
Some Issues on Self-Calibration and Critical Motion Sequences

Marc Pollefeys
�

and Luc Van Gool
ESAT-PSI, K.U.Leuven

Leuven, Belgium
Marc.Pollefeys@esat.kuleuven.ac.be

ABSTRACT

This paper is concerned with the problem of self-
calibration. First some general concepts are discussed, then
several methods are briefly discussed. In the second part
of the paper the problem of critical motion sequences is
treated. This problem could cause an important limitation
to the practical use of self-calibration. In this context several
interesting results are presented.

�������	��
���
��
self-calibration, critical motion sequences,

absolute conic, ambiguous reconstruction.

1. INTRODUCTION

Since it became clear that it was possible to obtain a pro-
jective reconstruction (i.e. a reconstruction determined up
to an arbitrary projective transformation) from a set of un-
calibrated images of a scene [4, 7], researchers have tried to
obtain ways to upgrade this reconstruction to a metric one
(i.e. determined up to an arbitrary euclidean transformation
and a scalefactor). In general three types of constraints could
be applied to achieve this: scene constraints, camera motion
constraints and constraints on the camera intrinsics. All of
these have been tried separately or in conjunction. Reduc-
ing the ambiguity on the reconstruction by imposing restrici-
tions on the camera intrinsic camera parameters is termed
self-calibration (in the area of computer vision). In recent
years many researchers have been working on this subject.
Mostly self-calibration algorithms are concerned with un-
known but constant intrinsic camera parameters (see for ex-
ample Faugeras et al. [5], Hartley [8], Pollefeys and Van
Gool [20, 24], Heyden and Åström [11] and Triggs [33]).
Recently, the problem of self-calibration in the case of vary-
ing intrinsic camera parameters was also studied (see Polle-
feys et al. [21, 28, 26] and Heyden and Åström [12, 13]).

Many researchers proposed specific self-calibration algo-
rithms for restricted motions (i.e. combining camera mo-
tions constraints and constraints on the camera intrinsics).
In several cases it turns out that simpler algorithms can be
obtained. The price to pay is, however, that the ambiguity
can often not be restricted to metric. Some interesting ap-
proaches were proposed by Moons et al. [19] for pure trans-
lation, Hartley [9] for pure rotations and by Armstrong et
al. [1] (see also [6]) for planar motion.
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Recently, some methods were proposed to combine self-
calibration with scene-constraints. A specific combination
was proposed in [23] to resolve a case with minimal infor-
mation. Bondyfalat and Bougnoux [2] proposed a method
of elimination to impose the scene constraints. Liebowitz
and Zisserman [16], on the other hand, formulate both the
scene constraints and the self-calibration constraints as con-
straints on the absolute conic, so that a combined approach
is achieved.

Another important aspect of the self-calibration problem
is the problem of critical motion sequences. In some cases
the motion of the camera is not general enough to allow for
self-calibration and an ambiguity remains on the reconstruc-
tion. A first complete analysis for constant camera parame-
ters was given by Sturm [30]. Others have also worked on
the subject (e.g. Pollefeys [26], Ma et al. [18] and Kahl [14]).

This paper is organized as follows. Section 2 discusses
the self-calibration problem. The general concepts are pre-
sented and some specific methods are discussed. Section 3
discusses the problem of critical motion sequences. In this
context some bad news and some good news is given. The
paper is summarized in Section 4.

2. SELF-CALIBRATION

In this section some importants concepts for self-
calibration are introduced. These are then used to briefly
described most of the existing self-calibration methods for
general motions.

The image of the absolute conic
One of the most important concepts for self-calibration is the
Absolute Conic (AC) and its projection in the images (IAC).
Since it is invariant under Euclidean transformations, its rel-
ative position to a moving camera is constant. For constant
intrinsic camera parameters its image will therefore also be
constant. This is similar to someone who has the impression
that the moon is following him when driving on a straight
road. Note that the AC is more general, because it is not
only invariant to translations but also to arbitrary rotations.

It can be seen as a calibration object which is naturally
present in all the scenes. Once the AC is localized, it can
be used to upgrade the reconstruction to metric. It is, how-
ever, not always so simple to find the AC in the reconstructed
space. In some cases it is not possible to make the difference
between the true AC and other candidates. This problem will
be discussed in the Section 3.

In practice the simplest way to represent the AC is
through the Dual Absolute Quadric (DAQ). In this case both
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The absolute conic (located in the plane

at infinity) and its projection in the images

the AC and its supporting plane, the plane at infinity, are
expressed through one geometric entity. The relationship
between the AC and the IAC is easily obtained using the
projection equation for the DAQ:


 ������ ��� � ������ (1)

with 
 �� representing the dual of the IAC, � � the DAQ
and � � the projection matrix for view � . Figure 1 illus-
trates these concepts. For a Euclidean representation of the
world the camera projection matrices can be factorized as:� ��� � ��� ���� �! - " �$# (with

� � an upper triangular matrix
containing the intrinsic camera parameters, � �� represent-
ing the orientation and " � the position) and the DAQ can be
written as � � �&% ��')(+*-,)./,0.1,).3204 . Substituting this in eq.(1),
one obtains: 
 �� � � � � �� (2)

This equation is very useful, because it immediately relates
the intrinsic camera parameters to the DIAC.

In the case of a projective representation of the world the
DAQ will not be at its standard position, but will have the
following form: � � �657� �8 5 � with 5 being the transfor-
mation from the metric to the projective representation. But,
since the images were obtained in a Euclidean world, the im-
ages 
 �� still satisfies (2). If � � is retrieved, it is possible to
upgrade the geometry from projective to metric.

The IAC can also be transferred from one image to an-
other through the homography of its supporting plane (i.e.
the plane at infinity):


:9 �&;=<� 9�> � 
 � ;=<� 9!>�? or 
 �9 �6;=<� 9 
 �� ;=<� 9 �@� (3)

It is also possible to restrict this constraint to the epipolar
geometry. In this case one obtains the Kruppa equations [15]
(see Figure 2):

� A � 9 # � B � � � �CA � 9 # B ��D � 9 � � � D �� 9 (4)

with D � 9 the fundamental matrix for views � and E and A � 9
the corresponding epipole. In this case only 2 (in stead of
5) independent equations can be obtained [34]. In fact re-
stricting the self-calibration constraints to the epipolar ge-
ometry is equivalent to the elimination of the position of in-
finity from the equations. The result is that some artificial
degeneracies are created (see [32]).
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The Kruppa equations impose that the

image of the absolute conic satisfies the epipolar con-
straint. In both images the epipolar lines correspond-
ing to the two planes through I � and I 9 tangent to �
must be tangent to the images 
 � and 
 9 .

Self-calibration methods

Here some self-calibration approaches are briefly discussed.
Combining eq.(1) and (2) one obtains the following equa-
tion:

� � � �� �&� �	� � ���� (5)

Several methods are based on this equation. For constant
intrinsic parameters Triggs [33] proposed to mimimize the
deviation from eq.(5). A similar approach was proposed by
Heyden and Åström [11]. Pollefeys and Van Gool [24] pro-
posed a related approach based on the transfer equation (i.e.
eq. (3)) rather than the projection equation. These different
approaches are very similar as was shown in [24]. The more
flexible self-calibration method which allows varying intrin-
sic camera parameters [28] is also based on this equation.

The first self-calibration method was proposed by
Faugeras et al. [5] based on the Kruppa equations (eq.(4)).
The approach was impoved over the years [17, 34]. An
interesting feature of this self-calibration technique is that
no consistent projective reconstruction should be available,
only pairwise epipolar calibration. This can be very useful
is some cases where it is hard to relate all the images into a
single projective frame. The price that is paid for this advan-
tage is that 3 of the 5 absolute conic transfer equations are
used to eliminate the dependence on the position of the plane
at infinity. This explains why this method performs poorly
compared to others when a consistent projective reconstruc-
tion can be obtained (see [27]).

When the homography of the plane at infinity ; <� 9 is
known, then eq.(3) can be reduced to a set of linear equa-
tions in the coefficients of 
 � or 
 �� (this was proposed by
Hartley [8]). Several self-calibration approaches rely on
this possibility. Some methods follow a stratified approach
and obtain the homographies of the plane at infinity by first
reaching an affine calibration, based an a pure translation
(see Moons et al. [19]) or using the modulus constraint (see
Pollefeys et al. [27]). Other methods are based on pure ro-
tations (see Hartley [9] for constant intrinsic parameters and



de Agapito et al. [3] for a zooming camera).
A few years ago Hartley proposed an alternative self-

calibration method [8]. This method is not based on the
absolute conic, but directly uses a QR-decomposition of the
camera projection matrices. Hartley uses the following equa-
tion:

� �
� �� �<�� � � � � ��� (6)

where
�

and � < are the unknowns. It is proposed to com-
pute

� � through QR-decomposition of the left-hand side of
eq.(6). The following equation should be roughly satisfied
for the solution:

��� � � or
� >!? � � � � (7)

The main difference between Hartley’s method and the
other is that the rotational component is eliminated through
QR-decomposition instead of through multiplication by the
transpose.

In fact once the metric reconstruction has been obtained
through self-calibration it is indicated to refine the results
through a maximum likelihood approach, i.e. bundle adjust-
ment. This is a standard technique in photogrammetry [29]
and is also more and more used in computer vision nowa-
days. Traditionally several assumptions are made in this
case. It is assumed that the error is only due to mislocal-
ization of the image features. Additionally, this error should
be uniformly and normally distributed ? . This means that the
proposed camera model is supposed to be perfectly satisfied.
In these circumstances the maximum likelihood estimation
corresponds to the solution of a least-squares problem:� 8�� �
	�

�
� ? � �
������� *��
�
����� � ?�� �� ��� � � 4! #" *�$ � �%�&� �  � �� �'� � � 4! )(

where * � is the set of indices corresponding to the points
seen in view � and � �,+.- � �� ? � ��  � ����)/ � � � � � � ��  - � �� " � # .
In this equation

� � should be parameterized so that the self-
calibration constraints are satisfied. The model could also
be extended to deal with more complex camera models (e.g.
radial distortion).

In [12] it was even proposed to use bundle adjustment im-
mediately. Since the subject of initialization was not covered
in this paper, questions can be raised concerning the practi-
cal feasability of this approach. If one can obtain a good
initialization, however, bundle adjustment can significantly
improve the final results.

3. CRITICAL MOTION SEQUENCES

It was noticed very soon that not all motion sequences
are suited for self-calibration. Some obvious cases are the
restricted motions described in the previous section (i.e.
pure translation, pure rotation and planar motion). There
are, however, more motion sequences which do not lead
to unique solutions for the self-calibration problem. This
means that at least two reconstructions are possible which
satisfy all constraints on the camera parameters for all the
images of the sequence and which are not related by a simi-
larity transformation.

? This is a realistic assumption since outliers should have been
removed at this stage of the processing.
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Some images of the Arenberg castle

Several researchers realized this problem and mentioned
some specific cases or did a partial analysis of the prob-
lem [33, 34, 22]. Sturm [30, 31] provided a complete cat-
alogue of critical motion sequences (CMS) for constant in-
trinsic parameters. Additionally, he identified specific de-
generacies for some algorithms [32].

It is, however, very important to notice that the classes of
CMS that exist depend on the constraints that are enforced
during self-calibration. The extremes being all parameters
known, in which case almost no degeneracies exist; and, no
constraints at all, in which case all motion sequencesare crit-
ical.

It is outside the scope of this paper to give an analysis
which leads to the exhaustive list of CMS for the different
possible sets of constraints. For some specific cases we refer
to the work of Sturm [30, 32], Pollefeys [26], Kahl [14] and
Ma [18].

All implications of CMS are not yet fully understood.
Some results seem to show that the problem is worse than
what could be expected at first, but on the other hand some
results are also encouraging.

Some bad news
It is clear that in practice motion sequenceswill almost never
be perfectly critical. One can however expect that some se-
quences will be quasi-critical and thus lead to ambiguous re-
construction in the presence of noise. The question is thus:
How far should a motion sequence be from critical to al-
low a good self-calibration? Of course, this question is not
so simple. What does “far” from a class of critical motions
mean in the space of all possible motions? The following
experiment, however, gives some intuitive insight that this
could be further than expected.

A sequence of images of the Arenberg castle was
recorded. In Figure 3 some of the images of the sequence
are shown. A 3D reconstruction was obtained based on the
method described in Pollefeys et al. [25]. The reconstruction
is illustrated together with the retrieved camera position and
orientation in Figure 4 The self-calibration method assumes
that all intrinsic camera paramaters are known, except the
focal length which is free to vary [28].

The linear algorithm provides a good result, even though
the motion sequence is close to critical with respect to this
algorithm  . This solution is used as the initialization for the
nonlinear algorithm. This algorithm converges without prob-
lems for the case of a varying focal length. After 6 iterations
the norm of the residue vector is reduced from 0.57 to 0.11.
For both algorithms the retrieved focal length is almost con-
stant, as it should be. This constant value however differs for The reconstructed motion sequence (see Figure 4) almost keeps
the point in the center of the image fixed.
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Perspective view of the reconstruction to-

gether with the estimated position of the camera for
the different views of the sequence
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Structure of the jacobian. Singular val-

ues (left) and right singular vector associated with the
smallest singular value (right). The first 3 singular
values were clipped, the values are 42, 39 and 31.
The first 24 unknowns are associated with the focal
lengths, the next 3 with the position of the plane at
infinity and the last 5 with the absolute conic.

both algorithms. The reason for this is explained based on
the analysis of the jacobian of the self-calibration equations
at the solution.

On the left side of Figure 5 the singular values of this
jacobian are given. Note that the last one is much smaller
than the others. The associated singular vector is shown on
the right of this figure. It indicates that it is not possible to
accurately determine the absolute value of the focal length
from this specific image sequence. Note, however, that an
orbital motion –to which the actual motion of the camera is
very close– is not critical in this case. The problem is that the
angle of rotation between the extreme views of the castle se-
quence is too small to allow for an accurate self-calibration.
This was verified with synthetic data. Two sequences of or-
bital motion were generated. One of 60 degrees (similar to
the castle sequence) and one of 360 degrees. The first se-
quences also yielded a jacobian with a small singular value.
The jacobian of the second sequence did not have any small
singular value. In fact, in terms of self-calibration, the castle
sequence is relatively close to pure translation (although the
orientation change is almost 60 degrees!). This is bad news!

Some good news
The classification of all possible critical motion sequences
for a specific set of self-calibration constraints can be used
to avoid critical motions when acquiring an image sequence
on which one intends to use self-calibration. In some cases,
however, an uncalibrated image sequence is available from
which a metric reconstruction of the recorded scene is ex-
pected. In this case, it is not always clear, at first, what can
be achieved nor if the motion sequence is critical or not.

It can be shown that the recovered motion sequence for
any reconstruction satisfying the fixed absolute conic image
constraint would consist of rigid motions (i.e. Euclidean mo-
tions). This result is also valid for critical motion sequences,
where the recovered motion sequence would be in the same
CMS class as the original sequence. In [31] a proof was
given for the case of constant intrinsic camera parameters.
Here we give a simpler and more general proof which is
based on the disc quadric representation. It is valid for all
possible types of self-calibration constraints.

Theorem 1 Let S be a motion sequence that is critical with
respect to the dual quadric �

�
, and let ��� � be the original

projection matrices of the frames in S. Let 5 be any projec-
tive transformation mapping �

�
to � � and ��� ��� ��� � 5 >�?

be the projection matrices transformed by 5 . There exists a
Euclidean transformation between any pair of ��� � .

Proof: From S being a critical motion sequence with re-
spect to �

�
, it follows that there must exist a

� � � which
respects the self-calibration constraints for which

� � � � �� � �
	 �� ����� � � � ���� �
Since �

� � 5 >!? � � 5 > � and � � � � � � � 5 >�? , one gets
� � � � �� � �&��� � � � ���� �

Defining ; � � as the left ���
� part of � � � this yields
� � � � �� �!�6;�� � ; �� � or � � � >!?� � ;�� � ; �� � � > �� �

Since the matrix
� >!?� � ;�� � satisfies the orthonormality con-

straints, it must correspond to some rotation matrix, say� � � . Thus ; � � � � � � � � � . Therefore, it is always possi-
ble to write the projection matrices � � � as follows:

��� �!� � � � � � �� �+ - � �� � " � � #
�

This means that the sequence � � consisting of � � � is
Euclidean and has, after transformation by 5 , the same set of
potential absolute conics. Since the different classes of CMS
given in [30] can’t be transformed into each other through a
projective transformation, the sequence � � will be a CMS
of the same class as � . Therefore, one can conclude that any
reconstruction being a solution to the self-calibration prob-
lem allows us to identify the class of CMS of the original
sequence and thus also all ambiguous reconstructions. This
is an important observation, because it allows to identify crit-
ical motion sequences and to determine the ambiguity on the
reconstruction from any valid instantiation of the reconstruc-
tion.

In that case more specific algorithms can be called or ad-
ditional constraints can be brought in to reduce the ambi-
guity [35]. In addition, the values for the intrinsic camera



parameters are not arbitrary. The pixels are always rectan-
gular and most often close to squares. The principal point
is in general close to the center of the image and even the
focal length can not take on arbitrary values. On top of that
one can impose that all the visible points must be located in
front of the camera (see [10]). This means that even for criti-
cal motion sequences one will in general be able to do much
better than what could be expected from the CMS analysis.

In some case the reconstruction will thus be an ambigu-
ous one. An important question is then: What can still be
done with an ambiguous reconstruction? An interesting an-
swer is given by the next theorem (a similar result was very
recently presented by Ma [18]).

Let us first define
� * � 4 as being the set of potential abso-

lute quadrics for the motion sequences � . Let us also define
the transformation of � as the sets of the transformed ele-
ments.

� ���
� � "� �� , � . �1�1����� 5 � ���/5

� � "� �� , � �
Theorem 2 Let � be a critical motion sequence and ��� �
the corresponding projection matrices. Let �

�
be an ar-

bitrary element of
� * � 4 and let 5 be an arbitrary projec-

tive transformation mapping �
�

to � � . Let � � � 5 � and� � � � � � � 5 >!? . Let 	 represent a Euclidean motion for
which

� * � ��
 	64 � � * � � 4 and let � � 	 ��
 be the cor-
responding projection matrix. Then there exists a Euclidean
transformation between � � 	 ��
 � � � 	 ��
 5 and any other� � � .

Proof: From � ��� � * � 4 , it follows that 57� � 5 � � � * � � 4 .
Since it is assumed that

� * � ��
 	�4 � � * � � 4 , it follows
that Theorem 1 can be applied to the sequence � ��
 	 ,
with the dual quadric 57� � 5 � , the transformation 5 >!? and
� � � ? . �1�/� . � � 	 . � � 	 ��
 � as so-called original projection
matrices.

�

This theorem allows us to conclude that it is possible to
generate correct new views, even starting from an ambigu-
ous reconstruction. In this case, we should, however, restrict
the motion of the virtual camera to the type of the critical
motion sequence recovered in the reconstruction. For exam-
ple, if we have acquired a model by doing a planar motion on
the ground plane and thus rotating around vertical axes, then
we should not move the camera outside this plane nor ro-
tate around non-vertical axes. But, if we restrict our virtual
camera to this critical motion, then all these motions will
correspond to Euclidean motions in the real world and no
distortion will be present in the images (except, of course,
for modeling errors). Note that the recovered camera pa-
rameters should be used

�
, except when some parameters can

vary (in which case any possible parameter setting can be
used). In fact, this result is related to the more general rule
that for the generation of new views interpolation is more
desirable than extrapolation.�

the ones obtained by factorizing � � � in� � ��� � �� ��� - � �� ��� � ��� .

4. CONCLUSION

In this paper the absolute conic was presented as a cen-
tral concept for self-calibration. This concept is very usefull
for practical algorithms as well as for a theoretical analy-
sis of the problem. An important number of existing self-
calibration methods were briefly discussed. Next, the im-
portant problem of the critical motion sequences (CMS) was
treated. Although in practice exact CMS are very improb-
able to occure, many motion sequences seem to be quasi-
critical. This puts an important limitation on the use of
self-calibration for restricted motion sequences. On the
other hand it seems that it is possible to deal with CMS.
It was shown that it is possible to detect their occurence
and therefore to deal with the ambiguity. For the genera-
tion of new views it seems that –taking some restrictions
into account– even from an ambiguous reconstruction undis-
torted new views can be generated.
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