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Abstract

Camera calibration is essential to many computer vi-
sion applications. In practice this often requires cumber-
some calibration procedures to be carried out regularly.
In the last few years a lot of work has been done on self-
calibration of cameras, ranging from weak calibration to
metric calibration. It has been shown that a metric calibra-
tion of the camera setup (up to scale) was possible based on
the rigidity of the scene only. In this paper a stratified ap-
proach is proposed which gradually retrieves the metric cal-
ibration of the camera setup. Starting from an uncalibrated
image sequence the projective calibration is retrieved first.
In projective space the plane at infinity is then identified
yielding the affine calibration. This is achieved using a
constraint which can be formulated between any two ar-
bitrary images of the sequence. Once the affine calibration
is known the upgrade to metric is easily obtained through
linear equations.

1 Introduction

In recent years several methods were proposed to obtain
the calibration of a camera from correspondences between
several views of the same scene. These methods are based
on the rigidity of the scene and on the constancy of the in-
ternal camera parameters. Most existing methods start from
the projective calibration and then immediately try to solve
for the intrinsic parameters. However, they all have to cope
with the affine parameters (i.e. the position of the plane at
infinity).

Faugeras et al [4] eliminated these affine parameters
yielding two Kruppa equations for each pair of views. A
more robust approach was proposed by Zeller et al [20].
Heyden [7] and Triggs [19] proposed methods based on the
absolute quadric. Hartley [6] does a minimization on all
eight parameters to obtain metric projection matrices. Most
of these methods encounter problems having to solve for
many parameters at once from nonlinear equations.

This problem prompted a stratified approach, where
starting from a projective reconstruction an affine recon-
struction is obtained first and used as the initialization to-
wards metric reconstruction. A similar method has been
proposed by Armstrong et al [1] based on the work of
Moons et al [10]. But this method needs a pure translation
which is for example not easy to ensure with a hand-held
camera. A method which avoids these restriction was pro-
posed previously [12]. This method has the disadvantage of
needing at least 4 views to obtain the self-calibration.

In this paper a new method is derived based on the gen-
eralization of the method proposed in [12]. This method is
more robust and can obtain the metric calibration of a cam-
era setup from only 3 images. This paper also investigates
the possibility of using only 2 views of the scene. It will be
shown that combining geometric constraints with internal
or external constraints can solve the calibration where none
of them separately could.

2 Camera models and geometry

In this section the basic principles and notations used in
the rest of the paper are introduced. Projective geometry is
used throughout the paper to describe the perspective pro-
jection of the scene onto the images. This projection is de-
scribed as ������� (1)

where � is a �	��
 projection matrix describing the perspec-
tive projection process, �
��� ����������� and ����� ����� �
are vectors containing the homogeneous coordinates of the
world points respectively image points. Notice that � will
be used throughout this paper to indicate equality up to a
non-zero scale factor.

If ! �"� # � � � � is the optical center of the camera, the
projection matrices can in general be written as follow:�$�%� &(' - &)#*� (2)

with & the homography describing the projection of points
from the reference plane (the plane at infinity in the affine



case) to the image plane. When the geometry is only deter-
mined up to a projective or affine transformation, the first
projection matrix can be chosen as follows �,+-�.� /0' 12� .
This implies that the camera and scene coordinate frames
are aligned. In that case the homographies of equation 2
also describe the transfer from points lying in the reference
plane from the first image to the image under consideration.

When the ambiguity on the geometry is metric, the cam-
era projection matrices have the following form:�43 + �-56�7/8' 9:� and ��3<;4�=56� >?;	'A@6>B;C#D;C� (3)

with #D; and >B; indicating the position and orientation of the
camera for view E and 5 an upper diagonal �)��� matrix
containing the internal camera parameters:
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where
I J

and
I O

represent the focal length divided by the
pixel dimensions,

L
is a measure of the skew and R M JTS M OKU

is the principal point.

3 Self-calibration from an uncalibrated im-
age sequence

Starting from an uncalibrated image sequence it is possi-
ble to obtain a reconstruction up to a projective transforma-
tion, based on the assumption that the pinhole camera model
is valid[3, 5, 15]. To obtain an affine or metric reconstruc-
tion additional knowledge has to be brought in. Geometric
as well as internal or external constraints can be used to
identify the plane at infinity or to find the camera parame-
ters. Often the assumption is made that the intrinsic cam-
era parameters are constant throughout the sequence (5 con-
straints per additional view). Restricting the projective am-
biguity (15 parameters) to metric (Euclidean+scale=7 pa-
rameters) requires 8 or more constraints. These are needed
to solve for the plane at infinity and the intrinsic parame-
ters. A quick calculation shows that this must in general be
possible for 3 or more images.

3.1 Projective calibration

In a first stage the projective calibration of the whole se-
quence is calculated together with a reconstruction of the
scene. This reconstruction is initialized from the two first
views. The fundamental matrix V can be calculated in a ro-
bust way from point matches [18]. The epipoles correspond
to the left and right nullspaces of V . Then the homography
for some arbitrary plane W ��� XY��� � is obtained as follow:&Z��� [\�^] V`_ [AX (with [ the epipole in the left image and

� [\�D] the antisymmetric matrix representing the vector prod-
uct with this epipole [ ). Hence the following camera pro-
jection matrices are obtained for the first two views (trans-
forming the plane W to � 98989a� � � ):�b+a�%� /0' 1T� and �4c��d� &(' [\� (5)

The reconstruction of the points can be obtained by min-
imizing the reprojection error in the images. The cam-
era projection matrices for the following views are then
obtained by imposing that some previously reconstructed
points which are still visible in the new view are reprojected
as closely as possible to the matches:egfihjlk�m n R � ; @po ; + �o ;rqA� U c _�R � ; @so ; c �o ;rqA� U c�t

(6)

where o ; + S o ; c and o ;rq are the rows of �b; . Once �b; is
known, points which are visible in two or more views can
be added to the reconstruction or updated. A more complete
description of this approach is given by Beardsley et al [2].

3.2 Affine calibration

The concern in this step of the calibration is to identify
the plane at infinity and to use it as the reference plane of
the previous paragraph. This is of course easy when 3 or
more points of this plane are known. For the moment, it is
assumed that nothing is known about the scene. Therefore
vanishing points or parallelism can not be used to identify
the plane at infinity.

In this section it will be explained how a property of the
infinity homography yields one constraint on the plane at
infinity for any pair of views. This is an important gener-
alization of the constraint introduced previously [12] where
the first image of the pair always had to be a fixed reference
image. This generalization not only reduces the minimum
number of images to 3 in stead of 4, but –more important–
also increases the robustness and accuracy of the method.

What is needed at this point is something which makes
the plane at infinity different from all the others so that it can
be identified. The infinity homographies can be written as a
function of the Euclidean entities of equation 3 or explicitly
as functions of projective entities –known at this point– and
the parameters of the plane at infinity. Both representations
are given in the following equation:&vu�;xwl��5y>z;xw�5�{ +| }r~ �� 3<�K��w��i�r�D�r� � R & + w _ [ + w�X U R & + ; _ [ + ;:X U { +| }r~ ��Y� ����� �^�����i��� �

(7)
From the Euclidean representation it follows that & u�;xw
is conjugated with a rotation matrix (up to a scale factor)
which implies that the 3 eigenvalues of &�u + ; must have
the same moduli, hence the modulus constraint [11, 12].



Note from equation 7 that this property requires the intrinsic
camera parameters to be constant.

This can be made explicit by writing down the character-
istic equation for the infinity homography:�2� � R & u�;xw @6��/ U �-� q � q _ ��c\� c _ ��+�� _ �����=9 (8)

It can be shown that the following condition is a necessary
condition for the roots of equation 8 to have equal moduli:��q\� q+ �-� qc � � (9)

This yields a constraint on the 3 affine parameters X�+ S X�c S X q
by expressing � q S ��c S ��+ S ��� as a function of these parameters
(using the projective representation in equation 7). The
inverse in the projective representation of & u�;xw can be
avoided by using the constraint

�T��� R & u + wN@¡��&vu + ; U �s9
which is equivalent to equation 8. Factorizing this expres-
sion using the multi-linearity of determinants, �¢q S � c S � + S � �
turn out to be linear in X + S X c S X�q . The explicit expressions
can be found in [13].

Equation 9 thus yields an order 4 polynomial constraint
for each camera pair. This means that for 3 images only a
finite number of solutions exist. Checking the feasibility of
the solutions is often enough to yield only one solution. In
general with more images only one solution exists. In prac-
tice these constraints are solved by doing nonlinear least-
squares. Because only 3 parameters have to be estimated
convergence towards a global minimum is relatively easily
obtained in general.

3.3 Metric calibration

Once the affine calibration is known it is easy to upgrade
it to metric [6]. The conic 5y5 � is invariant when multi-
plied to the left by & u and to the right by & �u as is seen
when using & u���5y>z5 { + . This property is related to
the fact that the absolute conic is invariant under the group
of Euclidean transformations. This implies that, when the
camera parameters are fixed, the image of the absolute conic
and thus also its dual (which is exactly 5y5 � ) will stay
fixed under the corresponding transformations. The follow-
ing equation results in linear equations in the coefficients of5y5 � by choosing

�2��� & u �$� :5y5 � ��&vug5y5 � & �u (10)

For a pair of images this set of equations only determines5y5 � up to a one parameter family of solutions. From 3 im-
ages or more 5y5 � is fully determined except for some de-
generate sequences (see Sturm [17]). Once 5y5 � is known,5 can be extracted from it by Cholesky factorization.

4 Self-calibration from only 2 views?

Is it still possible to use self-calibration in the case where
only two views are present? It is clear that in the strict sense
self-calibration will not yield a unique solution. Imposing
equality of the 5 internal camera parameters for both views
doesn’t give enough constraints to solve the self-calibration
problem (3 affine and 5 intrinsic parameters).

On the other hand several constraints are still available
and these can help solving the calibration. In this para-
graph it will be shown that with a little extra information it
is possible to retrieve the full calibration of the camera from
only two views. This extra information can consist of con-
straints on the internal camera parameters or from external
constraints like parallelism or right angles in the scene. Of-
ten some of these constraints can be obtained without user
interaction.

4.1 Projective calibration

The projective part causes no problem. The same ap-
proach can be followed as in paragraph 3.1 yielding two
camera projection matrices determined up to a projective
transformation. The affine and the metric part are more in-
volved and will be discussed in the following paragraphs.

4.2 Affine calibration

For a pair of images only one modulus constraint exists
(see paragraph 3.2) which is not enough to locate uniquely
the plane at infinity.

Some scenes contain parallel lines. These result in van-
ishing points in the images. Techniques have been proposed
to automatically detect such points [9]. To identify the plane
at infinity 3 of these are necessary. By using the modulus
constraint this number can be reduced by one. This reduc-
tion can be crucial in practice. For example in the castle
sequence (see figure 3) two vanishing points could be ex-
tracted automatically in all frames, not three. This is typical
for a lot of scenes where one vanishing point is extracted
for horizontal lines and one for vertical lines. Even when 3
candidate vanishing points are identified, the modulus con-
straint can still be very useful by providing a mean to check
the hypothesis.

When a vanishing point is identified in the two images it
can be used as follows to constraint the homography of the
plane at infinity: �)c£�$� & _¥¤�¦ �\�v+ (11)

This result in one linear equation for the coefficients of ¦
(from the 3 equations only 2 are independent due to the
epipolar correspondence of � + and � c and one is needed
to eliminate the unknown scale factor).



Figure 1. Example of sequence used for sim-
ulations (the views are represented by the im-
age axis and optical axis of the camera in the
different positions.)

With two known vanishing points we are thus left with a
one parameter family of solutions for &�u :& u �=& _¥¤YR � ¦ + _(¦ � U � (12)

Applying the modulus constraint is much easier than in the
general case. The coefficients ��q S � c S � + S � � (see equation 8)
can be evaluated for both ¦ + and ¦ � . The modulus constraint
in the two view case then takes on the following form:R ��� q R¢¦ + U _ � q R�¦ � UDU R ����+ R¢¦ + U _ ��+ R�¦ � UDU q� R ����c R�¦ + U _ ��c R�¦ � U7U q R ����� R¢¦ + U _ ��� R¢¦ � UDU � (13)

This results in a polynomial of degree 4 in only one vari-
able � (not degree 6 as Sturm anticipated [16] ). Therefore
at most 4 solutions are possible. Because equation 13 is
only a necessary condition for & u to be conjugated with a
scaled rotation matrix, this property should be checked out.
This can eliminate several solutions. If different solutions
subsist at this stage some can still be eliminated in the met-
ric calibration part.

4.3 Metric calibration

Once the affine calibration is known equation 10 can be
used. This results in a one parameter family of solutions
for 5y5 � . Additional constraints like some known aspect
ratio, perpendicularity of the image axes or scene orienta-
tions can be used to restrict 5y5 � to one unique solution.
If more than one affine calibration was still under consid-
eration, these constraints can also help out. Also the fact
that 5y5 � should be positive definite and that the principal
point should be more or less in the center of the image can
be used to find the true affine, and thus also metric, calibra-
tion.
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Figure 2. RMS error on the camera intrinsic
parameters for synthetic image sequences
(3 views: §\§ § , 6 views:- -, 10 views: @ )

5 Experiments

Experiments have been done on both real and syn-
thetic data. First the synthetic data give some insights
in the behavior of the method depending on the number
of views and the presence of noise. Then the feasibil-
ity of the method will be illustrated with some calibra-
tion/reconstruction work done on a real video sequence,

5.1 Simulations

The simulations were carried out on sequences of 3, 6
and 10 views. The scene consisted of 50 points uniformly
distributed in a unit sphere with its center at the origin. For
the calibration matrix the canonical form 5��-/ was cho-
sen. The views were taken from all around the sphere and
were all more or less pointing towards the origin. An exam-
ple of such a sequence can be seen in figure 1.

The scene points were projected into the images. Gaus-
sian noise with an equivalent standard deviations of 0, 0.1,
0.2, 0.5, 1 and 2 pixels for ¨ 909 �(¨ 9©9 images was added
to these projections. For every sequence length and noise
level ten sequences were generated. The self-calibration
method proposed in this paper was carried out on all these
sequences. The results for the camera intrinsic parameters
were compared with the real values and the RMS error is
shown in figure 2.

When 6 or 10 views were used the accuracy was very
good, even for high amounts of noise (around 1% error for
2 pixels noise). For only 3 views the method gives good
results for small amounts of noise, but the error grows when



Figure 3. Some of the Images of the Arenberg
castle which were used for self-calibration

more noise is added. This is due to the fact that in the 3 view
case no redundancy is present in the equations.

The method almost always converges without problems.
Only in the 3 view case the method regularly ends up in
an erroneous solution (3 polynomials of degree 4 can have
up to 64 possible solutions). By checking the fact that the
modulus constraint is indeed satisfied and that the solution
for 5y5 � is positive definite these problems could be re-
duced. But still around 
 9«ª of the 3 view sequences ended
up in a wrong minimum. For the 3 view case only the exper-
iments reaching the correct solution were taken into account
to calculate the RMS error.

5.2 A real video sequence

In this paragraph results obtained from a real sequence
are presented. The quality of the calibration can be evalu-
ated by looking at the reconstruction. The sequence consists
of images of the Arenberg castle in Leuven (see Figure 3).
These were recorded with a video camera. The approach
for the calibration and reconstruction was the following:¬ First a projective calibration of the sequence was

obtained together with a reconstruction of the cor-
ners matched throughout (a part of) the sequence.
A method similar to that presented by Beardsley et
al [2] was used.¬ Next, the projective ambiguity on the geometry was
reduced to affine. This was achieved by identify-
ing the plane at infinity with the generalized modulus
constraint.¬ Using equation 10 the intrinsic parameters were ob-
tained and the reconstruction was upgraded to metric.

Figure 4. Orthographic views of reconstruc-
tion (notice parallelism and orthogonality)

¬ The method of Koch [8] and Proesmans et al [14]
were used to obtain a dense correspondence map.¬ This map was used together with the metric camera
projection matrices to generate the reconstruction.
One of the images is used as texture map.

In figure 4 one can see 3 orthographic views of the re-
constructed scene. Parallelism and orthogonality relation
clearly have been retrieved. Look for example at the
right angles in the top view or at the rectangular windows.
Figure 5 contains some perspective views of the reconstruc-
tion. The inaccuracies left in the reconstruction are due to
triangulation effects and innacuracy of the disparity map.
This however has nothing to do with the accuracy of the
calibration.

6 conclusion

In this paper a stratified approach to self-calibration has
been proposed. Starting from point correspondences first
the projective calibration is obtained, then affine and finally
metric. The metric camera projection matrices can then be
used with a correspondence map to obtain a dense recon-
struction. This was illustrated with a real video sequence.

The results are quite satisfactory but can still be im-
proved. A possible way of doing this is by appending a non-
linear refinement method at the end of the self-calibration



Figure 5. Perspective views of reconstruction

method. Also imposing some constraints like the absence
of skew or a known aspect ratio can be expected to improve
the accuracy.

Some ideas were proposed to combine geometric con-
straints with internal and external constraints. These were
developed for the 2 view case where not enough geometric
constraints are available for pure self-calibration. A lot of
work remains to be done in this area.
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