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Abstract. In this paper we address the problem of uncalibrated structure and
motion recovery from image sequences that contain dominant planes in some of
the views. Traditional approaches fail when the features common to three con-
secutive views are all located on a plane. This is, however, a situation that is often
hard to avoid in man-made environments. We propose a complete approach that
detects the problem and defers the computation of parameters that are ambiguous
in projective space (i.e. the registration between partial reconstructions only shar-
ing a common plane and poses of cameras only seeing planar features) till after
self-calibration. Also a new linear self-calibration algorithm is proposed that cou-
ples the intrinsics between multiple subsequences. The final result is a complete
metric 3D reconstruction of both structure and motion for the whole sequence.
Experimental results on real image sequences show that the approach yields very
good results.

1 Introduction

There has been a lot of progress in uncalibrated structure and motion (USaM) recovery
over the last decade. Faugeras [3] and Hartley et al. [9] have shown that starting from
an uncalibrated image pair a projective reconstruction was possible. The use of robust
statistics for the computation of the epipolar geometry made it possible to obtain good
results on real image data [27, 21]. These approaches were later extended to image se-
quences (e.g. [2, 15]). In parallel with these developments the possibility to upgrade a
projective reconstruction to metric (i.e. Euclidean up to scale) based on constraints on
the intrinsics was shown [4]. Over the years many different methods have been pro-
posed for constant [11, 16, 24] and varying intrinsics [17]. Therefore, starting from an
uncalibrated image sequence it became possible to retrieve a metric 3D reconstruction.
Compared to the more traditional structure and motion recovery approaches where the
camera is calibrated separately, USaM recovery offers an important increase in flexibil-
ity.

However, an important –but often ignored– problem of the uncalibrated approach
is that it breaks down in the case of a planar scene. The relative pose between views
can not be determined when all common features are located in a plane. In fact this is
a specific case of the more general problem of critical surfaces (e.g. [12]). However,
other cases are much less probable to be encountered in practice. Recently, there has



been quite some work on dealing with planes in USaM recovery. Liu et al. [14] and
Bartoli et al. [1] looked at architectural scenes containing planes. Note, however, that
these techniques require multiple planes or general structure and would therefore fail on
the cases treated by this paper. Another interesting approach was proposed by Rother
and Carlsson [19]. In this case a linear solution is obtained when a single plane can be
seen in all views. Nevertheless, in each view at least two points not located on the plane
are required.

In fact, the work that comes closest to solving the problem was carried out by Torr et
al. In [23] a robust model selection criterion to differentiate between general 3D struc-
ture and planar structure was proposed. This allows to automatically identify the views
where the structure is not sufficiently general and to deal with them accordingly (i.e.
estimating a homography instead of the epipolar geometry). Although some possibili-
ties were sketched on how this could be used to solve the planarity induced ambiguities
in the recovery of USaM, the paper mostly focuses on the model selection and feature
tracking issues. No general solution is provided to solve the ambiguity between the
structure and motion of subsequences only sharing a single plane.

The main subject of this paper consists of proposing a complete approach to uncali-
brated structure and motion recovery that can deal with dominant planes. The approach
starts by extending the work by Torr et al. [23] to the 3-view case (which is neces-
sary as will be seen later) so that the difference can be made between subsequences
observing sufficiently general structure and subsequences where the tracked features
are all located on a single plane. The next step consists of independently recovering
the projective structure of the different 3D subsequences. Then the reconstruction for
the 3D subsequences is extended with the reconstruction of the planes. Once this is
done self-calibration is used to recover the metric structure. To improve the accuracy
and robustness the approach couples the intrinsics between the different subsequences.
This is especially important to allow successful self-calibration of shorter subsequences.
These results are refined using a bundled adjustment that couples the intrinsics for all
the subsequences. At this stage a pose estimation algorithm can be used to determine
the motion of the camera over the planar parts. The different parts are also assembled
(by aligning the overlapping planes). Finally, a global bundle adjustment is carried out
to obtain a maximum likelihood estimation of the metric structure and motion for the
whole sequence.

The paper is organized as follows. In the next section a traditional uncalibrated
structure and motion approach is reviewed. Then, the problem caused by dominant
planes is described and the approach for detecting the problem is described. The actual
approach to solve it is described in Section 5 (partial projective USaM recovery), Sec-
tion 6 (coupled self-calibration) and Section 7 (complete metric SaM recovery). In the
final sections results and conclusions are presented.

1.1 Notations

Points are represented by homogeneous 4-vectors
�

in 3-space, and by homogeneous
3-vectors � in the image. A plane is represented by a homogeneous 4-vector � and a
point
�

is on a plane if � � ����� . A point
�

is mapped to its image � through perspective
projection, represented by a �
	�� projection matrix  as ���� � . The symbol �



indicates equality up to a non-zero scale factor. In a metric coordinate system the matrix can be factorized in intrinsic and extrinsic camera parameters:  ����� ����� where
the upper-triangular matrix

�
is given by the following equation:��� ���� ��!" �$# %'&( (1)

with
�

the focal length (measured in pixels), " the aspect ratio, ) !+*,#.- the coordinates
of the principal point and

�
a factor that is zero when the pixels are rectangular. To

deal with radial distortion, the perspective projection model is extended to
�0/ ) � �����1� -

with
/ ) � 243 % � � - � � 243654� � and

587:9;� ) %=<�> 9 "@? <A> ? "CB - and "@? ��2 ? < 3 ? and
> 9 and

> ? are parameters of radial distortion. The fundamental matrix D and the two
image homography E , are both �F	$� homogeneous matrices. A point � located in the
plane corresponding to the homography E is transferred from one image to the other
according to �'GH�IE;� . A more complete description of these concepts can be found
in [10].

2 General projective structure and motion recovery

Starting from an uncalibrated image sequence the first step consists of relating the dif-
ferent images to each other. This is not an easy problem. In general a restricted number
of corresponding points is sufficient to determine the epipolar geometry between the im-
ages. Since not all points are equally suited for matching (e.g. pixels in a homogeneous
region), the first step consist of selecting feature points [8] that are suited for automated
matching. Features of consecutive views are compared and a number of potential corre-
spondences are obtained. From these the epipolar geometry can be computed. However,
the initial set of corresponding points is typically contaminated with an important num-
ber of outliers. In this case, a traditional least-squares approach will fail and therefore a
robust method is used [21, 27, 5]. Once the epipolar geometry has been obtained it can
be used to guide the search for additional correspondences. These can then in turn be
used to further refine the epipolar geometry.

The relation between the views and the correspondences between the features can
then be used to retrieve the structure of the scene and the motion of the camera. The
approach that is used is related to [2] but is fully projective and therefore not depen-
dent on any approximation. This is achieved by strictly carrying out all measurements
in the images, i.e. using only reprojection errors. At first two images are selected and
an initial projective reconstruction frame is set-up [3, 9]. Then the pose of the cam-
era for the other views is determined in this frame and for each additional view the
initial reconstruction is refined and extended. Once the structure and motion has been
determined for the whole sequence, the results is refined through a projective bundle
adjustment [26]. To minimize the presence of a consistent bias in the reconstruction,
this bundle adjustment takes into account radial distortion (around the image center).
Then the ambiguity is restricted to metric through self-calibration. A modified version
of [17] is used (see Section 6. Finally, a metric bundle adjustment is carried out to obtain
an optimal estimation for both structure and motion.



3 Problems with planes

The projective structure and motion approach described in the previous section assumes
that both motion and structure are general. When this is not the case, the approach
can fail. In the case of motion this will happen when the camera is purely rotating.
A solution to this problem was proposed in [23]. Here we will assume that care is
taken during acquisition to not take multiple image from the same position so that this
problem doesn’t occur.

Scene related problems occur when (part of) the scene is purely planar. In this case
it is not possible anymore to determine the epipolar geometry uniquely. If the scene is
planar, the image motion can be fully described by a homography. Since D �J� K G �,L E
(with

� K G �ML the vector product with the epipole
K G ), there is a 2 parameter family of

solutions for the epipolar geometry. In practice robust techniques would pick a random
solution based on the inclusion of some outliers.

Assuming we would be able to detect this degeneracy, the problem is not com-
pletely solved yet. Obviously, the different subsequences containing sufficient general
3D structure could be reconstructed separately. The structure of subsequences contain-
ing only a single plane could also be reconstructed as such. These planar reconstructions
could then be inserted into the neighboring 3D projective reconstructions. However,
there remains an ambiguity on the transformation relating two 3D projective recon-
struction sharing a common plane. The plane shared by the two reconstructions can be
uniquely parameterized by three 3D points ( �N	O� parameters) and a fourth point in the
plane (2 free parameters) to determine the projective basis within the plane. The ambi-
guity therefore has 15-11=4 degrees of freedom. An illustration is given on the left side
of Figure 1. Note also that it can be very hard to avoid this type of degeneracy as can be
seen from the right side of Figure 1. Many scenes have a configuration similar to this
one.

4 Detecting dominant planes

The first part of the solution consists of detecting the cases where only planar features
are being matched. The Geometric Robust Information Criterion (GRIC) model selec-
tion approach proposed in [22] is briefly reviewed. The GRIC selects the model with the
lowest score. The score of a model is obtained by summing two contributions. The first
one is related to the goodness of the fit and the second one is related to the parsimony
of the model. It is important that a robust Maximum Likelihood Estimator (MLE) be
used for estimating the different structure and motion models being compared through
GRIC. GRIC takes into account the the number of P of inliers plus outliers, the residu-
als QCR , the standard deviation of the measurement error S , the dimension of the data " ,
the number

>
of motion model parameters and the dimension T of the structure:

GRIC
�AU V )WQ ?R - < )WP:TYX1Z[) " - <\> X1Z[) " P -,-^] (2)

where
V )WQ ? - V )_Q ? - ��`Fa Zcb Q ?S ? *ed ) "gf T -ihj] (3)
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Fig. 1. Left: Illustration of the four-parameter ambiguity between two projective reconstructions
sharing a common plane. If the base of the cube is shared, a projective transformation can still
affect the height of the cube and the position of the third vanishing point. Right: A fundamental
problem for many scenes is that it is not possible to see A,B and C at the same time and therefore
when moving from position 1 to position 3 the planar ambiguity problem will be encountered.

In the above equation P:TYX1Z[) " - represents the penalty term for the structure having P
times T parameters each estimated from " observations and

> XkZl) " P - represents the
penalty term for the motion model having

>
parameters estimated from " P observations.

For each image pair GRIC )WD - and GRIC )_E - can be compared. If GRIC )_E - yields
the lowest value it is assumed that most matched features are located on a dominant
plane and that a homography model is therefore appropriate. On the contrary, when
GRIC )WD - yields the lowest value one could assume, as did Torr [23], that standard pro-
jective structure and motion recovery could be continued. In most cases this is correct,
however, in some cases this might still fail. An illustration of the problem is given on
the left side of Figure 2 where both D 9 ? and D ?em could be successfully computed, but
where structure and motion recovery would fail because all features common to the
three views are located on a plane. Estimating the pose of camera 3 from features re-
constructed from views 1 and 2 or alternatively estimating the trifocal tensor from the
triplets would yield a three-parameter family of solutions. However, imposing recon-
struction 1–2 and reconstruction 2–3 to be aligned (including the center of projection
for view 2) would reduce the ambiguity to a one-parameter family of solutions. This
ambiguity is illustrated on the right side of Figure 2. Compared to the reference frame
of cameras 1 and 2 the position of camera 3 can change arbitrarily as long as the epipole
in image 2 is not modified (i.e. motion along a line connecting the center of projections
of image 2 and 3). Since intersection has to be preserved and the image of the common
plane also has to be invariant, the transformation of the rest of space is completely de-
termined. Note –as seen in Figure 2– that this remaining ambiguity could still cause an
important distortion.
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Fig. 2. Left: Although each pair contains non-coplanar features, the three views only have copla-
nar points in common. Right: Illustration of the remaining ambiguity if the position of the center
of projection for view 2 corresponds for structure 1–2 and 2–3.

For the reason described above we propose to use the GRIC criterion on triplets of
views ( " �on ). On the one hand we have GRIC(PPP) based on a model containing
3 projection matrices (up to a projective ambiguity) with

> � �^	 %p% f %rq � %ts
and T � � (note that using a model based on the trifocal tensor would be equivalent),
on the other hand we have GRIC(HH) based on a model containing 2 homographies
with

> � d 	 s � % n and T � d . To efficiently compute the MLE of both PPP and
HH the sparse structure of the problem is exploited (similar to bundle adjustment). We
can now differentiate between two different cases: Case A: GRIC(PPP) u GRIC(HH):
three views observe general 3D structure. Case B: GRIC(PPP) v GRIC(HH): common
structure between three views is planar.

Note that in addition, one should verify that a sufficient number of triplets remain
(say more than

q �
) to allow a reliable estimation. When too few points are seen in com-

mon over three views, the sequence is also split up. In a later stage it can be reassembled
(using the procedure laid out in Section 7). This avoids the risk of a (slight) change of
projective basis due to an unreliable estimation based on too few points. Note that it is
important to avoid this, since this would mean that different transformations would be
required to bring the different parts of the recovered structure and motion back to a met-
ric reference frame. In practice this causes self-calibration to fail and should therefore
be avoided.

5 Partial projective structure and motion recovery

The sequence is first traversed and separated in subsequences. For subsequences with
sufficient 3D structure (case A) the approach described in Section 2 is followed so that
the projective structure and motion is recovered. When a triplet corresponds to case B,
only planar features are tracked and reconstructed (in 2D). A possible partitioning of an
image sequence is given in Table 1. Note that the triplet 3-4-5 would cause an approach
based on [23] to fail.

Suppose the plane � is labeled as a dominant plane from view w on based on features
tracked in views )xw f % * w * w <y% - . In general, some feature points

�.z
located on � will



case AABAABBBBBAAA
3D PPPP PPPPP
2D HH HHHHHH
3D PPPP

FFFFFFHHHHFFFF

Table 1. Example on how a sequence would be partitioned based on the different cases obtained
in the model selection step. Underlined F correspond to cases that would not be dealt with appro-
priately using a pairwise analysis.

have been reconstructed in 3D from previous views (e.g. w and )xw f % - ). Therefore,
the coefficients of � can be computed from

� �z � �{� . Define | z as the right null
space of � � ( �}	
� matrix). | z represents 3 supporting points for the plane � and let~ z8� 8R_| z be the corresponding image projections. Define the homography E^R z��~ 7�9z , then the 3D reconstruction of image points located in the plane � are obtained as
follows: � R � | z E R z � R (4)

Similarly, a feature ��� seen in view ��),v\w - can be reconstructed as:� � � | z E$R z )WE z R�� - 7�9 ��� (5)

where E z R�� � E z RW�kR1� 9M� ]t]�] E z ��� 7�9,� � .
6 Coupled self-calibration

Once the projective structure and motion has been computed for each subsequence,
standard self-calibration approaches could be used on the subsequences. However, some
of these could be too short to obtain good results.

In this section a self-calibration approach is proposed that couples the camera in-
trinsics for the different subsequences containing general 3D structure. The approach
is based on the approach proposed in [17], but was adapted to better reflect a priory
expectations for the unknowns. The approach is based on the projection equation for
the absolute quadric [24]: �$� � ������t � (6)

where � � represents the absolute quadric. In metric space � � � diag ) % * % * % * � - , in
projective space � � is a ��	�� symmetric rank 3 matrix representing an imaginary
disc-quadric. By transforming the image so that a typical focal length (e.g. 50mm)
corresponds to unit length in the image and that the center of the image is located at
the origin, realistic expectations for the intrinsics are X1���') ��- � X1����) % -l� X1����)_� - (i.e.

�
is typically in the range

� %C�
mm
* %Cq �

mm
�
), " �A�W�r� ) % -�� Xk�p��) % ] % -�*�! ��� � � ] % *,# �A� �� ] % *e� ���

. These expectations can be used to obtain a set of weighted self-calibration



equations from Equation (6):9�e���r� 9 � � �¡9 � f � m � � � m � ¢ ��� 9£t¤ 9 ���t� 9 � � � ? � ¢ ���9�e� �r� ? � � � ? � f � m � � � m � ¢ ��� 9£t¤ 9 � �t� 9 � � � m � ¢ ���9£t¤ ? � �r� 9 � � �¡9 � f � ? � � � ? � ¢ ��� 9£t¤ £ 9 � �t� ? � � � m � ¢ ��� (7)

where � R is the w -th row of a projection matrix and ¥ a scale factor that is initially set
to 1 and later on to � m ¦� � � m � with ¦� � the result of the previous iteration. In practice
a few iterations are sufficient. Experimental validation has shown that this approach
yields much better results than the original approach described in [17]. This is mostly
due to the fact that constraining all parameters (even with a small weight) allows to
avoid most of the problems due to critical motion sequences [20, 13] (especially the
specific additional case for the linear algorithm [18]).

When choosing  �§� ¨�© ª�� for one of the projection matrices it can be seen from
Equation (6) that � � can be written as:� � ��« �$� �^¬¬ � '® (8)

Now the set of equations (7) can thus be written as:¯±°³²µ´ ��·¶« ¬  ® &( (9)

where
¶

is a vector containing 6 coefficients representing the matrix
�$� �

,
¬

is a
3-vector and


a scalar and

°
and
²

are matrices containing the coefficients of the
equations. Note that this can be done independently for every 3D subsequence.

If the sequence is recorded with constant intrinsics, the vector
¶

will be common to
all subsequences and one obtains the following coupled self-calibration equations:

�¸¸¸� ° 9 ² 9 ª�¹t¹�¹ºª° ? ª ² ? ¹t¹�¹ºª
...

...
...

...
...°N» ª ª�¹t¹�¹ ²0»
&½¼¼¼(
�¸¸¸¸¸¸¸¸¸¸¸�
¶« ¬ 9 9 ®« ¬ ? ? ®
...« ¬ »�» ®

&½¼¼¼¼¼¼¼¼¼¼¼( (10)

As will be seen in the experiments this approach is very successful. The most important
feature is that through the coupling it allows to get good results even for the shorter sub-
sequences. For each subsequence a transformation to upgrade the reconstruction from
projective to metric can be obtained from the constraint ¾¿RÀ� �R ¾ �R � diag ) % * % * % * � -
(through Cholesky factorization). This result is then further refined through a metric
bundle adjustment that also couples the intrinsics of the different subsequences.



7 Combined metric structure and motion recovery

Now that the metric structure of the subsequences has been recovered, the pose of the
camera can also be determined for the viewpoints observing only planar points. Since
the intrinsics have been computed, a standard pose estimation algorithm can be used.
We use Grunert’s algorithm as described in [7]. To deal with outliers a robust approach
was implemented [5].

Finally, it becomes possible to align the structure and motion recovered for the
separate subsequences based on common points. Note that these points are all located
in a plane and therefore some precautions have to be taken to obtain results using linear
equations. However, since 3 points form a basis in a metric 3D space, additional points
out of the plane can easily be generated (i.e. using the vector product) and used to
compute the relative transform using linear equations. Here again a robust approach is
used.

Now that all structure and motion parameters have been estimated for the whole
sequence. A final bundle adjustment is carried out to obtain a globally optimal solution.

8 Results

In this section results of our approach on two real image sequences are shown. The
first image sequence was recorded from a corner of our institute. The corner sequence
contains 64 images recorded using a Sony TRV900 digital camcorder in progressive
scan mode. The images therefore have a resolution of

� d � 	 q�� n (PAL). Some of the
images are shown in Figure 3. Note that the images contain quite some radial distortion.

Fig. 3. Some of the 64 images of the corner sequence.



In Figure 4 the GRIC values are given for D and E as well as for 88 and E$E . It
can clearly be seen that –besides dealing with additional ambiguities– the triplet based
analysis in general provides more discriminant results. It is also interesting to note that
triplet 34-35-36 is clearly indicated as containing sufficiently general structure for the
triplet-based approach while the pair-based approach marginally prefers to use the plane
based model. The USaM approach reconstructs the structure for this triplet (including
some points seen in the background of the lower left picture of Figure 3) and success-
fully integrates them with the rest of the recovered structure and motion. Figure 5 shows
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Fig. 4. Left: GRIC(F) (solid/black line) and GRIC(H) (dashed/blue line). Right: GRIC(PPP)
(solid/black line) and GRIC(HH) (dashed/blue line).

results for different stages of our approach. At the top-left the recovered metric structure
and motion for the two subsequences that contain sufficiently general structure is given
(after coupled self-calibration). Then, both structure and motion are extended over the
planar parts. This can be seen in the middle-left part of the figure. At the bottom-left the
complete structure and motion for the whole sequence is shown after bundle adjustment.
On the right side of the figure orthogonal top and front views are shown.

The second sequence consists of 150 images of an old farmhouse. It was recorded
with the same camera as the first sequence. In Figure 6 the GRIC values are plotted
and for some of them the corresponding images are shown. As can be seen the ap-
proach successfully discriminates between the planar parts and the others. In Figure 7
the computed structure and motion is shown. In Figure 8 some views of a dense textured
3D model are shown. This model was obtained by computing some depth maps using
a stereo algorithm and the obtained metric structure and motion. Note that the whole
approach from image sequence to complete 3D model is fully automatic.

9 Conclusion

In this paper we have presented an approach that successfully deals with dominant
planes in uncalibrated structure and motion recovery. This is an important problem that



Fig. 5. Left: different stages of the structure and motion recovery, Right: orthogonal views of the
final result.

limited the practical applicability of uncalibrated approaches, especially in man-made
environments. The solution proposed in this paper yields very good results on real im-
age sequences. The approach uses the Geometric Robust Information Criterion to detect
if features seen in common by three views are all in a plane. Subsequences contain-
ing sufficiently general structure are reconstructed and then extended with the planar
parts. A new linear self-calibration algorithm couples the intrinsics between the differ-
ent subsequences so that even for short sequences good results can be obtained. Once
the reconstruction has been upgraded to metric, the pose is estimated for the cameras
observing planar parts and the reconstructions for the different subsequences are assem-
bled. Finally a global bundle adjustment provides an optimal estimate of both structure
and motion. A key factor for the success of the proposed approach is the consistent
use of robust maximum likelihood estimation through efficient bundle adjustment and
robust estimation (i.e. RANSAC) at most of the stages of the computations.
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zur Hauptaufgabe der Photogrammetrie. PhD Thesis, Fakultät für Bauwesen, Technische Uni-
versityät München, Germany, 1953.

13. F. Kahl, B. Triggs, K. strm, “Critical Motions for Auto-Calibration When Some Intrinsic
Parameters Can Vary”, Journal of Mathematical Imaging and Vision 13,131-146,2000.

14. Y. Liu, H.-T. Tsui and A. Heyden, “3D Reconstruction of Buildings from an Uncalibrated
Image Sequence – A Scene Based Strategy”, Proc. Virtual and Augmented Architecture
(VAA’01), pp. 231–242, Springer-Verlag, 2001.

15. D. Nister, Automatic Dense Reconstruction from Uncalibrated Video Sequences, Ph. D. dis-
sertation, Dept. of Numerical Analysis and Computing Science, KTH Stockholm, 2001.

16. M. Pollefeys and L. Van Gool, “Stratified Self-Calibration with the Modulus Constraint”,
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol 21, No.8, pp.707-724,
1999.

17. M. Pollefeys, R. Koch and L. Van Gool. “Self-Calibration and Metric Reconstruction in spite
of Varying and Unknown Internal Camera Parameters”, International Journal of Computer



Fig. 8. Textured 3D model of the farmhouse

Vision, 32(1), 7-25, 1999.
18. M. Pollefeys, Self-calibration and metric 3D reconstruction from uncalibrated image se-

quences, Ph.D. Thesis, ESAT-PSI, K.U.Leuven, 1999.
19. C. Rother and S. Carlsson. “Linear Multi View Reconstruction and Camera Recovery”, Proc.

Eight IEEE International Conference on Computer Vision, pp. 42-49 ,2001.
20. P. Sturm. “Algorithms for Plane-Based Pose Estimation” IEEE Conference on Computer

Vision and Pattern Recognition, pp.1010-1017, June 2000.
21. P. Torr, Motion Segmentation and Outlier Detection, PhD Thesis, Dept. of Engineering Sci-

ence, University of Oxford, 1995.
22. P. Torr. “An assessment of information criteria for motion model selection”. In CVPR97,

pages 47–53, 1997.
23. P. Torr, A. Fitzgibbon and A. Zisserman, “The Problem of Degeneracy in Structure and

Motion Recovery from Uncalibrated Image Sequences”, International Journal of Computer
Vision, vol. 32, no. 1, pages 27-44, August, 1999.

24. B. Triggs, “The Absolute Quadric”, Proc. 1997 Conference on Computer Vision and Pattern
Recognition, IEEE Computer Soc. Press, pp. 609-614, 1997.

25. B. Triggs, “Autocalibration from planar scenes”, Computer Vision – ECCV’98, vol.1, Lecture
Notes in Computer Science, Vol. 1406, Springer-Verlag, pp 89-105, 1998.

26. B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon. “Bundle adjustment – A modern
synthesis”. In B. Triggs, A. Zisserman, and R. Szeliski, editors, Vision Algorithms: Theory
and Practice, LNCS, pages 298–375. Springer Verlag, 2000.

27. Z. Zhang, R. Deriche, O. Faugeras and Q.-T. Luong, “A robust technique for matching two
uncalibrated images through the recovery of the unknown epipolar geometry”, Artificial Intel-
ligence Journal, Vol.78, pp.87-119, October 1995.


