Do ambiguous reconstructions always give ambiguous images?
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Abstract

In many cases self-calibration is not able to yield a unique
solution for the 3D reconstruction of a scene. This is due
to the occurrence of critical motion sequences. If this is
the case, an ambiguity is left on the reconstruction. In this
paper it is derived under which conditions correct novel
views can be generated from ambiguous reconstructions.
The problem is first approached from a theoretical point of
view. It is proven that novel views are correct as long as the
inclusion of the new view in the sequence yields the same
ambiguity on the reconstruction. The problem is therefore
much related to the problem of critical motion sequences
since the virtual camera can be arbitrarily moved within
the smallest critical motion set that contains the recovered
camera motion without distortions becoming visible. Based
on these result a practical measure for the expected ambi-
guity on a novel view based on the recovered structure and
motion is derived. As an application a viewer was built that
indicates if a specific novel view can be trusted or not by
changing the background color.

1. Introduction

One of the important applications in computer vision is to
retrieve the 3D structure of a scene from a collection of
images. However, depending on the available knowledge
and the images at hand, it is not always possible to obtain a
unique solution for this problem. One well known ambigu-
ity is when the observed features and the projection centers
of the camera are all located on a special type of surface,
called a critical surface [11]. Another well-known ambigu-
ity is that when totally uncalibrated cameras are used, it is
only possible to recover the structure of the scene up to an
arbitrary projective transformation [1, 3]. It is possible to
reduce this ambiguity by imposing constraints on the intrin-
sic parameters of the camera. This is in general understood
as self-calibration. In recent years many different methods
were proposed. Some are based on the assumptions that the
intrinsics do not change during acquisition [2, 4, 13, 18].
Other method relax the constraint for constant intrinsics
but require the knowledge of one or more intrinsic param-
eters [5, 7, 14]. It was proven that for sufficiently general

motion the knowledge of one intrinsic camera parameter is
sufficient to allow for successful self-calibration [14, 8].

However, in practice the motion of the camera is often
restricted and there remains an ambiguity on the reconstruc-
tion. This is known as the problem of critical motion se-
quences (CMS). It was introduced by Sturm [15] and fur-
ther studied in [9, 10, 17, 12]. Depending on the constraints
available for self-calibration different classes of motions
can be identified as critical. For each of these classes a spe-
cific ambiguity remains on the reconstruction.

It depends on the application if some ambiguity is ac-
ceptable or not. There are two main classes of applications
for 3D reconstructions from images. The first one consists
of metrology applications and in most cases no ambiguity
can be tolerated. The second type of applications consists
of visualization. In this case the goal is to generate novel
views based on original images. Over the last years this
second type of applications has received more and more at-
tention. Image-based modeling of 3D objects or scenes has
become a major topic in both computer vision and com-
puter graphics. Considering this application the important
point is not the correctness of the reconstruction, but the
correctness of the novel views that are generated from it.
This problem was already partially addressed in [10], but
only theoretically, for constant intrinsics and using a more
restricted case by case analysis.

In this paper a general theorem is derived that allows
to determine which motion a virtual camera can undergo
to generate unambiguous novel views given the recovered
(ambiguous) motion of the original camera. Further on, a
practical algorithm is presented that allows to characterize
the ambiguity on a novel view. This was used in a number of
synthetic experiments to verify the validity of the theorem
on some restricted motion sequences and to derive some
more insight into this problem. This algorithm was also
included into a 3D viewer that tells the user in how far he
can trust a specific view based on the poses of the original
cameras (and the applicable constraints on the intrinsics).
This could for example be used to optimize fly-throughs of
virtual worlds containing visual 3D reconstructions.



2. Background

Some familiarity with the projective formulation of vision
geometry is assumed [6]. A perspective camera is mod-
eled through the projection equation m ~ PM where ~
represents the equality up to a non-zero scale factor, M =
[XY Z1]7 represents a 3D world point, m = [z y 1] " rep-
resents the corresponding 2D image pointand P isa 3 x 4
projection matrix. In a metric or Euclidean frame P can be
factorized as follows

f s wu
P = KR '[I|-t] where K = rf w (1)
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contains the intrinsic camera parameters, R is a rotation
matrix representing the orientation and t is a 3-vector rep-
resenting the position of the camera. The intrinsic camera
parameters f represent the focal length measured in width
of pixels, 7 is the aspect ratio of pixels, (u, v) represents the
coordinates of the principal point and s is a term accounting
for the skew. In general s can be assumed zero. In practice,
the principal point is often close to the center of the image
and the aspect ratio r close to one.

Projective geometry only encodes cross-ratios and inci-
dence. The affine structure (parallelism and ratios of par-
allel lengths) is encoded by defining the plane at infinity
II. Euclidean structure (lengths and angles) is encoded by
a proper virtual conic on II,. The simplest way to represent
this absolute conic is by its envelope, i.e. a disc-quadric
represented by a 4 x4 symmetric positive semidefinite rank-
3 matrix Q*. In a metric frame Q* = diag(1,1,1,0).
The null-space of Q* is the plane at infinity I, and thus
Q*s = 0. The similarities or metric transformations (i.e.
Euclidean plus a global scale-factor) are exactly the trans-
formations that leave the absolute conic unchanged. The
following abbreviations will be used repeatedly throughout
the text AC for Absolute Conic and IAC for Image of the
Absolute Conic.

The AC is the central concept for self-calibration. Lo-
calizing the AC in a projective frame allows to upgrade
this frame to a metric one. Since it is invariant to rigid
displacements, the IAC is only depending on the intrinsic
calibration and not on the extrinsic parameters (i.e. camera
pose). Constraints on the intrinsic camera parameters can
thus be translated to constraints on the IAC. These can then
be back-projected to constraints on the AC. In general it is
then possible to single out the absolute conic by combin-
ing sufficient constraints from different views, i.e. at least
8 equations are needed. It was shown that this was possible
imposing only the rectangularity of pixels [14].

The self-calibration approach can be formulated as fol-
lows. If P represents the set of camera projection matrices
for an image sequence, then the AC, represented by its enve-
lope Q*, can be found as the proper virtual conic for which

for every P € P there exists a valid K satisfying the self-
calibration constraints so that

PO*PT ~KK' . )

The problem is, however, that for a specific set of self-
calibration constraints, not all motion sequences will yield
a unique solution for the AC. In this case there is more than
one potential absolute conic and the motion sequence is
termed critical with respect to the set of constraints. The
set of potential absolute conic is defined as C(P). In this
case an ambiguity will persist on the reconstruction.

3. Theoretical analysis

The classification of all possible CMS for a specific set of
self-calibration constraints can be used to avoid critical mo-
tions when acquiring an image sequence on which one in-
tends to use self-calibration. In some cases, however, an
uncalibrated image sequence is available from which a met-
ric reconstruction of the recorded scene is expected. In this
case, it is not always clear, at first, what can be achieved nor
if the motion sequence is critical or not.

It can be shown that the recovered set of cameras also
has to satisfy the self-calibration constraints. This result is
also valid for CMS, where the recovered motion sequence
would be in the same CMS class as the original sequence.
In [16] a proof was given for the case of constant intrinsic
camera parameters. Here a simpler and more general proof
based on the disc quadric representation is given. It is valid
for all possible types of self-calibration constraints.

Lemma 1 (Conjugacy of self-calibration solutions)

Let P be a camera sequence and let ®* € C(P). Let T
be any projective transformation mapping ®* to Q* and let
P be the transformed sequence. Then Q* € C(P) and for
each W € C(P) it follows that the transformed T®*T" €
c(P).

Proof: Since ®* € C(P), it follows that for every P € P
the K obtained from

KK' ~Po*PT

must satisfy the self-calibration constraints. Since ®* ~
T-1Q*T~" and P = PT~, one gets

KK' ~ PQ*PT

and therefore Q* € C(P). The second claim is trivially
proven since (KK ' ~) PU*PT = P(TT*T")PT ge.d.

From this lemma one can conclude that any reconstruc-
tion (i.e. structure and motion) being a solution to the self-
calibration problem allows us to identify the ambiguity on
the reconstruction. In that case more specific algorithms



can be called or additional constraints can be brought in to
reduce the ambiguity [19]. In addition, the values for the
intrinsic camera parameters are not arbitrary. The pixels are
always rectangular and most often close to squares. The
principal point is in general close to the center of the image
and even the focal length can not take on arbitrary values.
On top of that one can impose that all the visible points must
be located in front of the camera (see [5]). This means that
even for CMS one will in general be able to do much better
than what could be expected from the CMS analysis.

Nevertheless, in some cases there will be an ambiguity
on the structure and motion reconstruction. An important
question is then: What can still be done with an ambigu-
ous reconstruction? An interesting answer is given by the
next theorem (a similar result was recently presented by
Ma [10]).

Theorem 1 (correctness of novel views within CMS)

Let P represent a CMS. Let ®* be an arbitrary element of
C(P) and let T be an arbitrary projective transformation
mapping ®* 1o O*. Let P be the transformed sequence. Let
Py represent a novel camera projection matrix for which
C(P UPy) = C(P). Then the corresponding projec-
tion matrix Py = PyT satisfies the self-calibration con-
straints.

Proof: From Q* € C(P), it follows that TQ*TT € C(P).
Since it is assumed that C(PUPy) = C(P), it follows that
Lemma 1 can be applied to the sequence P UPy, with the
dual quadric TQ*T T and the transformation T~!. q.e.d.

This theorem allows us to conclude that it is possible to
generate correct new views (i.e. with a virtual camera for
which the equivalent camera in the real world satisfies the
self-calibration constraints), even starting from an ambigu-
ous reconstruction. In this case, we should, however, restrict
the motion of the virtual camera to the type of the CMS
recovered in the reconstruction. For example, if a model
was acquired by a camera with constant intrinsic parame-
ters performing a planar motion on the ground plane and
thus rotating around vertical axes, then we should not move
the camera outside this plane nor rotate around non-vertical
axes. But, if we restrict our virtual camera to this critical
motion, then all these motions will correspond to Euclidean
motions in the real world and no distortion will be present
in the images (except, of course, for modeling errors). Note
that the recovered camera parameters should be used (i.e.
the ones obtained by factorizing P in K[RT |-RTt].), ex-
cept when some parameters are unconstraint in which case
these parameters are allowed to be varied. In fact, this result
is related to the more general rule that for the generation of
new views interpolation is more desirable than extrapola-
tion.

4. A practical approach

Self-calibration consists in general of estimating the posi-
tion of the absolute conic through the minimization of a
least-squares function

F(Q) = £(2) £(2) =) _ f:(2)* . 3)

The uncertainty ellipsoids around the estimate Q are given
by AQTITIAQ = k? with AQ an 8-vector representing

variations around €2, the matrix (.J;;) = ( gg’;i‘) is the Ja-
J

cobian of f(2) and k represents a certain level of certitude.
The axes of this ellipsoids are given by the eigenvectors of
Eq = JTJ and the lengths of the half-axes are given by
V/Aj with \; the eigenvalues of Eq.

These ellipsoids characterize the ambiguity on the 3D
reconstruction. However, in our case the goal is to char-
acterize the ambiguity on a specific view. Therefore, the
uncertainty ellipsoids have to be projected in that view. It
turns out that it is simpler to deal with the dual entities:

N ow\ ., [Ow T
Note that E, = E51 if Eq is of full rank. If Eq is not
of full rank, a good approximation is obtained by changing
the singular values smaller than a small preset number (e.g.
1079) to that number.

The ellipsoids corresponding to E,, give us the ambigu-
ity on the image of the absolute conic. This corresponds
to the variations in intrinsic camera parameters that could
occur due to the ambiguity on the 3D reconstruction. This
is not yet what we are looking for, since -as was shown in
Theorem 1- these two effects could cancel each other out.

In fact Eq could be seen as the equivalent of C(Sp) in
Theorem 1 since it contains the acceptable absolute conics.
When a virtual camera is set up to generate a novel view
it should clearly satisfy the self-calibration constraints with
respect to Q. The question is how well it would for other
elements of C(Sp). In other words one would like to ver-
ify if C(Sp U M) = C(Sp). A local approximation for
C(Sp U M) can be obtained by including constraints for
the novel view in the self-calibration minimization criterion
F(Q). This yields Eqny = J LI N

Since the purpose is to investigate the ambiguity in the
novel view, this comparison can be carried out on the pro-
jection of these sets in this view. The simplest approach to
compare two ellipsoids is to apply a transformation so that
one of the ellipsoids is transformed to unity. Applying the
same transformation to the other ellipsoid yields an ellip-
soid that can be seen as the ratio of the two other ellipsoids.
Thus if E,ny = CTC (obtain C through Cholesky fac-
torization), the comparing ellipsoid E «_ = C TE,C .
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Figure 1: Example of experimental setup. A sequence of 10
views consisting of orbital motion (type D) observed from
an arbitrary viewpoint (type G). The viewpoints are illus-
trated by little pyramids.

The eigenvectors of E_«_ yield the main directions of un-
certainty, the square root of the eigenvalues yields the rel-
ative uncertainty. As a global measure of ambiguity on a

view
a=S(/rx -1 ®)

can be used (with A« the eigenvalues of E_«_). Because
there is a direct mapping between w and the intrinsic cam-
era parameters, it is also possible to get an estimate of the
relative uncertainty of these parameters. It is thus possible
to get an idea of what type of distortion can be expected in
the novel views.

5. Synthetic experiments

This approach was applied to determine the dimensionality
of the ambiguity on novel views from 3D reconstructions
obtained from restricted motion sequences. The dimension-
ality can be estimated by counting the number of very large
eigenvalues of E_«_ for synthetic experiments. In Table 1
and Table 2 a few typical motion sequences were analyzed.
These different type of motions (i.e. pure translations, pure
rotations, planar motion, orbital motion, forward motion,
translations together with rotations along the optical axis
and general motions) are illustrated in Figure 2. The rows
correspond to the type of motion that was used for the re-
construction (10 views) and the columns to the motion for
the novel view. The setup is illustrated in Figure 1. The
number on the left of the vertical line corresponds to the
dimensionality of the ambiguity on the 3D structure and
should thus always be larger or equal to the ambiguity on
a specific view. In general observation from an arbitrary
viewpoint yields the same ambiguity as in 3D space, except
for constant intrinsic parameters and pure translations or
forward motion (Table 2) where a single extra view would
not be sufficient to guarantee unambiguous 3D reconstruc-
tion. The number in the table gives the dimensionality of
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Figure 2: Some restricted motion sequences (pure transla-
tion, pure rotation, planar motion, orbital motion, straight
forward, translation and rotation along optical axis).

the ambiguity. Notice that as predicted by the theorem the
diagonal elements are all zero.

6. A special viewer

As was already mentioned the presented approach can also
be used to determine the expected ambiguity for specific
views. We have incorporated the ambiguity evaluation algo-
rithm into a 3D viewer. While viewing a 3D reconstruction,
the user is informed of the expected ambiguity on the view.
Our implementation of this viewer shifts the background
color from green to red, depending on the ambiguity. We
used (8,1/1 — 82,0) with B = 1 — e~ V® as RGB-values
for the background color.

For testing purposes we have used the castle sequence
(see Figures 3). As was already mentioned in [12] self-
calibration leaves a large scaling ambiguity along the opti-
cal axis for the central viewpoint when assuming all param-
eters known except the focal length. For illustration pur-
poses the 3D model was scaled by a factor of 2 along this




motion type

A pure translation 1
B pure rotation 3
C planar motion 0
D orbital motion 0
E forward motion 2
F transl.& rot.opt.ax. 1
G general 0

cCOoO—~, oo WS P
O~ OO0 e ~lW
o~ DO S W—=N
(= N SR v
coo oo Oom
oo — oo wolm
S~ NNOoO o WA

Table 1: Ambiguities for novel views when all intrinsic pa-
rameters but the focal length are known

motion type

A pure translation 5
B pure rotation 3
C planar motion 1
D orbital motion 2
E forward motion 5
F transl.& rot.opt.ax. 1
G general 0

cCoo~ O Wl
O~ AN~ AW
o= A, owRAO
O~ SO WRIT
co o~ o nolm
co b — WM
S~ AN~ WwWRAAO

Table 2: Ambiguities for novel views when all intrinsic pa-
rameters are constant (but unknown)

ambiguity (i.e. this distortion would only cause a minimal
increase in residual for the self-calibration cost function),
so that the reader can visually verify the predictions of the
viewer.

A few views are shown in Figure 4 and Figures 5. It
should be clear that even some views very far away from
the originally recorded images can be rendered without risk
of ambiguity (green or lightviews), while some others that
are less far away are showing a lot of ambiguity (red or dark
views).

7. Conclusion

In many practical cases the motion of the camera is not suf-
ficiently general to allow for the unambiguous computation
of the metric structure and motion. The question that was
addressed in this paper is what can still be achieved in terms
of generating novel views. It was proven that novel views
are correct as long as the inclusion of the new pose in the
motion sequence yields the same ambiguity on the recon-
struction. Based on this a practical approach was derived
that determines the expected ambiguity from novel views.
This was used successfully on synthetic data to determine
the level of ambiguity for different types of restricted mo-
tion sequences and included into a 3D viewer to visualize
the expected level of distortion of the rendered views. There
could be a number of interesting applications for the pre-
sented work. It can extend the range of applications within
reach for self-calibration, especially in the area of model-
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Figure 3: The castle sequence. Some images (top), 3 ortho-
graphic views (middle) and a general view (bottom).

ing for visualization. It could for example also be used to
automatically optimize a fly-through in virtual environment
containing 3D models obtained from image sequences.
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