Of course, a
similar reasoning goes for m’ and [(cf. figure 1).

The 3 x 3 F matrix has 9 unknows, but 7 matches suf-
fice for determining the matrix. 7 matches are selected
from the available list using the RANSAC algorithm, which

stands for RANdom SAmple Consensus. F is obtainded by

elabora@ving the set of equations

2 X Fxx1;=0 (1)

for the matches z1; <> xo;.

This newly acquired information is now used to refine the F
matrix by minimising squares of the distance of the points
to the epiplolar line. This is repeated until the F' converges.
While the first phase of finding matches in a pair of images
was done in an area arount a candidate, the epipolar geom-
etry is used to refine the search and add additional points
to the list of matches. The strategy for finding the new
matches can best be seen in figure 1. When looking for a
matching point on the second image, the search can be re-
stricted to a small band along the epipolar line of that point
on the second image. Because the threshold value was set
very high, and the restricted search area in the first phase,
a lot of good correspondences were rejected, but are found
here.

At this point, the 3D structure can be built using triangu-
lation. In order to do this, the projection matrices (Py, Ps)
for the found matches have to be calculated. The P ma-
trices are found similarly to th eF matrices, with a linear
initialisation and a non-linear convergence step.

With the P matrices and the point coordinates the 3D
points is projected backwards: with every point on the im-
age, a straight line can be associated, going through C
in image 1 and the projection on the image. The origi-
nal position of the 3D point has to be on the intersection
of the straight lines from the two pictures. Due to noise,
the straight lines will probably not interesect in one single
point. Therefore, the reconstructed point is set at the loca-
tion that minimises the squared sum to the two projection
lines.

More images are added in chains: a new image is linked
and compared with the previous one processed. This is
done for the first two images, the corners are found, the
matches and epipolar geometry are calculated.

Finding the projection matrix P is somewhat different as
with the initialisation though. Instead of using the cor-
respondences between the current image and the previous
one, only those points are used that are already mapped to
a 3D point are used. As with the F' matrix, the there is an
initialisation using RANSAC and a non-linear refinement.
In this case, a sample of 6 matches is needed to compute
P. This non-linear refinement is needed because the new
P matrix will determine the new 3D structure and should
be as accurate as possible.

With the new P matrix, the 3D points are refined. When
initialising the 3D structure, the uncertainty elipsoid is rel-
atively large, especially if the corner between the two im-
ages is small. The uncertainty elipsoid is the area around
the reconstructed 3D point where the real 3D point is lo-
cated. By gaining more information (adding more views),
this will become smaller. Since this elipsoid is used for ac-
cepting a point as a match, the projection matrices will be
calculated with more precision as images are added. The
adaptation of the elipsoids is done using the Kalman filter.

g input
sequence

Projective
Reconstruction | | projective
3D model
T
metric
Self-Calibration S
44;::14674447
Dense Matching |~ ~ dense
« depth maps
D(xy)

._‘ ”

e

textured metric

‘ 3D Model Building 3Osiirtace Fiods]

L |

i,
B e @

Fig. 2. 3D algorithm global structure

The entire procedure for finding the P matrices is redone
with the new estimates for the 3D points.

While adding new images, new 3D corners will be found,
while others are not found anylonger. The central idea
for retaining a corner will be that a 3D point will be ac-
cepted is if it is found in three consecutive images. Points
are considered erroneous is they are outside a 3 x ¢ band.
Because these points can distort the standard deviation,
the removal procedure is repeated until no more points are
outside this band [4].

C. Self-Calibration

In order to get from a projective to a metric reconstruc-
tion, the model has to be Because the images of the scene
are not calibrated, the camera calibration, orientation and
position are unknown which entails the following:

o the intrinsic camera parameters are not known: different
camera settings could be used for every view.

o the extrensic camera parameters are not know: the po-
sition and orientation of the camera is unknown and can
change for every image taken.

The only assumption made is that the scene itself is static.
However, by accepting some constraints on these param-
eters (use of square pixels, estimate of focal length and
expected principal point), the problem is reduced and the
projective model is upgraded to a metric model using flez-
ible selfcalibration [2].

D. Dense Matching

At this point in the algorithm, a series of important scene
points are reconstructed and a reconstruction can be made
with interpolation. But now, the algorithm has a series
of calibrated images, which enables the use of stereo algo-
rithms that will find matches for most of the pixels.
When considering the epipolar geometry that is retrieved,
a match of a particular point lies on its epipolar line on
the other image. Therefore, the image pairs are rectified so

insert
fig-
ure

to
make
this
clear?

32 32 64K x 32
133-MHz
SBSRAM

external

memory

O QO
0 oy

V|
internal
memory

32-bit
switch

1M x 32
100-MHz 32 32
SDRAM 5| 6 7 8 512 K
external
memory
—
16-bit
Fig. 3. ’C67 with External Memory

that epipolar lines coincide with the scan lines to increase
computational efficiency. For every pixel, the normilised
cross correlation used along the scan lines. Matching am-
biguities are solved be exploiting an ordering constraing
in the dynamic programming approach. Pairwise dispar-
ity estimation allows computing theimage to image corre-
spondence between adjacent rectified image pairs. These
corespondences are now fused into a common 3D model
through controlled correspondence linking. Starting from a
reference viewpoint, the correspondeces between adjacent
images are linked in a chain. The depth for a image point
from the reference view is computed from the correspon-
dence linking that delivers two lists of images correspon-
dences relative to the reference, one linking down and one
linking up. The result of this is a dense 3D map. Finally,
texture is added on the dense map for visualisation. A
parametric surface model is used to get spacial coherence
between the points in the model. Morphological filtering
removes spurious and tiny regions. To smooth the surface
and to interpolate small surface gaps in regions that could
not be measured, a bounded thin plate model is used with
a second order spline.

For avoiding bias towards one single image, the texture
from the image sequence is fused in a similar way [1].

III. THE TExAS INSTRUMENTS TMS320C67X MEMORY
ARCHITECTURE

In order to fully comprehend the used optimisations on
the harris cornerdetector, the used ’C67 memory architec-
ture of the EVM will shortly laid out. For a full description,
see [5] and [6].

The 'C6x EVM has two levels of external memory:

1. 256 kB sBSRAM (64K x 32-bit words of 7.5 ns (133
MHz))

2. 8 Mb sprRAM (1M x 32-bit words of 10 ns (100 MHz))
The sBSRAM on the EVM is directly connected to the DSP,
without glue logic or buffers. A 32-bit bus switch is used
to isolate the SDRAM from the DSP itself and the SBSRAM.
The switch enables running the SBSRAM at 133 MHz. The
SDRAM is divided in two banks. Each of these banks in turn
is divided in two banks of two times 16 bit (cf. figure 3).
The used board has 64K internal memory. The internal
memory banks are actually interleaved. Because each bank
is single ported, only one access per cycle is allowed to a

certain memory bank. Two accesses occur in a single cycle
result in a memory stall: all pipeline operations are stopped
for one cyle while the second value is read from memory.
When the memory banks are not accessed at the same time,
it is possible to access all banks using two parallel LDDW
instructions and as such fetching 128 bits in one cycle.

IV. TRANSFORMATIONS

During the re-implementation, a number of transforma-
tions were immediately identified as critical areas in mem-
ory usage for the target platform. In what follows, the
transformations of the HARRIS corner detector for finding
significant points in the pictures are elaborated.

A. The HARRIS corner detector

Finding the corners with the harris cornerdector is actu-
ally done in different substeps. Fist, all pixels the images
are given their cornerness value. This property is an in-
dication for a certain point as how much it satisfies to the
cornerness criteria. The pixels with the highest cornerness
values will be retained by the algorithm. The cornerness
value used is defined as:

Cz(fzz xfyy_ij)_o-oélx (fzz+fyy)2 (2)

with ¢ the cornerness factor and f(z,y) the intensity of a
pixel at coordinates (x,y). fes, fyy and fgy are the second
dirivatives to z, to y and to = and y. In practice, finite
derivatives are computed, using 1D Laplacian masks with
a size of 5.

After the detection and selection of the most prominent
corners, Harris’ algorithm adds one more step for finding
the sub-pizel precision. A point has a intensity f(z,y).
The intensity values is only defined for 2 and y values that
are coordinates of pixels. When four neighbouring pixels
are found with high cornerness values f(z,y) (the most
prominent corners are found or the pixels with the highest
cornerness values), their function values can be used to find
a maximum with quadratic fitting somewhere in between
these four pixels. This maximum can be considered as a
corner with sub-pixel precision.

Only images without texture of very textured images can
cause problems. When using images whithout much tex-
ture, the corner detector finds not enough corners. On the
other hand, when images are very textured, too much sim-
ilar corners are found on very short distances from each
other, making it virtually impossible to distinct them from
one another. Another, perhaps less evident result of these
properties is that corners can be concentrated in a couple
regions of an image that contain highly textured objects.
A typical example is a scene containing a building (which is
the object intended for reconstruction), containing a couple
of trees in the background. When running the pure corner-
matcher on these kinds of images, an very high portion of
(meaninless) corners will be found in the corners, skipping
the interesting ones in the building itself.

The straightforward yet effective solution is to spit the im-
age in different areas where the corner detector has to find
a fraction of the global number in each.

B. Mathematical Implementation: used resources

This program is ported from a object oriented C++ en-
vironment to functional C. The consistency of the vari-
ables used in the classes is ensured here by using state
variables. This solution has also been proposed in the
guidelines TEXAS INSTRUMENTS for software portability in
DSP envirments [7]. The state variable collects the buffers
and properties used and adapted throughout the program.
Instead of calling a certain objects method, a function is
called with one parameter being the pointer to the state
object. The mapping of the classes onto the state vari-
ables is straightforward as shown in the following defini-
tions (C++):

struct DR_MEMORYSTR{
GL_BOOLEAN_ARRAY_STR *image_corner_max_ptr;
GL_FLOAT_ARRAY_STR *image_corner_ptr;
GL_FLOAT_ARRAY_STR *image_fxx_ptr;
GL_FLOAT_ARRAY_STR *image_fxy_ptr;
GL_FLOAT_ARRAY_STR *image_fyy_ptr;
GL_FLOAT_ARRAY_STR *image_scratch_ptr;
GL_IMAGE_UCHAR_STR *image_ptr;
GL_INT_ARRAY_STR *image_gradx_ptr;
GL_INT_ARRAY_STR *image_grady_ptr;

}s
and the corresponding state variable is (C):

typdef struct imagevars{
TUCharMatrix image;
TFloatMatrix corners;
TUCharMatrix cornersmax;
TIntegerMatrix gradx;
TIntegerMatrix grady;
TFloatMatrix fxx;
TFloatMatrix fxy;
TFloatMatrix fyy;

} TImageVars;

The names of the arrays and types are self explaining and
the correspondences can quickly be made. The original
C++ implementation assigns one additional memory chunk
with image_scratch_ptr. Contrary to the other buffers, this
one is only used in one particular method. In the C im-
plementation, this array was made local in the particular
function instead of making it global and hogging up the
memory for the duration of the program. This technique is
exactly what is meant with the term mathematical imple-
mentation: a collection of variables is needed throughout
the program or module, so they are declared globally thus
avoiding any possible consistency problems. In the follow-
ing discussion and experiments, a grey scale image is used
of 480 x 640.

The DR_MEMORY_STR structure in the original program
uses 9000 ((480 x 640) x (1+4+4+4+4+4+14+4+4) =
9216000) kbytes. Its C counterpart initialises only 7800
kbytes but equally occupies a maximum 9000 kbytes in the
function where the additional buffer is needed. Obviously
one approach would be to create the 480 x 640 buffers only
when needed and free them immediately afterwards. This
good programming practice actually reuses the available
memory space.

Some other smaller arrays are used, but compared to the
ones described previously, their size is negligible.

Fig. 4. Dependency of the buffers used in the Harris corner detection

C. Proposed Optimisation
C.1 Buffer-usage: original implementation

Figure 4 shows the data dependency queue. Any data
structure in the graph is created from the previous level.
The buffers in this case are (cf. the C and C++ definitions):
o the image: (1 byte) unsigned char.

o the gradients (GRAD_X and GRAD.Y): right and down
edge detection filters with the mask [-2,1,0,1,2].

o second order derivatives (F_XX, F_XY and F_YY)

o second order derivatives (F_xx’, F_XY’ and F_YY’) after
horizontal and vertical smoothing. For this calculation a
buffer SCRATCH is used to store the results of on smooth-
ing. The second smoothing writes the results back to the
original memory of the second derivatives. At this point,
the programmers of the original algorithm used one optimi-
sation. Though the consistent use of this technique could
dramatically reduce the memory footprint, it will be shown
that this is still far from the optimal result.

¢ scratch

o the cornerness values: (foz X fyy — f2,) =5 X (foz + fyy)?
o the local maxima in the cornerness in a 5 X 5 mask.
Since the image, the cornerness values and the local max-
ima are needed in an iterative process later on, the efforts
will currently be focused on the 'buffers’ in between. As
they are not needed anywhere else, they are by definition
temporary.

C.2 Buffer-usage: good programming

A better approach than to allocate memory for every in-

termediate image-size array is to re-use the allocated arrays
that are not needed anymore. Since all arrays are calcu-
lated only from the previous level, the bottle neck will be
the largest memory occupied by the combined matrices of
two subsequent levels. Figure 4 shows the five transitions
that can determine the required memory space.
o transition 1: the memory here is 480 x 640 x (1byte + (2 x
4bytes)) or 2700 kB. Since the image has to be retained for
later calculations, only 2400 kB is relevant as buffer space.
« transition 2: after the edge detection in one direction,
the second derivatives are calculated. the required space
for this phase is 480 x 640 x ((2 x 4bytes) x (3 x 4bytes))
or 6000 kB.

(a)! (b)

F (CRNR

Fig. 5. black box data

o transition 3 and transition 4: the smoothing with a Gaus-
sian mask is split in two parts because of the use of the
intermediate SCRATCH memory. On the other hand, the
double smoothing is done sequentially for each buffer: hor-
izontal smoothing is done on F_XX and stored in SCRATCH.
Then, vertical smoothing is performed in the SCRATCH and
written back in the memory allocated for F_XX, ...The
memory space needed for transition 4 or transition 5 is
480 x 640 x ((3 x 4bytes) + 4bytes) or 4800 kB.

« transition 5: again only part of the involved arrays can
be considered as buffers since the cornerness array has to be
reused in the iterative process later on. The actual memory
requirements are 480 x 640 x (3 x 4bytes) or 3600 kB.

The computation that consumes the most memory is
clearly the second transition with 5 32-bit image-size ar-
rays. So, in comparison with the initial estimate of
the C and C++ structures, the required space is 6000
kB +480 x 640 x (lbyte + 4bytes + lbyte) or 7800 kB.
The only memory saved is an image sized array of floats
(the scrATCH buffer, since the free space of GRAD_X and
GRAD_Y can be reused). The data barely fits in the TT’s
’C67x external memory, without considering even program
memory.

C.3 Buffer-usage: minimal overhead

The previous section showed that simply reusing the
buffers was not sufficient for implementation of the har-
ris corner detector on a ’'C67 EVM. Optimisation has to be
done on a finer granularity. The concept is that the buffers
that are only constructed on an intermediate basis have no
particular meaning for the algorithm. It is not needed to
retain their internal logical structure. Instead levels 2 to
5 are considered as a black box or data pool: the internal
structure is irrelevant, but the data is needed for obtaining
the result (cf. figure 5). Since the only meaningful matri-
ces are the image and the matrix with the corresponding
cornerness of each pixel, a value will only be kept as long
as it is needed for the computation of the lower level value.
All computations require a one dimensional mask with size
N (5 in this case) and are done on a X XY matrix (480 x640
here) with an element size of e bytes. When the arrays are

passed through horizontally first (i.e. a double for loop),
only N elements are needed from the previous level for a
new value when using the horizontal mask and

N -1

B=(Yx(N-1)+ —)xe

> 3)

for the vertical mask'. The calculation of the vertical mask
clearly is more consuming and will be the one requiring the
most buffer space. By delaying the index of the calculation
for the next level using the horizontal maks by a minimum
of % + 1 slots, its required pixels have already been cal-
culated. The usage of the elements is depicted in figure 6.
This was for a transition from level i to level i + 1. For the
applicating a N size mask sequentially from level i to level
t + n, the required data in the higher levels will grow in
a rate linearly proportional to the masksize N: each level
will add N —1 rows. It is not hard to see that for obtaining
data elements in layer ¢ + n

N -1

B,=Y xnx(N-1)+ 5

) Xe

(4)

elements (By,: buffer at n layers previously) are needed in
layer i. Of course, the final total buffer size depends on
the actual function implemented in the black box. In the
harris corner detector case, the buffer size at the sixth layer
(cornerness) equals to

3x44+3xB1+3xBy+2x B;
= 3x4
+3x (640 x 1 x (5—1) +2) x 4)
+3x (640 x 2 x (5—1) +2) x 4)
+2 % (640 x 3% (5—1) +2) x 4)
= 124 30744 + 61464 + 61456 = 153664bytes

Btotal

Note that nor parts of the image, nor parts of the cor-
nerness matrix are part of the buffer as indicated in the
black bozx approach. Since the operations are symmetric in
the horizontal or the vertical way the dimensions can be
switched. When taking the 480 dimension as horizontal,
115264 bytes are required. By re-evaluating the required
data for producing the cornerness values, an improvement
of 80 or 60 has been realised (9000 kB — 150 kB or 112 kB).
The total required memory (including the image, corner-
ness and local maxima) can be kept on the ’C67 EVM now
(1950 kB) But the buffers, where the bulk of the computa-
tions are done on, still do not fit in the internal memory.

C.4 Buffer-usage: interleaved loops

What was done in the previous section was moving part
of the control (the for loops) to a higher level. The hori-
zontal loop was moved to the outside.

When just looking at the buffersizes, another optimisation
can be made. In the next discussion, only the elements

Lall used formulas are approximations, and do not keep track of
outer border exceptions

y

p HER ¢

WVVVV

p B S

‘k\l/ 1] 74

vertical

horizontal

Fig. 6. Pixels needed and processed before a new one can be calcu-
lated

that are needed to construct the ultimate cornerness val-
ues. When at each level a horizontal mask and a vertical
mask is used, the required data are a diamond structure
as indicated in figure 7. Instead of keeping the diamond
structure, it makes sense computationally (for re-use of the
values and for reducing the index calculation) to take the
square figure. Not only is the memory management eas-
ier, but from the (1 + (N — 1) x n)? used in timeslot 4,
(14+ (N —1)xn)?— (14 (N —1) xn) can be reused in the
next iteration. Obviously, this goes for every level in the
buffer hierarchy. In this case,

B,=(1+(N-1)xn)*xe (5)
are needed at level n. The required bufferspace of the Har-
ris cornerdetector is reduced to

Biotal 3x44+3xB;+3%xBy+3x B3
= 3x4
3x(1+(5-1)x1)*x4
3x(1+(-1)x2)?2x4

2x (1+(5-1)x3)* x4
= 12+ 300+ 972 + 1352 = 2636bytes

In this case, the buffer size is no longer dependent on the
image size. This result is significant when reconstructing
hi-resolution 3D-scenes and the memory becomes more of a
bottleneck. Furthermore, the buffers size is somewhat over
2 KB, which easily fits in the 64 KB internal memory. This
approach will be very efficient in reducing the accesses to
external memory (cf. infra). Unfortunately, it comes at a
price: the buffers can only be reused in one direction: the
direction in which the data is constructed (e.g. horizontal).
The previous figures are correct when the data dependency
graph is interleaved at eacht transition and if a horizontal
and vertical mask is needed at each stage. In the Harris
cornerdetector, this is not the case, so one last optimisation
can be made

3x44+3x5%x4+3%xB;+2x By
= 3Ix44+3x5x4
3x(1+(B-1)x1)?x4
2x (14 (5-1)x2)* x4
= 12+ 60 + 300 + 648 = 1020bytes

Btotal

"
>/}D
=

/\/
/

Fig. 7. Minimum amount of pixels needed for a values

C.5 Buffer-Usage: Internal Memory limitation

The two previous parts were the trade-offs between
e “large” buffers and minimum and cycles needed for cal-
culating the cornerness
o a minimum of buffers but a large cycle overhead for re-
calculating intermediate values.
Because of the low ammount of internal memory of the
’C67 and the memory consuming properties of the harris
cornerdetector, the fastest option (i.e. keeping the image,
results and required buffer bands in internal memory)can
not be implemented using a picture as small as 480 x 640.
Even if different boards with larger internal memories were
to be used, the optimisation would most likely be limited to
that particular image size since the buffersize grows liniarly
with 15 x (Y x N) for the Harris cornerdetector. The opti-
misations had to work to the optimium of accessing every
pixel of the gray scale image only once in external memory.
The solution lied in the localness of every transition in the
dependency graph. All transformations are done on a se-
ries of values that are adjacent to the position of the one
which is created. This means that it is possible to split
the image into different parts without compromising the
cornerness result. For finding the cornerness values at the
edges of the parts, some part of the image will have to be
replicated, since the mask grows 2 x % pixels for every
level transition. At figure 8, the final result will only be of
the dark shaded area. the white planes are the pixels that
have to be copied. It is pretty evident that this overhead
increases as the number of vertical stripes in which the pic-
ture is divided increases. For the cornerdetector, 3 x %
or 6 pixels are dropped on the outer borders of the image,
in analogy, 6 will have to be replicated in the innner edges
of the image parts. Summarised, for good performance the
buffers (as well as the part of the image worked on and the
part of the result worked on) have to be located in internal
memory, Or:

(XxY
p

X xY

+(N—)xXxn)xem—}—Bf(fgl +() X €out

(6)
The first term is the fraction of the image is processed when
using p parts, while the second is the second is the amount
of pixels that has to be added to obtain an p*” of the result
(last term). Of course, the buffer size of the part of the
image worked on has to be added.
First, the DMA is left out of consideration. Filling up the
internal memory with as much data as possible to reduce
overhead gave an image of 15 or 20 wide or about 32 im-

\

//////////////////////// o

N

////////////////////
/////////////////////\
L

\\\\/\\\\\\\\\\\\\\\\\\\\\\\\\\
////////%

|
]
.
.
|

.
.
N\
\
-

o

///////////////////////// =

Fig. 8. Replication overhead

age stripes. The 32 stands for either the 640 dimension as
the outer loop, or the 480: there is an almost perfect trade
off between the buffersizes and the size in memory for the
cornerness. The only factor that impedes the choice for
having the short side up for division is the increased over-
head. The overhead (i.e. the total amount of replicated
pixels) grows linearly with number of partions of the im-
age. Since this number of replicated pixels in determined
by

1. the algorithm

2. the length of the cut in the image, or the length of the
undivided side

it grows faster if the short side is divided. The cornerness
values in internal memory are actually responsible for the
small parts that have to be processed due to their large el-
ement size (floats). In this case, the replicated pixels are
about % of the pixels for which the cornerness is computed.
Figure 9 shows the memory needed when the original im-
age is divided in different parts. The point at which the
required space is lower than 64 kB (30 parts) is at the
right-hand side of graph. At this point, the program code
is reorganised in such a manner that the data is available
for constantly providing the ’C67 core.

Not quite. This is true only in this respect hat the DSP is
fully occupied while processing a part of the image. After
each stripe, DMA channels are started to

1. move the computed cornerness values to external mem-
ory. Though they are still needed afterwards, the internal
memory is needed for further computation and has to be
freed.

2. move a new band of the original gray scale image into
internal memory

When one band of an image is processed, the next one
should be available in internal memory. The adjusted eval-
uation that has to be made is:

X xY
p

+Bg +2 % (

2 x (

+(N—-1)x X xXn) Xepn

X xY

) X €out

When doubling the relative size of the memory needed for
the input and output values, this effect is more accute.
Here 640 is used for the width and only bands of 10 pixels
can be used. The replicated data is larger since 6 pixels on
both sides have to be added.

The formula can be modified so that instead of only consid-
ering the division of the image in one dimension, horizontal
as wel as vertical partitions can be used:

XxY
Dz X Dy

(1+ (N =1)?xn?) x +(N-1)xn

Total Buffer Size
25
00 i

175 /

150
e i
£ 1z s o
=
L 1o e g :ig
*# o P _j—"l
=
o P
=
oi _geeT
B
L oo e T T T T T T
17234 587 8810111213 1415 16 17 161820 21 2223 24 25 55 27 B 28

memeory (KB}

Fig. 9. Image segmentation: Internal Memory Occupation: total
access overhead

X Y
X(— 4+ —)) X ein + BPY + (
Dz Dy

X xY

Dz X Dy

) X €out

Pz is the number of partitions vertically and py is the same
for the horizontal direction. This version is still without
DMA, but as expected, the results are not that much better
than the code where the image was only divided in one
direction. Adjusting the calculations for using DMA only
stressed these results.

D. Memory Accesses

Up until here, the program code has been reshuffled for
fast execution of the harris cornerdetector. For this, the
data where the ’C67 was working on at that time, had to
be quickly accessibe and be put in internal memory. These
optimisations also resulted in far less external memory ac-
cesses.

In the original mathematical implementation, the harris
cornerdetector was done on image size buffers: some masks
are applied on a480 x 640 image sized buffer, and a new
one is produced. Since there is no possibility to buffer these
sizes in internal memory where the data is easily accessible
for the processor, the values have to be fetched from exter-
nal memory and written to external memory. The masks
are all of size 5 untill the actual construction of the cor-
nerness, so every pixel in the buffers in the 4 level (from
IMAGE to F_XX is accessed 5 times. Together with accessing
every pixel in the F_AB’ layer one time, this makes almost
15 million read accesses and over 3.5 million write accesses
totals almost 18.5 million accesses.

This figure assumes that every pixel is fetched from exter-
nal memory when it is needed and written back to external
memory when it is computed. When using DMA, every pixel
is fetched and stored in internal memory and then the next
level is written back out. A quick glance (without keep-
ing track for the needed overlaps because the entire buffers
from level 4;_; and level i, do not fit in internal memory, it
is assumed the internal memory is large enough) still gives
almost 8.5 million accesses. The memory accesses are in
this case relatively independent from the buffer reuse, at
least at the top level. Though the memory space is reduced
in the good programming approach, while leaving the global
structure untouched, the accesses stay the same. They are
merely done to another place in memory.

When the minimal overhead or the fully interleaved
loops approaches are used, the pixels of the image are re-

tained as long as they are needed (cf. figure 6) and the
intermediate values are only kept for computing the final
cornerness. The image pixels are read, the cornerness is
computed in one pass and afterwards written to memory.
The accesses are just over 600,000 or an improvement of 30.
Of course, there’s only one problem: the TI EVM doesn’t
have enough internal memory to provide for these large
chunks of required memory.

When keeping in account the internal memory limitation
of the EVM, the total amount of memory accesses is the
number of pixels in the image, the number of output values
(cornerness) AND the number of replicated pixels on the
edges. The total number of accesses with the optimised
code is about 790,000 or an improvement more than 20
in comparison with the original mathematical implementa-
tion.

V. CONCLUSION

» memory becomes bottle neck

« note on overhead

e due to memory bottle neck, more accesses to external
memory

REFERENCES

[1] Marc Pollefeys, Reinhard Koch, Maarten Vergauwen, and Luc
Van Gool, “Metric 3d surface reconstruction from uncalibrated
image sequences,” in Lecture Notes in Computer Science. Proc.
SMILE Workshop (post-ECCV’98), 1998, vol. 1506, pp. 139 —
153., Springer-Verlag.

[2] Marc Pollefeys, Self-Calibration and metric 3D reconstruction
from uncalibrated image sequences, Ph.D. thesis, K.U.Leuven,
Kardinaal Mercierlaan 94, 3001 Heverlee, May 1999.

[3] C.Schmid, R. Mohr, and Bauckhage C., “Comparing and evaluat-
ing interest points,” Proc. International conference on Computer
Vision, 1998, pp. 230 — 235, Narosa Publishing House.

[4] A. Verbiest and M. Vergauwen, “Robuuste 3d reconstructie uit
meerdere beelden,” M.S. thesis, K.U.Leuven, Kardinaal Mercier-
laan 94, 3001 Heverlee, 1997.

[5] Texas Instruments, TMS320C6201/6701 FEvaluation Module
Technical Reference, Texas Instruments, Nice, France, Decem-
ber, 1998.

[6] Texas Instruments, The TMS320C6000 CPU and Instruction Set
Reference Guide, Texas Instruments, Nice, France, March, 1999.

[7] Texas Instruments, eXpressDSP Algorithm Standard Rules and
Guidelines, Texas Instruments, Nice, France, September, 1999.

