
Real-Time Visibility-Based Fusion of Depth Maps

Paul Merrell1, Amir Akbarzadeh2, Liang Wang2, Philippos Mordohai1, Jan-Michael Frahm1,
Ruigang Yang2, David Nistér2, and Marc Pollefeys1

1Department of Computer Science 2 Center for Visualization and Virtual Environments
University of North Carolina, Chapel Hill, USA University of Kentucky, Lexington, USA

Abstract

We present a viewpoint-based approach for the quick fu-
sion of multiple stereo depth maps. Our method selects
depth estimates for each pixel that minimize violations of
visibility constraints and thus remove errors and inconsis-
tencies from the depth maps to produce a consistent surface.
We advocate a two-stage process in which the first stage
generates potentially noisy, overlapping depth maps from a
set of calibrated images and the second stage fuses these
depth maps to obtain an integrated surface with higher ac-
curacy, suppressed noise, and reduced redundancy. We
show that by dividing the processing into two stages we
are able to achieve a very high throughput because we
are able to use a computationally cheap stereo algorithm
and because this architecture is amenable to hardware-
accelerated (GPU) implementations. A rigorous formula-
tion based on the notion of stability of a depth estimate is
presented first. It aims to determine the validity of a depth
estimate by rendering multiple depth maps into the refer-
ence view as well as rendering the reference depth map
into the other views in order to detect occlusions and free-
space violations. We also present an approximate alterna-
tive formulation that selects and validates only one hypoth-
esis based on confidence. Both formulations enable us to
perform video-based reconstruction at up to 25 frames per
second. We show results on the Multi-View Stereo Eval-
uation benchmark datasets and several outdoors video se-
quences. Extensive quantitative analysis is performed using
an accurately surveyed model of a real building as ground
truth.

1. Introduction

The problem of 3D reconstruction from video is a very
important topic in computer vision. It has received renewed
attention recently due to applications such as Google Earth
and Microsoft Virtual Earth which have been introduced
for delivering effective visualizations of large scale mod-
els based on aerial and satellite imagery. This has sparked

Figure 1. Aerial View and Detailed Views of reconstructed models
from a 170,000 frame video

an interest in ground-based models as the next logical step
in creating a more effective city visualization tool. Visual-
izations from ground imagery are possible in the form of
panoramic mosaics [21, 16] or simple geometric models [2]
which require less data to construct, but limit the user’s abil-
ity to freely navigate the environment. For unconstrained
navigation, accurate and detailed 3D models are needed.
Video-based 3D reconstruction can deliver this type of con-
tent, but only once it is capable of overcoming the chal-
lenge of processing massive amounts of imagery. Typical
multiple-view reconstruction algorithms that process all im-
ages simultaneously are unable to create models such as the
one in Fig. 1 which is made from 170,000 frames.

In this paper, we investigate the reconstruction of accu-
rate 3D models from video. We employ a two-stage ap-
proach designed to achieve high processing speeds. In the
first stage, depth maps are quickly reconstructed from cal-
ibrated images. Due to the speed of the algorithm, we ex-
pect that the raw stereo depth maps contain many errors and
that they do not completely agree with one another. These
conflicts and errors are identified and resolved in the fu-
sion stage. In this step, a set of depth maps from neighbor-
ing camera positions are combined into a single depth map,
the fused depth map, for one of the views. Then consecu-
tive fused depth maps are merged together. The final result
is a fused surface represented by a mesh and a set of im-
ages for texture-mapping. By decoupling the problem into
a stereo reconstruction stage followed a fusion stage, we
are able to use fast algorithms that can be easily ported to a

1



programmable Graphics Processing Unit (GPU). Since it is
impossible to process thousands of images simultaneously,
processing is performed in a sliding window.

Another benefit of the fusion step is that it produces
a compact representation of the data since the number of
fused depth maps that are outputted is a small fraction of
the original number of depth maps. Much of the infor-
mation in the original depth maps is redundant since many
nearby viewpoints observe the same surface. After fusion,
the surface is constructed by detecting any overlap between
consecutive fused depth maps and merging the overlapping
surfaces. A compact representation is especially important
for long video sequences since it allows the end-user to vi-
sualize very large models.

2. Related Work
Large scale reconstruction systems typically generate

partial reconstructions which are then merged. Conflicts
and errors in these partial reconstructions are identified and
resolved during the merging process. Surface fusion has
received considerable attention in the literature mostly for
data produced by range finders, where the noise level and
the fraction of outliers is typically lower than what is en-
countered using passive sensors. Multiple-view reconstruc-
tion methods based only on images have also been thor-
oughly investigated [19], but many of them are limited to
single objects and can not be applied to large scale scenes
due to computation and memory requirements.

Turk and Levoy [22] proposed a method for registering
and merging two triangular meshes. They remove any over-
lapping parts of the meshes, connect the mesh boundaries
and then update the positions of the vertices. Soucy and
Laurendeau [20] introduced a similar algorithm which first
updates the positions of the vertices and then connects them
to form the triangular mesh. A different approach was pre-
sented by Curless and Levoy [3] who employ a volumet-
ric representation of the space and compute a cumulative
weighted distance function from the depth estimates. This
signed distance function is an implicit representation of the
surface. A volumetric approach that explicitly takes into ac-
count boundaries and holes was published by Hilton et al.
[8]. Wheeler et al. [23] adapted the method of [3] to only
consider potential surfaces in voxels that are supported by
some consensus, instead of just one range image, to increase
its robustness to outliers. An online algorithm that uses a
structured light sensor was introduced by Rusinkiewicz et
al. [17]. It can merge partial reconstructions in the form of
point clouds in real-time by quantizing the space in voxels
and aggregating the information in each voxel. A slower,
more accurate algorithm was also described.

Among the first approaches for passive data was that
of Fua [4] who adopted a particle based representation.
The positions and orientations of the particles are initial-

ized from the depth estimates and modulated according to
an image-based cost function and smoothness. Koch et al.
[10] first establish binocular pixel correspondences and then
propagate them to more images. When a match is consis-
tent with a new camera, the camera is added to the chain
that supports the match. The position of the point is updated
using the wider baseline, reducing the sensitivity to noise.
Narayanan et al. [13] compute depth maps using multi-
baseline stereo and merge them to produce viewpoint-based
visible surface models. Holes due to occlusion are filled in
from nearby depth maps. Hernández et al. [7] compute the
probability that a point in a volumetric grid is visible from
depth maps and then segment the volume into foreground
and background using graph cuts.

Koch et al. [11] also presented a volumetric approach
for fusion. Given depth maps for all images, the depth
estimates for all pixels are projected in the voxelized 3D
space. Each depth estimate votes for a voxel probabilisti-
cally and the surfaces are extracted by thresholding. Sato
et al. [18] also advocated a volumetric method based on
voting. Each depth estimate votes not only for the most
likely surface but also for the presence of free space be-
tween the camera and the surface. Morency et al. [12] op-
erate on a linked voxel space to rapidly produce triangula-
tions. Information is fused in each voxel while connectivity
information is maintained and updated in order to produce
the final meshes. Goesele et al. [6] presented a two-stage
approach which merges depth maps produced by a simple
algorithm. Normalized cross-correlation is computed for
each depth estimate between the reference view and several
target views. The depth estimates are rejected if the cross-
correlation is not large enough for at least two target views.
The remaining depth estimates are used for surface recon-
struction using the technique of [3].

3. Plane-Sweeping Stereo
In the first of the two processing stages, depth maps

are computed from a set of images captured by a mov-
ing camera with known pose, using plane-sweeping stereo
[1, 5, 24]. Plane-sweeping was chosen primarily because
it can be computed efficiently on the GPU, but since the
two stages are designed to operate independently, any other
stereo matching algorithm could have been used instead.

The depth maps are computed using the plane-sweeping
technique described in [5]. Each depth map is computed
for the central image in a set of typically 5 to 11 images.
At each pixel, several depth hypotheses are tested in the
form of planes. For each plane hypothesis, the depth for
a pixel is computed by intersecting the ray emanating from
the pixel with the hypothesized plane. All images are pro-
jected onto the plane, via a set of homographies, and a cost
for the hypothesized depth is calculated based on how well
the images match on the plane. Here, we use absolute inten-



sity difference as the cost. The set of images is divided in
two halves, one preceding and one following the reference
image. The sum of the absolute differences between each
half of the images and the reference view, projected onto
the plane, is calculated in square windows. The minimum
of the two sums is the cost of the depth hypothesis [9]. This
scheme is effective against occlusions, since in general the
visibility of a pixel does not change more than once during
an image sequence. The depth of each pixel is estimated
to be the depth d0 with the lowest cost. Each pixel is pro-
cessed independently which allows non-planar surfaces to
be reconstructed.

The depth with the lowest cost may not be the true depth
due to noise, occlusion, lack of texture, surfaces that are not
aligned with the plane direction, and many other factors.
Parts of the image with little texture are especially difficult
to accurately reconstruct using stereo. A measurement of
the confidence of each depth estimate is important. To es-
timate the confidence, we use the following heuristic. We
assume the cost is perturbed by Gaussian noise. Let c(x, d)
be the matching cost for depth d at pixel x. We wish to es-
timate the likelihood that the true depth, do, does not have
the lowest cost after the cost is perturbed. This likelihood is
proportional to: e−(c(x,d)−c(x,d0))2/σ2

for some σ that de-
pends on the strength of the noise. The confidence C(x) is
defined as the inverse of the sum of these probabilities for
all possible depths:

C(x) =

∑
d 6=d0

e−(c(x,d)−c(x,d0))2/σ2

−1

(1)

This equation produces a high confidence when the cost
has a single sharp minimum. The confidence is low when
the cost has a shallow minimum or several low minima.

4. Visibility-Based Depth Map Fusion
Due to the speed of the stereo algorithm, the raw stereo

depth maps contain errors and do not completely agree with
each other. These conflicts and errors are identified and re-
solved in the fusion stage. In this step, a set of depth maps
from neighboring camera positions are combined into a sin-
gle fused depth map for one of the views. From the fused
depth maps we show how to construct a triangulated surface
in Sec. 4.3.

The input to the fusion step is a set of N depth maps
denoted by D1(x), D2(x), . . . , DN (x) which record the
estimated depth of each pixel of the N images. Each
depth map has an associated confidence map labeled
C1(x), C2(x), . . . , CN (x) computed according to (1). One
of the viewpoints, typically the central one, is selected as
the reference viewpoint. We seek a depth estimate for each
pixel of the reference view. The current estimate of the

3D point seen at pixel x of the reference view is called
F̂ (x). Ri(X) is the distance between the center of projec-
tion of viewpoint i and the 3D point X. We define the term
f̂(x) ≡ Rref (F̂ (x)) which is the distance of the current
depth estimate F̂ (x) for the reference camera.

The first step of fusion is to render each depth map into
the reference view. When multiple depth values project onto
the same pixel, the nearest depth is kept. Let Dref

i be the
depth mapDi rendered into the reference view and Crefi be
the confidence map rendered in the reference view. Given a
3D point X, we need a notation to describe the value of the
depth map Di at the location where X projects into view
i. Let Pi(X) be the image coordinates of the 3D point X
projected into view i. To simplify the notation, we define
the term Di(X) ≡ Di(Pi(X)). Di(X) is likely to be dif-
ferent fromRi(X) which is the distance between X and the
camera center.

Our approach considers three types of visibility relation-
ships between hypothesized depths in the reference view
and computed depths in the other views. These relations
are illustrated in Fig. 2(a). The point A′ observed in view i
is behind the point A observed in the reference view. There
is a conflict between the measurement and the hypothesized
depth since view i would not be able to observe A′ if there
truly was a surface at A. We say that A violates the free
space of A′. This occurs when Ri(A) < Di(A).

In Fig. 2(a), B′ is in agreement with B since they are in
the same location. In practice, we define points B and B′

as being in agreement when |Rref (B)−Rref (B′)|
Rref (B) < ε.

The point C ′ observed in view i is in front of the point
C observed in the reference view. There is a conflict be-
tween these two measurements since it would be impossible
to observe C if there truly was a surface at C ′. We say that
C ′ occludes C. This occurs when Dref

i (C′) < f̂(C) =
Dref (C).

Note that operations for a pixel are not performed on a
single ray, but on rays from all cameras. Occlusions are
defined on the rays of the reference view, but free space
violations are defined on the rays of the other depth maps.
The reverse depth relations (such as A behind A′ or C in
front of C ′) do not represent visibility conflicts.

The raw stereo depth maps give different estimates of the
depth at a given pixel in the reference view. We first present
a method that tests each of these estimates and selects the
most likely candidate by exhaustively considering all occlu-
sions and free-space constraints. We then present an alter-
native approach that selects a likely candidate upfront based
on the confidence and then verifies that this estimate agrees
with most of the remaining data. The type of computations
required in both approaches are quite similar. Most of the
computation time is spent rendering a depth map seen in
one viewpoint into another viewpoint. These computations
can be performed efficiently on the GPU.



(a) Visibility relations between points (b) Stability calculation (c) Support estimation
Figure 2. (a) Visibility relations between points. The point A′ seen in view i has its free space violated by A seen in the reference view.
B′ supports B. C seen in the reference view is occluded by C′. (b) Stability Calculation. In this example, there are two occlusions which
raise stability and one free-space violations which lowers it. The stability is +1. (c) Support calculation. Three measurements are close to
the current estimate and add support to it. Outside the support region, there is one occlusion and one free-space violation which lower the
support.

Figure 3. A stereo depth map for a dataset from [19], the fused
depth map using stability-based fusion and the final confidence
map (black corresponds to maximum confidence).

4.1. Algorithm 1: Stability-Based Fusion

If a depth map occludes a depth hypothesis F̂ (x), this
indicates that the hypothesis is too far away from the refer-
ence view. If the current depth hypothesis violates a free-
space constraint, this indicates the hypothesis is too close
to the reference view. The stability of a point S(x) is de-
fined as the number of depth maps that occlude F̂ (x) minus
the number of free-space violations. Stability measures the
balance between these two types of visibility violations. A
point is stable if the stability is greater than or equal to zero.
If the stability is negative, then most of the depth maps indi-
cate that F̂ (x) is too close to the camera to be correct. If the
stability is positive then at least half of the depth maps indi-
cate that F̂ (x) is far enough away from the reference cam-
era. Stability generally increases as the point moves further
away from the camera. The final fused depth is selected
to be the closest depth to the camera for which stability is
non-negative. This depth is not the median depth along the
viewing ray since free-space violations are defined on rays
that do not come from the reference view. This depth is
balanced in the sense that the amount of evidence that indi-
cates it is too close is equal to the amount of evidence that
indicates it is too far away.

With this goal in mind, we construct an algorithm to find

the closest stable depth. To begin, all of the depth maps are
rendered into the reference view. In the example shown in
Fig. 2(b), five depth maps are rendered into the reference
view. The closest depth is selected as the initial estimate. In
the example, the closest depth isDref

1 (x) and so its stability
is evaluated first. The point is tested against each depth map
to determine if the depth map occludes it or if it violates the
depth map’s free space. If the depth estimate is found to
be unstable, we move onto the next closest depth. Since
there are N possible choices, the proper depth estimate is
guaranteed to be found after N − 1 iterations. The total
number of depth map renderings is bound byO(N2). In the
example, the closest two depthsDref

1 (x) andDref
3 (x) were

tested first. Figure 2(b) shows the test being performed on
the third closest depth Dref

2 (x). A free-space violation and
two occlusions are found and thus the stability is positive.
In this example, Dref

2 (x) is the closest stable depth.
The final step is to compute a confidence value for the es-

timated depth. The distance to the selected depth Ri(F̂ (x))
is compared with the estimate in depth map i given by
Di(F̂ (x)). If these values are within ε, the depth map sup-
ports the final estimate. The confidences of all the estimates
that support the selected estimate are added. The resulting
fused confidence map is passed on to the mesh construction
module. An example of an input depth map and the fused
depth map and confidence map can be seen in Fig. 3.

4.2. Algorithm 2: Confidence-Based Fusion

Stability-based fusion tests up to N − 1 different depth
hypotheses. In practice, most of these depth hypotheses are
close to one another, since the true surface is likely to be
visible and correctly reconstructed in several depth maps.
Instead of testing so many depth estimates, an alternative
approach is to combine multiple close depth estimates into
a single estimate and then perform only one test. Because



there is only one hypothesis to test, there are only O(N)
renderings to compute. This approach is typically faster
than stability-based fusion which tests N − 1 hypotheses
and computesO(N2) renderings, but the early commitment
may introduce additional errors.

Combining Consistent Estimates Confidence-based fu-
sion also begins by rendering all the depth maps into the
reference view. The depth estimate with the highest confi-
dence is selected as the initial estimate for each pixel. At
each pixel x, we keep track of two quantities which are up-
dated iteratively: the current depth estimate and its level of
support. Let f̂0(x) and Ĉ0(x) be the initial depth estimate
and its confidence value. f̂k(x) and Ĉk(x) are the depth
estimate and its support at iteration k, while F̂ (x) is the
corresponding 3D point.

If another depth mapDref
i (x) produces a depth estimate

within ε of the initial depth estimate f̂0(x), it is very likely
that the two viewpoints have both correctly reconstructed
the same surface. In the example of Fig. 2(c), the esti-
mates D3(F̂ (x)) and D5(F̂ (x)) are close to the initial es-
timate. These close observations are averaged into a single
estimate. Each observation is weighted by its confidence
according to the following equations:

f̂k+1(x) =
f̂k(x)Ĉk(x) +Dref

i (x)Ci(x)
Ĉk(x) + Ci(x)

(2)

Ĉk+1(x) = Ĉk(x) + Ci(x) (3)

The result is a combined depth estimate f̂k(x) at each
pixel of the reference image and a support level Ĉk(x) mea-
suring how well the depth maps agree with the depth esti-
mate. The next step is to find how many of the depth maps
contradict f̂k(x) in order to verify its correctness.

Conflict Detection The total amount of support for each
depth estimate must be above the threshold Cthres or else
it is discarded as an outlier and is not processed any fur-
ther. The remaining points are checked using visibility con-
straints. Figure 2(c) shows that D1(F̂ (x)) and D3(F̂ (x))
occlude F̂ (x). However,D3(F̂ (x)) is close enough (within
ε) to F̂ (x) to be within its support region and so this occlu-
sion does not count against the current estimate. D1(F̂ (x))
is occluding F̂ (x) outside the support region and thus con-
tradicts the current estimate. When such an occlusion takes
place the support of the current estimate is decreased by:

Ĉk+1(x) = Ĉk(x)− Crefi (x) (4)

When a free-space violation occurs outside the support
region, as occurs with the depth D4(F̂ (x)) in Fig. 2(c), the
confidence of the conflicting depth estimate is subtracted
from the support according to:

Ĉk+1(x) = Ĉk(x)− Ci(Pi(F̂ (x))) (5)

We have now added the confidence of all the depth maps
that support the current depth estimate and subtracted the
confidence of all those that contradict it. If the support is
positive, the majority of the evidence supports the depth es-
timate and it is kept. If the support is negative, the depth
estimate is discarded as an outlier. The fused depth map at
this stage contains estimates with high confidence and holes
where the estimates have been rejected.

Hole filling After discarding the outliers, there are many
holes in the fused depth map. In practice, the depth maps
of most real-world scenes are piecewise smooth and we as-
sume that any small missing parts of the depth map are most
likely to have a depth close to their neighbors. To fill in the
gaps, we find all inliers within a w×w window centered at
the pixel we wish to estimate. If there are enough inliers to
make a good estimate, we assign the median of the inliers
as the depth of the pixel. If there are only a few neighbor-
ing inliers, the depth map is left blank. Essentially, this is
a median filter that ignores the outliers. In the final step, a
median filter with a smaller window ws is used to smooth
out the inliers.

4.3. Surface Reconstruction

We have presented two algorithms for generating fused
depth maps. Consecutive fused depth maps partially over-
lap one another. It is likely that these overlapping surfaces
will not be aligned perfectly. The desired output of our sys-
tem is a smooth and consistent model of the scene. To this
end, consistency between consecutive fused depth maps is
enforced in the final model. Each fused depth map is com-
pared with the previous fused depth map as it is being gen-
erated. If a new estimate violates the free space of the previ-
ous fused depth maps, the new estimate is rejected. If a new
depth estimate is within ε of the previous fused depth map,
the two estimates are merged into one vertex which is gen-
erated only once in the output. Thus redundancy is removed
along with any gaps in the model where two representations
of the same surface are not connected. More than one previ-
ous fused depth map should be kept in memory to properly
handle surfaces that disappear and become visible again. In
most cases, two previous fused depth maps are sufficient.

After duplicate surface representations have been
merged, a mesh is constructed taking into account the cor-
responding confidence map to suppress any remaining out-
liers. By using the image plane as a reference both for ge-
ometry and for appearance, we can construct a triangular
mesh very quickly. We employ a multi-resolution quad-
tree algorithm in order to minimize the number of triangles
while maintaining geometric accuracy as in [14]. We use



a top-down approach rather than a bottom-up approach to
lower the number of triangles that need to be processed.
Starting from a coarse resolution, we form triangles and test
if they correspond to nonplanar parts of the depth map, if
they bridge depth discontinuities or if points with low con-
fidence (below Cthres) are included within them. If any of
these events occur, the quad, which is formed out of two ad-
jacent triangles, is subdivided. The process is repeated on
the subdivided quads up to the finest resolution.

We use the following simple planarity test proposed in
[15] for each vertex of each triangle:∣∣∣∣z−1 − z0

z−1
− z0 − z1

z1

∣∣∣∣ < t. (6)

Where z0 is the z-coordinate, in the camera coordinate sys-
tem, of the vertex being tested and t is a threshold. z−1

and z1 are the z-coordinates of the two neighboring vertices
of the current vertex on an image row. (The distance be-
tween the corresponding pixels of two neighboring vertices
is equal to the size of the quad’s edges.) The same test is
repeated along an image column. If either the vertical or
the horizontal tests fails for any of the vertices of the trian-
gle, the triangle is not part of a planar surface and so the
quad is subdivided. For these tests, we have found that 3D
coordinates are more effective than disparity values. Since
we do not require a manifold mesh and are interested in fast
processing speeds, we do not maintain a restricted quad-tree
[14].

5. Results

Our methods were tested on videos of urban environ-
ments and on the Multi-View Stereo Evaluation dataset
(http://vision.middlebury.edu/mview/) [19]. On the ur-
ban datasets, the plane-sweeping stereo algorithm used 48
planes and matched 7 images to obtain each stereo depth
map. Every 17 frames, 17 stereo depth maps were used
to produce a fused depth map. Using these settings and
stability-based fusion a processing rate of 23 frames per
second can be achieved on a high-end personal computer
with an NVidia GeForce 8800 GPU. If confidence-based
fusion is used instead, processing speed reaches 25 frames
per second. On the Multi-View dataset, the plane-sweeping
step used 94 planes and matched five images. Every five
frames, 15 stereo depth maps were fused together. On
both datasets, the following parameters were used: ε =
0.05, σ = 120, w = 8 pixels, ws = 4 pixels, and Cthres =
5. The image sizes are 512 × 384 for the urban videos and
640× 480 for the Multi-View dataset.

To evaluate the ability of our method to reconstruct urban
environments, a 3,000 frame video of the exterior of a Fire-
stone store was captured with two cameras to obtain a more
complete reconstruction. One of the cameras was pointed

horizontally and the other was tilted up 30o. The videos
from each camera were processed separately. The Firestone
building was surveyed to an accuracy of 6 mm and the re-
constructed model (Fig. 4(a)) was directly compared with
the surveyed model (Fig. 4(b) inset). There are several ob-
jects such as parked cars that are visible in the video, but
were not surveyed. The ground which slopes away from
the building also was not surveyed. Objects included in
the video that were not surveyed were manually removed
from the evaluation. To measure the accuracy of each re-
constructed vertex, the distance from the vertex to the near-
est triangle of the ground truth model is calculated. The
error measurements for each part of a reconstructed model
are displayed in Fig. 4(b). We also evaluated the complete-
ness of the reconstruction which measures how much of
the building was reconstructed and is defined similar to the
completeness measurement in [19]. Sample points are cho-
sen at random on the surface of the ground truth model with
a density of 50 sample points per square meter of surface
area. The distance from each sample point to the nearest re-
constructed point is measured. A visualization of these dis-
tances is shown for one of the reconstructions in Fig. 4(c).

We performed a quantitative evaluation between raw
stereo depth maps and the results of the fusion algorithms.
For the results labeled as stereo-reference, we evaluate the
raw depth maps from each of the fusion reference views.
For the results labeled stereo-exhaustive, we evaluated the
depth maps from all images as the representation of the
scene. We also implemented the real-time algorithm of
Rusinkiewicz et al. [17] using a grid of 5cm voxels. This
algorithm produces a point cloud from which surface re-
construction is not trivial. Table 1 contains the median and
mean error values for each method as well as the complete-
ness achieved on the Firestone building. Volumetric meth-
ods that handle outliers such as [23] could be applied in our
settings, but they would not be real-time.

The results show that the raw stereo depth maps
are highly inaccurate and contain many large outliers.
Confidence-based and stability-based fusion improve the
accuracy of the reconstruction, but lose some completeness,
since some of the points removed as outliers might have
been near the surface. Depth estimates created in the hole-
filling stage of confidence-based fusion are not guaranteed
to satisfy visibility constraints, but are typically reasonable
resulting in increased completeness at the expense of some
accuracy as shown in the results. The real-time technique
of Rusinkiewicz et al. [17] does not improve accuracy and
does not reduce the number of points in the model effec-
tively without a significant loss of resolution.

Our methods were also used on several videos of urban
environments using the same camera configuration and set-
tings. The reconstructed models are shown in Fig. 6 and 7.
A very long 170,000 frame video was used to reconstruct a



Fusion Method Stereo-exhaustive Stereo-reference Rusinkiewicz Confidence Stability
Median Error(cm) 4.87 4.19 12.9 2.60 2.19
Mean Error(cm) 40.61 39.20 25.6 6.60 4.79
Completeness 94% 83% 84% 73% 66%

Number of Vertices 9,074,377 544,558 4,106,755 539,807 214,940
Table 1. Accuracy and Completeness for different fusion methods using the default parameters (both cameras).

(a) Reconstructed Model using Confidence-based
fusion

(b) Accuracy evaluation. White indicates unsur-
veyed areas. (Inset) Surveyed Model

(c) Completeness of the Firestone building. Red
areas mostly correspond to unobserved or untex-
tured areas.

Figure 4. Firestone Building Accuracy and Completeness Evaluation. (b,c) Blue, green and red indicate errors of 0cm, 30cm and 60+cm,
respectively. Please view on a color display.

large model shown in Fig. 1. We achieve processing rates
of 25 frames per second for typical settings. Even though
our approach is viewpoint-based, we are still able to han-
dle multiple depth layers (see Fig. 6, 7, and supplemental
video) due to the redundancy in the depth maps.

The two algorithms were also evaluated on the Multi-
View Stereo Evaluation benchmark dataset [19]. This eval-
uation provides metrics on the accuracy and completeness
of the reconstruction. The accuracy metric is the distance
d such that 90% of the reconstructed surface is within d
from the ground truth surface. Completeness is the percent-
age of ground truth within 1.25 mm of the model. The re-
sults of the evaluation on the ring datasets for both objects,
as well as the total runtime using our GPU implementation
are given in Table 2. The fusion process only for stability-
based fusion on the “TempleRing” dataset took 153 sec-
onds implemented on the CPU and 16 seconds when run
on the GPU. The fusion process for the confidence-based
algorithm on the same dataset took 40 seconds on the CPU
and 14 on the GPU. The remaining time was spent reading
in the data, constructing silhouettes, and computing depth
maps. Images of the reconstructed models are shown in
Fig. 5.

Accuracy Completeness Time
TEMPLE

Stability 0.76 mm 85.2% 22 sec
Confidence 0.83 mm 88.0% 19 sec

DINO
Stability 0.73 mm 73.1% 28 sec
Confidence 0.84 mm 83.1% 21 sec

Table 2. Quantitative evaluation for the ring datasets of the Multi-
view Stereo Evaluation

Figure 5. Results on the Multi-View Stereo Evaluation data
set. First row shows Stability-based fusion, second row shows
Confidence-based fusion. Computing times ranged from 19 to 28
seconds.

Figure 6. Reconstructed buildings using stability-based fusion

6. Conclusion
We have presented a fast, visibility-based approach for

reconstructing 3D shape from video in a two-stage process.
Two alternative algorithms were presented for fusing the
depth maps. In both cases, occlusions and free-space viola-



Figure 7. Reconstructed buildings using confidence-based fusion

tions are used to guide the search for a plausible depth for
each pixel. Stability-based fusion is more robust and pro-
duces slightly more accurate results. Since its complexity
scales quadratically with the number of input depth maps, it
becomes significantly slower than confidence-based fusion
as the number of depth maps increases. Confidence-based
fusion is a greedy algorithm since it makes an initial com-
mitment to the most likely candidate. Its linear complexity
allows for real-time performance on larger input sets.

Our methods are suitable for large scale reconstructions
because they can process large amounts of data in pipeline
mode at rates near real time. The accuracy of the recon-
struction was evaluated using a surveyed model of a real
building and was found to be accurate within a few centime-
ters. We also participated in the Multi-View Stereo Evalu-
ation obtaining satisfactory results with at least an order of
magnitude faster processing than the state of the art. Our fu-
ture work will focus on improving the visual quality of the
models by detecting features such as planar surfaces and
straight lines and ensuring they are represented as such.

Acknowledgments: Supported by the DTO under the VACE
program and by DARPA under the UrbanScape project. Approved
for Public Release, Distribution Unlimited.

Project Website: http://cs.unc.edu/Research/urbanscape/

References
[1] R. Collins. A space-sweep approach to true multi-image

matching. In CVPR, pages 358–363, 1996.
[2] N. Cornelis, K. Cornelis, and L. Van Gool. Fast compact city

modeling for navigation pre-visualization. In CVPR, 2006.
[3] B. Curless and M. Levoy. A volumetric method for building

complex models from range images. SIGGRAPH, 30:303–
312, 1996.

[4] P. Fua. From multiple stereo views to multiple 3-d surfaces.
IJCV, 24(1):19–35, 1997.

[5] D. Gallup, J.-M. Frahm, P. Mordohai, Q. Yang, and M. Polle-
feys. Real-time plane-sweeping stereo with multiple sweep-
ing directions. In CVPR, 2007.

[6] M. Goesele, B. Curless, and S. M. Seitz. Multi-view stereo
revisited. In CVPR, pages 2402–2409, 2006.

[7] C. Hernández, G. Vogiatzis, and R. Cipolla. Probabilistic
visibility for multi-view stereo. In CVPR, 2007.

[8] A. Hilton, A. Stoddart, J. Illingworth, and T. Windeatt. Re-
liable surface reconstruction from multiple range images. In
CVPR, pages 117–126, 1996.

[9] S. Kang, R. Szeliski, and J. Chai. Handling occlusions in
dense multi-view stereo. In CVPR, pages 103–110, 2001.

[10] R. Koch, M. Pollefeys, and L. Van Gool. Multi viewpoint
stereo from uncalibrated video sequences. In ECCV, vol-
ume I, pages 55–71, 1998.

[11] R. Koch, M. Pollefeys, and L. Van Gool. Robust calibration
and 3d geometric modeling from large collections of uncali-
brated images. In DAGM, pages 413–420, 1999.

[12] L. Morency, A. Rahimi, and T. Darrell. Fast 3d model acqui-
sition from stereo images. In 3DPVT, pages 172–176, 2002.

[13] P. Narayanan, P. Rander, and T. Kanade. Constructing virtual
worlds using dense stereo. In ICCV, pages 3–10, 1998.

[14] R. Pajarola. Overview of quadtree-based terrain triangulation
and visualization. Technical report, 2002.

[15] R. Pajarola, Y. Meng, and M. Sainz. Fast depth-image mesh-
ing and warping. Technical report, 2002.

[16] A. Román, G. Garg, and M. Levoy. Interactive design of
multi-perspective images for visualizing urban landscapes.
In IEEE Visualization, pages 537–544, 2004.

[17] S. Rusinkiewicz, O. Hall-Holt, and M. Levoy. Real-time 3d
model acquisition. SIGGRAPH, 21(3):438–446, 2002.

[18] T. Sato, M. Kanbara, N. Yokoya, and H. Takemura. Dense
3-d reconstruction of an outdoor scene by hundreds-baseline
stereo using a hand-held video camera. IJCV, 47(1-3):119–
129, 2002.

[19] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and
R. Szeliski. A comparison and evaluation of multi-view
stereo reconstruction algorithms. In CVPR, pages 519–528,
2006.

[20] M. Soucy and D. Laurendeau. A general surface approach to
the integration of a set of range views. PAMI, 17(4):344–358,
1995.

[21] S. Teller, M. Antone, Z. Bodnar, M. Bosse, S. Coorg,
M. Jethwa, and N. Master. Calibrated, registered images of
an extended urban area. IJCV, 53(1):93–107, June 2003.

[22] G. Turk and M. Levoy. Zippered polygon meshes from range
images. In SIGGRAPH, pages 311–318, 1994.

[23] M. Wheeler, Y. Sato, and K. Ikeuchi. Consensus surfaces for
modeling 3d objects from multiple range images. In ICCV,
pages 917–924, 1998.

[24] R. Yang and M. Pollefeys. A versatile stereo implementa-
tion on commodity graphics hardware. Journal of Real-Time
Imaging, 11(1):7–18, 2005.


