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Abstract. In this paper the theoretical and practical feasibility of self-calibration in the presence of varying
intrinsic camera parameters is under investigation. The paper’s main contribution is to propose a self-calibration
method which efficiently deals with all kinds of constraints on the intrinsic camera parameters. Within this
framework a practical method is proposed which can retrieve metric reconstruction from image sequences obtained
with uncalibrated zooming/focusing cameras. The feasibility of the approach is illustrated on real and synthetic
examples. Besides this a theoretical proof is given which shows that the absence of skew in the image plane is
sufficient to allow for self-calibration. A counting argument is developed which —depending on the set of constraints—
gives the minimum sequence length for self-calibration and a method to detect critical motion sequences is proposed.

1. Introduction

In recent years, researchers have been studying self-
calibration methods for cameras. Mostly completely
unknown but constant intrinsic camera parameters
were assumed. This has the disadvantage that the zoom
can not be used and even focusing is prohibited. On
the other hand, the proposed perspective model is often
too general compared to the range of existing cameras.
Mostly the image axes can be assumed orthogonal and
often the aspect ratio is known. Therefore a tradeoff
can be made and by assuming these parameters to be
known, one can allow (some of) the other parameters
to vary throughout the image sequence.

Since it became clear that projective reconstruc-
tions could be obtained from image sequences
alone (Faugeras, 1992, Hartley, 1992), researchers
tried to find ways to upgrade these reconstructions to
metric (i.e. Euclidean up to unknown scale). Many
methods were developed which assumed constant in-
trinsic camera parameters. Most of these methods

are based on the absolute conic which is the only
conic which stays fixed under all Euclidean transfor-
mations (Semple and Kneebone, 1952). This conic
lays in the plane at infinity and its image is directly
related to the intrinsic camera parameters, hence the
advantage for self-calibration.

Faugerasetal. (1992), see also (Luong and Faugeras,
1997), proposed to use the Kruppa equations which
enforce that the planes through two camera centers
which are tangent to the absolute conic should also
be tangent to both of its images. Later on Zeller and
Faugeras (1996) proposed a more robust version of this
method.

Heyden and Astrom (1996), Triggs (1997) and
Pollefeys and Van Gool (1997b) use explicit constraints
which relate the absolute conic to its images. These
formulations are especially interesting since they can
easily be extended to deal with varying intrinsic camera
parameters.

Pollefeys and Van Gool (1997a) also proposed a
stratified approach which consists of first locating the
plane at infinity using the modulus constraint (i.e. for
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constant intrinsic camera parameters the infinity ho-
mography should be conjugated to a rotation matrix)
and then calculating the absolute conic. Hartley (1993)
proposed another approach based on the minimization
of the difference between the intrinsic camera param-
eters for the different views.

So far not much work has been done on varying in-
trinsic camera parameters. Pollefeys et al. (1996) also
proposed a stratified approach for the case of a varying
focal length, but this method required a pure trans-
lation as initialization, along the lines of Armstrong
et al. (1994) earlier account for fixed intrinsic cam-
era parameters. Recently Heyden and Astrém (1997)
proved that self-calibration was possible when the as-
pect ratio was known and no skew was present. The
self-calibration method proposed in their paper is based
on bundle adjustment which requires non-linear min-
imization over all reconstructed points and cameras
simultaneously. No method was proposed to obtain a
suitable initialization.

In this paper their proofis extended. It will be shown
that the absence of skew alone is enough to allow self-
calibration. A versatile self-calibration method is pro-
posed which can deal with varying types of constraints.
This will then be specialized towards the case where the
focal length varies, possibly also the principal point.

Section 2 of this paper introduces notations and some
basic principles, Section 3 gives a counting argument
for self-calibration and finally shows that imposing the
absence of skew is sufficient to restrict the projective
ambiguity to the group of similarities (i.e. metric self-
calibration). In Section 4 the actual method is devel-
oped. A simplified linear version is also given which
can be used for initialization. Section 5 summarizes
the complete procedure for metric reconstruction of
arbitrarily shaped, rigid objects from an uncalibrated
image sequence alone. The method is then validated
through the experiments of Section 6, in Section 7
some more results illustrate the flexibility of our ap-
proach. Section 8 concludes this paper and gives some
directions for further research.

2. Notations and basic principles

In this section the basic principles and notations used
in this paper are introduced. Projective geometry and
homogeneous coordinates are used. Metric entities are
indicated with a subscript M.

2.1. Cameras

The following equation is used to describe the perspec-
tive projection of the scene onto the images

mxPM (1

where P is a 3 x 4 projection matrix describing the
perspective projection process, M = [XY Z1]" and
m = [zy1]T are vectors containing the homogeneous
coordinates of the world points respectively image
points. Notice that oc will be used throughout this
paper to indicate equality up to a non-zero scale factor.

In the metric case the camera projection matrix fac-
torizes as follows:

P = K[R|-RY] @)

Here (R, t) denotes a rigid transformation (i.e. R is a
rotation matrix and ¢ is a translation vector) which in-
dicate the position and orientation of the camera, while
the upper triangular calibration matrix K encodes the
intrinsic parameters of the camera:

fe 5 ug
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where f; and f, represent the focal length divided by
the pixel width resp. height, (u,,u,) represents the
principal point and s is a factor which is zero in the
absence of skew.

2.2.  Conics and Quadrics

In this paper a specific conic and quadric play an im-
portant role. Therefore some related notations are in-
troduced here. A conic is represented by a 3 X 3 sym-
metric matrix C, a quadric by a4 x 4 symmetric matrix
Q. A point m on the conic satisfies m T Cm = 0 and
a point M on the quadric satisfies M TQM = 0. A
dual (or line) conic is represented by a 3 x 3 matrix
C*, while a dual (or plane) quadric is represented by
a4 x 4 matrix Q*. A line [ tangent to the conic C
satisfies I T C*I = 0. A plane L tangent to the quadric
Q satisfies L™ Q*L = 0. Provided C resp. Q are full
rank C* = C~! and Q* = Q~!. It can be shown
that (Karl et al., 1994),

C*xPQP' . (4)

This equation describes the projection of the outline of
a dual quadric onto a dual image conic.



2.3.  Transformations

A projective transformation of 3D space is described
by a 4 x 4 matrix T. In the case of a similarity trans-
formation T o4 takes on the following form:

R t
=[]

with o a global scale factor (o = 1 yields a Euclidean
transformation).

Points, planes and projection matrices are trans-
formed as follow:

M—-TM,L—-T "LandP -PT ! . (6)

&)

On quadrics and dual quadrics the effect of a projective
transformation is as follows:

Q->T 'QTr 'andQ* - TQ*T" . (7)

3. Some theory

Before developing a practical self-calibration algo-
rithm some theoretical aspects of the problem are stud-
ied in this section. First a counting argument is given
which states the minimal sequence length that allows
self-calibration from a specific set of constraints. Then
a proof is given that self-calibration is possible for the
minimal case where the only available constraint is the
absence of skew.

3.1. A counting argument

To restrict the projective ambiguity (15 degrees of free-
dom) to a metric one (3 degrees of freedom for rotation,
3 for translation and 1 for scale), at least 8 constraints
are needed. This thus determines the minimum length
of a sequence from which self-calibration can be ob-
tained, depending on the type of constraints which are
available for each view. Knowing an intrinsic camera
parameter for n views gives n constraints, fixing one
yields only n — 1 constraints.

n X (#known) + (n — 1) x (#fized) > 8

Of course this counting argument is only valid for non-
critical motion sequences (see Section 4.3).

Therefore the absence of skew (1 additional con-
straint per view) should in general be enough to allow
self-calibration on a sequence of 8 or more images. In
Section 3.2 it will be shown that this simple constraint
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is not bound to be degenerate. If in addition the aspect
ratio is known (e.g. f, = f,) then 4 views should be
sufficient. When also the principal point is known, a
pair of images is enough. A few more examples are
given in Table 1.

3.2.  Self-calibration using only the absence of skew

In this paragraph it is shown that the absence of skew
can be sufficient to yield a metric reconstruction. This
is an extension of the theorem proposed by Heyden
and Astrém (1997) which besides orthogonality also
requires the aspect ratio to be known.

Theorem 1. The class of transformations which
preserves the absence of skew is the group of similarity
transformations.

The proof is given in the appendix. If a sequence is
general enough (in its motion) it follows from this the-
orem that only a projective representation of the cam-
eras which can be related to the original ones through
a similarity transformation (possibly including a mir-
roring) would satisfy the orthogonality of rows and
columns for all views. Using oriented projective ge-
ometry (Laveau and Faugeras, 1996) the mirroring
ambiguity can easily be eliminated. Therefore self-
calibration and metric reconstruction is possible using
this orthogonality constraint only.

Of course adding more constraints will yield more
robust results and will diminish the probability of en-
countering critical motion sequences.

4. Self-Calibration

It is a well-known result that from image correspon-
dences alone the camera projection matrices and the
reconstruction of the scene points can be retrieved up
to a projective transformation (Faugeras, 1992, Hart-
ley, 1992). Note that without additional constraints
nothing more can be achieved. This can be seen from
the following equation.

m o PM = (PT)(TM) =P'M’'

with T an arbitrary projective transformation. There-
fore (P', M') is also a valid reconstruction from the
image points m.
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Table 1. A few examples of minimum sequence length required to allow self-calibration

constraints known fixed min #images
no skew s 8
fixed aspect ratio and absence of skew s ]fc—: 5
known aspect ratio and absence of skew S, ;—Z 4
only focal length is unknown S, ;—Z u, v 2
standard self-calibration problem fz, [y, u, v, 8 3

In general, however, some additional constraints are
available. Some intrinsic parameters are known or can
be assumed constant. This yields constraints which
should be verified when P is factorized as in Eq. (2).

It was shown that when no skew is present, the am-
biguity of the reconstruction can be restricted to metric
(see Section 3.2). Although this is theoretically suffi-
cient, under practical circumstances often much more
constraints are available and should be used.

In Euclidean space two entities are invariant —
setwise, not pointwise— under rigid transformations.
The first one is the plane at infinity II,, which allows
to compute affine measurements. The second entity is
the absolute conic w which is embedded in the plane at
infinity. If besides the plane at infinity IT, the absolute
conic w has also been localized, metric measurements
are possible.

When looking at a static scene from different view-
points the relative position of the camera towards II,
and w is invariant. If the motion is general enough,
only one conic in one specific plane will satisfy this
condition. The absolute conic can therefore be used as
a virtual calibration pattern which is always present in
the scene.

A practical way to encode both the absolute conic
w and the plane at infinity IT, is through the use of
the absolute quadric 2* (Semple and Kneebone, 1952)
(introduced in computer vision by Triggs (1997), see
also Heyden and Astrom, (1996), Pollefeys and Van
Gool (1997b). This dual quadric consists of planes
tangent to the absolute conic. Its null-space is the
plane at infinity. In a metric frame it is represented

I10
oo
Using (5) and (7) it can be verified that for a similarity
transformation T , , Q% , TL o< 4. Similar to (4) the
projection of the absolute quadric in the image yields
the dual image absolute conic:

by a 4 x 4 symmetric rank 3 matrix Q%, =

wf = KK/ « P;Q"P] ®)

independent of the chosen projective basis. Using
Eq. (2) this can be verified for a metric basis. Through

Egs. (6) and (7), Eq. (8) can then be verified for any
projective basis. Some of these concepts are illustrated
in Figure 1.

Therefore constraints on the intrinsic camera pa-
rameters in K; can be translated to constraints on the
absolute quadric. If enough constraints are at hand
only one quadric will satisfy them all, i.e. the absolute
quadric. At that point the scene can be transformed
to the metric frame (which brings Q* to its canonical
form).

4.1. Non-linear Approach

Eq. (8) can be used to obtain the metric calibration from
the projective one. The dual image absolute conics w;
should be parameterized in such a way that they en-
force the constraints on the calibration parameters. For
the absolute quadric £2* a minimum parameterization
(8 parameters) should be used. This can be done by
putting 3, = 1 and by calculating 2}, from the rank
3 constraint. The following parametrization satisfies
these requirements:

KK' —-KK'a

0* =
—aTKK'" ¢"TKK'aq

©)

Fig. 1. The absolute quadric Q* which encodes both the plane
at infinity Ilso (affine reference entity) and the absolute conic w
(metric reference entity), projects to the dual image of the absolute
conic w; = KZK;'— The projection equation allows to translate
constraints on the intrinsic parameters to constraints on 2*.



Here a defines the position of the plane at infinity
My = [a” 1]7. In this case the transformation from
projective to metric is particularly simple:

10)

Kto
Tpom = [ ]

al 1

An approximate solution to these equations can be ob-
tained through non-linear least squares. The following
criterion should be minimized:

n 2

KK/ PP/
IKK]llr  IP:QP]|r

min

1)

i=1 F
Remark that to obtain meaningful results K;K; and
P;Q*P should both be normalized to have Frobenius
norms equal to one.

If one chooses P; = [I|0], Eq. (8) can be rewritten
as follows:

KK/ -K;K{a'

KT .
KK «Pi| KK oKiKja'

P/ (12)

In this way 5 of the 8 parameters of the absolute conic
are eliminated at once, which simplifies convergence
issues. On the other hand this formulation implies a
bias towards the first view since using this parameter-
ization the equations for the first view are perfectly
satisfied, whereas the noise has to be spread over the
equations for the other views. In the experiments it will
be seen that this is not suitable for longer sequences
where in this case the present redundancy can not be
used optimally. Therefore it is proposed to first use
the simplified version of Eq. (12) and then to refine the
results with the unbiased parameterization.

To apply this self-calibration method to standard
zooming/focusing cameras, some assumptions should
be made. Often it can be assumed that there is no skew
and that the aspect ratio is tuned to one. If necessary
(e.g. when only a short image sequence is at hand,
when the projective calibration is not accurate enough
or when the motion sequence is close to critical with-
out additional constraints), it can also be used that the
principal point is close to the center of the image. This
leads to the following parameterizations for K; (trans-
form the images to have (0, 0) in the middle):

fo f

U 00
K; = fov]| ooK; = f0 . 13
1 1
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These parameterizations can be used in (11). It will be
seen in the experiments of Section 6 that this method
gives good results on synthetic data as well as on real
data.

4.2. Linear Approach

In the case were besides the skew (s = 0), both princi-
pal point and aspect ratio are (approximately) known
a linear algorithm can be obtained by transforming the
principal point (u,v) — (0,0) and the aspect ratio
f—: — 1. These assumptions simplify (12) as follows:

2001 Non o
A O f20| =P ! Slel g
0 6 1 0 0 1 by v
by bs by by
with by = f2,by = —ffa1,bs = —fEaz,bs = —as3

and by = fi(a? + a3) + a2. From the left-hand side
of Eq. (14) it can be seen that the following equations
have to be satisfied:

wip = Wi, (15)
Wi = wiz = w3 =0 (16)
wy = wi =wiy, =0. 17)

Note that due to symmetry (16) and (17) result in iden-
tical equations. These constraints can thus be imposed
on the right-hand side, yielding 4(n — 1) independent
linear equations in by, ba, b3, bsy and bs:

s (1) T 2) v o(2) T
PO M — pPgrp®

.
2PV PP = 0
2PMa p®’ = g
T
2PP*p® = o

with Pi(] ) representing row j of P; and Q.
parametrized as in (14). The rank 3 constraint can
be imposed by taking the closest rank 3 approximation
(using SVD for example).

When only two views are available the solution is
only determined up to a one parameter family of solu-
tions Q, + y€p. Imposing the rank 3 constraint in this
case should be done through the determinant:

det (R +7v2%) =0 . (18)

This results in up to 4 possible solutions. The con-
straint by > 0, see Eq. (14), can be used to eliminate
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some of these solutions. If more than one solution sub-
sists additional constraints should be used. These can
come from knowledge about the camera (e.g. constant
focal length) or about the scene (e.g. known angle).

4.3. Detecting Critical Motion Sequences

It is outside the scope of this paper to give a com-
plete analysis of all possible critical motions which
can occur for self-calibration. For the case where all
intrinsic camera parameters are fixed, such an analysis
was carried out by Sturm (1997).

Here a more practical approach is taken. Given an
image sequence, a method is given to analyze if that
particular sequence is suited for self-calibration. The
method can deal with all different combinations of con-
straints. Itis based on a sensitivity analysis towards the
constraints. An important advantage of the technique
is that it also indicates quasi-critical motion sequences.
It can be used on a synthetic motion sequence as well as
on a real image sequence from which the rigid motion
sequence was obtained through self-calibration.

Without loss of generality the calibration matrix can
be chosen to be K = I (and thus w; = I). In the case
of real image sequences this implies that the images
should first be transformed with K—1. In this case it
can be verified that df, = dw},;, dfy = 1dw},,.
du = dwj,; = dw]s,, dv = dw},; = dw},, and
ds = dw],, = dw},,. Now the typical constraints
which are used for self-calibration can all be formu-
lated as linear equations in the coefficients of K. As
an example of such a system of equations, consider the
case s = 0, ;—y = 1 and f,=constant. By lineariz-

ing around w* = T this yields dw},, = 0, dw?,, =

dwy? ., dw}; = dwi,,. Which can be rewritten as
-dwfll 1
dwy 55
0 01 - 0---]]dwip,
1 00 --- =1 --- . =0. (19
1 -10 0o --- .
dws3

More in general the linearized self-calibration equa-
tions can be written as follows:

Cdw* =0 (20)

with dw* a column vector containing the differentials
of the coefficients of the dual image absolute conic w
for all views. The matrix C encodes the imposed set of
constraints. Since these equations are satisfied for the
exact solution, this solution will be an isolated solution
of this system of equations if and only if any arbitrary
small change to the solution violates at least one of the
conditions of Eq. (20). Using (8) a small change can
be modeled as follows:

dw*
dQ*

Cdw*=C [ ] v = C'dQ* (21)

with Q* = [0, 05,91,95,05,07,05,93,] " and the
dw*

Jacobian [ dQ*] evaluated at the solution. To have the

expression of Eq. (21) different from zero for every
possible dQ*, means that the matrix C’ should be of
rank 8 ( C’ should have a right null space of dimension
0). In practice this means that all singular values of
C'’ should significantly differ from zero, else a small
change of the absolute quadric proportional to right
singular vectors associated with small singular values
will almost not violate the self-calibration constraints.

To use this method on results calculated from a real
sequence the camera matrices P should first be ad-
justed to have the calculated solution become an exact
solution of the self-calibration equations.

5. The Metric Reconstruction Algorithm

The proposed self-calibration method is embedded in a
system to automatically model metric reconstructions
of rigid 3D objects from uncalibrated image sequences.
The complete procedure for metric 3D reconstruction
is summarized here. In Figure 2 the different steps of
the 3D reconstruction system are shown.

5.1. Retrieving the Projective Framework

Our approach follows the procedure proposed by
Beardsley et al. (Bearsdley et al., 1996). The first
correspondences are found by extracting points of in-
terest using the Harris corner detector (Harris, 1988) in
the different images and matching them using a robust
tracking algorithm. In conjunction with the matching
of the interest points the projective calibration of the
setup is calculated in a robust way (). This allows to
eliminate matches which are inconsistent with the cali-
bration. Using the projective calibration more matches
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Image Projective Metric

Sequence Reconstruction

Calibration

Dense 3D Model

Correspondences Building

Fig. 2. Overview of the different steps in the 3D reconstruction system

can easily be found and used to refine this calibration.
This can be seen in Figure 3.

At first corresponding corners in two images are
matched. This defines a projective framework in which
the projection matrices of the other views are retrieved
one by one. We therefore obtain projection matrices
of the following form:

P, = [IlO] and P; = [H1i|€1i] (22)

with Hy; the homography for some reference plane
from view 1 to view ¢ and ey ; the corresponding epipole
(i.e. the projection of the first camera position in view

7).

5.2.  Retrieving the Metric Framework

Such a projective calibration is certainly not satisfac-
tory for the purpose of 3D modeling. A reconstruction
obtained up to a projective transformation can differ
very much from the original scene according to human
perception: orthogonality and parallelism are in gen-
eral not preserved, part of the scene can be warped to
infinity, etc. Therefore a metric framework should be
retrieved. This should be achieved by following the
methods described in Section 4. Once the calibration
is retrieved it can be used to upgrade the projective
reconstruction to a metric one.

5.3. Dense Correspondences

At this point we dispose of a sparse metric reconstruc-
tion. Only a restricted number of points are recon-
structed. Obtaining a dense reconstruction could be
achieved by interpolation, but in practice this does not
yield satisfactory results. Often some salient features

= e

Fig. 3. (a) a priori search region, (b) search region based on initial
projective geometry , (c) search region after projective reconstruction
(used for refinement).

(@) ®)

L@

are missed during the interest point matching and will
therefore not appear in the reconstruction.

These problems can be avoided by using algorithms
which estimate correspondences for almost every point
in the images. At this point algorithms can be used
which were developed for calibrated 3D systems like
stereo rigs. Since we have computed the projective
calibration between successive image pairs we can ex-
ploit the epipolar constraint that restricts the correspon-
dence search to a 1-d search range. In particular it is
possible to remap the image pair to standard geometry
where the epipolar lines coincide with the image scan
lines (Koch, 1996). The correspondence search is then
reduced to a matching of the image points along each
image scanline. In addition to the epipolar geometry
other constraints like preserving the order of neighbor-
ing pixels, bidirectional uniqueness of the match, and
detection of occlusions can be exploited. These con-
straints are used to guide the correspondence towards
the most probable scanline match using a dynamic pro-
gramming scheme (Falkenhagen, 1997). The most
recent algorithm (Koch et al., 1998) improves the ac-
curacy by using a multibaseline approach.

5.4. Building the Model

Once a dense correspondence map and the metric cam-
era parameters have been estimated, dense surface
depth maps are computed using depth triangulation.
The 3D model surface is constructed as triangular sur-
face patches with the vertices storing the surface geom-
etry and the faces holding the projected image color in
texture maps. The texture maps add very much to the
visual appearance of the models and augment missing
surface detail.

The model building process is at present restricted
to partial models computed from single viewpoints and
work remains to be done to fuse different viewpoints.
Since all the views are registered into one metric frame-
work it is possible to fuse the depth estimate into one
consistent model surface (Koch, 1996).

Sometimes it is not possible to obtain a single met-
ric framework for large objects like buildings since one
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may not be able to record images continuously around
it. In that case the different frameworks have to be
registered to each other. This will be done using avail-
able surface registration schemes (Chen and Medioni,
1991).

6. Experiments

In this section some experiments are described. First
synthetic image sequences were used to assess the qual-
ity of the algorithm under simulated circumstances.
Both the amount of noise and the length of the se-
quences were varied. Then results are given for two
outdoor video sequences. Both sequences were taken
with a standard semi-professional camcorder that was
moved freely around the objects. Sequence 1 was
filmed with constant camera parameters —like most al-
gorithms require. The new algorithm —which doesn’t
impose this— could therefore be tested on this. A sec-
ond sequence was recorded with varying intrinsic pa-
rameters. A zoom factor (2x) was applied while film-
ing.

6.1. Simulations

The simulations were carried out on sequences of views
of a synthetic scene. The scene consisted of 50 points
uniformly distributed in a unit sphere with its center
at the origin. The intrinsic camera parameters were
chosen as follows. The focal length was different for
each view, randomly chosen with an expected value
of 2.0 and a standard deviation of 0.5. The principal
point had an expected value of (0,0) and a standard
deviation of 0.14/2. In addition the synthetic camera
had an aspect ratio of one and no skew. The views were
taken from all around the sphere and were all more or
less pointing towards the origin. An example of such
a sequence can be seen in Figure 4.

The scene points were projected into the images.
Gaussian white noise with a known standard devia-
tion was added to these projections. Finally, the self-
calibration method proposed in this paper was carried
out on the sequence. For the different algorithms the
metric error was computed. This is the mean devia-
tion between the scene points and their reconstruction
after alignment. The scene and its reconstruction are
aligned by applying the metric transformation which
minimizes the difference between both. For compari-

son the same error was also calculated after alignment
with a projective transformation. By default the noise
had an equivalent standard deviation of 1.0 pixel for a
500 x 500 image. To obtain significant results every
experiment was carried out 10 times and the mean was
calculated.

Fig. 4. Example of sequence used for simulations (the views are
represented by the optical axis and the image axes of the camera in
the different positions.)

To analyze the influence of noise on the algorithms,
noise values of 0,0.1,0.2, 0.5, 1, 1.5 and 2 pixels were
used on sequences of 6 views. The results can be seen
in Figure 5. It can be seen that for small amounts of
noise the more complex models should be preferred.
If more noise is added, the simple model gives the
best results. This is due to the low redundancy of the
system of equations for the models which, beside the
focal length, also try to estimate the position of the
principal point.
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Fig. 5. Relative 3D error in function of noise

Another experiment was carried out to evaluate the
performance of the algorithm for different sequence
lengths. Sequences ranging from 4 to 40 views were
used. A noise level of one pixel was used. The results
are shown in Figure 6. For short image sequences the
results are better when the principal pointis assumed in
the middle of the image, even though this is not exactly



true. For longer image sequences the constraints on
the aspect ratio and the image skew are sufficient to
allow an accurate estimation of the metric structure of
the scene. In this case fixing the principal point will

degrade the results by introducing a bias.
0.07 T T T T T

\ projective error
0.061 \ metric error (f)
| metric error (f,u,v)
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Fig. 6. Relative 3D error for sequences of different lengths

6.2. Real Sequence 1

The first sequence showing part of an old castle was
filmed with a fixed zoom/focus. It is therefore a good
test for the algorithms presented in this paper to check
if they indeed return constant intrinsic parameters for
this sequence. In Figure 8 some of the images of the
sequence are shown. Figure 9 shows the reconstruction
together with the estimated viewpoints of the camera.
In Figure 10 another view is shown, both with texture
and with shading. The shaded view shows that even
small geometrical details (e.g. window indentations)
were recovered in the reconstruction. To judge the
visual quality of the reconstruction, different perspec-
tive views of the model were computed and displayed
in Figure 10. The resulting reconstruction is visually
convincing and preserve the metric properties of the
original scenes (i.e. parallelism, orthogonality, . . .).

A quantitative assessment of these properties can be
made by explicitly measuring angles directly on the
object surface. For this experiment 6 lines were placed
along prominent surface features, three on each object
plane, aligned with the windows. The three lines in-
side of each object plane should be parallel to each
other (angle between them should be 0 degrees), while
the lines of different object planes should be perpen-
dicular to each other (angle between them should be
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90 degrees). The measurement on the object surface
shows that this is indeed close to the expected values
(see Table 2).
Table 2. Results of metric measurements on the reconstruction
angle (£std.dev.)

parallellism
orthogonality

1.0 & 0.6 degrees
92.5 £ 0.4 degrees

In Figure 7 the focal length for every view is plot-
ted for the different algorithms and different sets of
constraints. The calculated focal lengths are almost
constant as it should be. In one case also the principal
point was estimated (independently for every view),
but the results were not so good. Not only did the prin-
cipal point move a lot (over 100 pixels), but in this case
the estimate of the focal length is not as constant any-
more. In this case it seems the projective calibration
was not accurate enough to allow an accurate retrieval
of the principal point and it could be better to stick
with the simplified algorithm. In general it seems that
it is hard to accurately determine the absolute value of
the focal length, especially when not much perspective
distortion is present in the images. This explains why
the different algorithms can result in different values
for the focal length. On the other hand an inaccurate
estimation of the focal length only has a small effect
on the reconstruction (Bougnoux, 1998).

1200 .
- —t- -4 -t —4= 4ttt S+
1000 - : : : B 4
800 i
@
[7]
2
=
£ 600t |
e
S
g linear (f)
400+ non-linear (f) o
non-linear(f,u,v) e
200 4
o— L L L I I I I ; ; ;
2 4 6 8 10 12 14 16 18 20 22

view

Fig. 7. focal length (in pixels) versus views for the different algo-
rithms

6.3. Real Sequence 2

This sequence shows a stone pillar with curved sur-
faces. While filming and moving away the zoom was
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Bousppppsyey wewn #F

Fig. 9. Perspective view of the reconstruction together with the estimated position of the camera for the different views of the sequence

Fig. 10. Two other perspective views of the Arenberg castle reconstruction



changed to keep the image size of the object constant.
The focal length was not changed between the two
first images, then it was changed more or less linearly.
From the second image to the last image the focal
length has been doubled (if the markings on the cam-
era can be trusted). In Figure 13 3 of the 8 images of
the sequence can be seen. Notice that the perspective
distortion is most visible in the first images (wide an-
gle) and diminishes towards the end of the sequence
(longer focal length).

Figure 14 shows a top view of the reconstructed
pillar together with the estimated camera viewpoints.
These viewpoints are illustrated with small pyramids.
Their height is proportional to the focal length. In
Figure 15 perspective views of the reconstruction are
given. The view on top is rendered both shaded and
with surface texture mapped. The shaded view shows
that even most of the small details of the object are
retrieved. The bottom part shows a left and a right
side view of the reconstructed object. Although there
is some distortion at the outer boundary of the object,
a highly realistic impression of the object is created.
Note the arbitrarily shaped free-form surface that has
been reconstructed.

A quantitative assessment of the metric properties
for the pillar is not so easy because of the curved sur-
faces. It is, however, possible to measure some dis-
tances on the real object as reference lengths and com-
pare them with the reconstructed model. In this case
it is possible to obtain a measure for the absolute scale
and verify the consistency of the reconstructed lengths
within the model. For this comparison a network of
reference lines was placed on the original object and
27 manually measured object distances were compared
with the reconstructed distances on the model surface,
as seen in Figure 11. From each comparison the abso-
lute object scale factor was computed. The results are
found in Table 3.

Table 3. Results of metric measurements on the reconstruction

ratio (£std.dev.)
all points 40.25 £ 2.2
interior points +0.9

Due to the increased reconstruction uncertainty at
the outer object silhouette some distances show a larger
error than the interior points. This accounts for the
outliers. Averaging all 27 measured distances gave a
consistant scale factor of 40.25 with a standard devi-
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ation of 5.4% overall. For the interior distances, the
reconstruction error dropped to 2.3%. These results
demonstrate the metric quality of the reconstruction
even for complicated surface shapes and varying focal
length. In Figure 12 the focal length for every view is
plotted for the different algorithms. It can be seen that
the calculated values of the focal length correspond
to what could be expected. When the principal point
was estimated independently for every view, it moved
around up to 50 pixels. It is probable that too much
noise is present to allow us to estimate the principal
point accurately.

Fig. 11. To allow for a quantitative comparison between the real
pillar ans its reconstruction, some distances, superimposed in black,
were measured.

2000

1800

1600

1400

n
=
S

1000

8004

focal length (pixels)

600 - linear (f) FEESEE
non-linear (f) o
400 non-linear (f,u,v) Lo
200+ : . 4
0 I I I I I I
1 2 3 4 5 6 7 8

view

Fig. 12. focal length (in pixels) versus views for the different al-
gorithms
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Fig. 13. Images 1,4 and 8 of Sequence 2 (Note the short focal length/wide angle in the first image and the long focal length in the last image)

Fig. 15. Perspective views of the reconstruction (with texture and with shading)



7. Some more results

In this section some more results are presented which
illustrate the flexibility of our reconstruction method.
The two first examples were recorded at Sagalassos,
an archaeological site in Turkey. The last sequence
consists of images of a Jain temple in Ranakpur, India.
These images were taken during a tour around India
after ICCV’98.

7.1.  The Archeological Site of Sagalassos

In Figure 16 images of the Sagalassos site sequence
(10 images) are shown. They show the landscape sur-
rounding the Sagalassos site. Some views of the recon-
struction are shown in Figure 17. With our technique
this model was obtained just as easily as the previous
ones. For most active techniques it is impossible to
cope with scenes of this size. The use of a stereo rig
would also be very hard since a baseline of several
tens of meters would be required. Therefore one of
the most promising applications of the proposed tech-
nique is large scale terrain modeling. In addition one
can see from Figure 18 that this model could also be
used to obtain a Digital Terrain Map or an orthomap at
low cost. In this case only 3 reference measurements
—GPS and altitude— are necessary to localize and orient
the model in the world reference frame.

7.2.  The Fountain of Sagalassos

Besides the whole site, several monuments were recon-
structed separately. As an example, the reconstruction
of the remains of an ancient fountain is shown. In
Figure 19 three of the six images used for the recon-
struction are shown. All images were taken from the
same ground level. They were acquired with a digital
camera with a resolution of approximately 1500x1000.
Half resolution images were used for the computation
of the shape. The texture was generated from the full
resolution images. The reconstruction can be seen in
Figure 20, the left side shows a view with texture, the
right view gives a shaded view of the model without
texture. In Figure 21 two close-up shots of the model
are shown.
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7.3.  The Jain Temple of Ranakpur

These images were taken during a tourist trip after
ICCV’98 in India. A sequence of 11 images was taken
of some details of one of the smaller Jain temples
at Ranakpur, India. These images were taken with a
standard Nikon F50 photo camera and then scanned in.
Three of them can be seen in Figure 22. A view of the
reconstruction which was obtained from this sequence
can be seen in Figure 23, some details can be seen in
Figure 24. Figure 25 is an orthographic view taken
from below the reconstruction. This view allows to
verify the orthogonality of the reconstruction.

These reconstructions show that we are able to han-
dle even complex 3D geometries affectively with our
reconstruction system.

8. Conclusions

This paper focussed on self-calibration and metric re-
construction in the presence of varying and unknown
intrinsic camera parameters. The calibration models
used in previous research are on the one hand too re-
strictive in real imaging situations (constant parame-
ters) and on the other hand too general (all parameters
unknown). The more pragmatic approach which is
followed in this paper results in more flexibility.

A counting argument was derived which gives the
minimum number of views needed for self-calibration
depending on which constraints are used. We proved
that self-calibration is possible using only the most
general constraint (i.e. that image rows and columns
are orthogonal). Of course if more constraints are
available, this will in general yield better results.

A versatile self-calibration method which can work
with different types of constraints (some of the intrin-
sic camera parameters constant or known) was derived.
This method was then specialized towards the practi-
cally important case of a zooming/focusing camera
(without skew and an aspect ratio ;—y = 1). Both
known and unknown principal points were considered.
It is proposed to always start with the principal point
in the center of the image and to first use the linear
algorithm. The non-linear minimization is then used
to refine the results, possibly —for longer sequences—
allowing the principal point to be different for each im-
age. This can however degrade the results if the projec-
tive calibration was not accurate enough, the sequence
not long enough, or the motion sequence critical to-
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Fig. 16. Some of the images of the Sagalassos Site sequence

Fig. 17. Perspective views of the 3D reconstruction of the Sagalas- Fig. 18. Top view of the reconstruction of the Sagalassos site
sos site
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Fig. 20. Perspective views of the reconstructed fountain with and without texture

Fig. 21. Close-up views of some details of the reconstructed fountain
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Fig. 23. A perspective view of the reconstruction

Fig. 24. Some close-ups of the reconstruction Fig. 25. Orthographic view from below the reconctruction



wards the set of constraints. As for all self-calibration
algorithms it is important to deal with critical motion
sequences. In this paper a general method is pro-
posed which detects critical and quasi-critical motion
sequences.

The different methods are validated by experiments
which are carried out on synthetic as well as real image
sequences. The former are used to analyze noise sensi-
tivity and influence of the length of the sequence. The
latter show the practical feasibility of the approach.
Some more results were included to demonstrate the
flexibility of the approach and the visual quality of
the results which can be obtained by incorporating this
technique in a 3D reconstruction system.

In the future several problems will be investigated
more in depth. Some work is planned on attaching a
weight to different constraints. For example, the skew
can be very accurately assumed to be zero, whereas
the principal point is only known to lay somewhere
around the center of the image. Also the critical mo-
tion sequence detection should be incorporated in the
algorithm and be used to predict the accuracy of the
results.

Appendix

In this appendix the proof of Theorem 1 is given. Be-
fore starting the actual proof a lemma will be given.
This lemma gives a way to check for the absence of
skew from the coefficients of P directly without need-
ing the factorization. A camera projection matrix can
be factorized as follows P = [Hle] = K [R| — Rt].
In what follows h; and r; denote the rows of H and R..

Lemma 1.  The absence of skew is equivalent with
(h1 X h3)(h2 X h3) =0.

Proof: It is always possible to factorize H as KR.
Therefore the following can be written:

(hl X h3)(h2 X h3)

= ((fzr1 + sra + urs) x r3)((fyrs + vrg) x r3)
((fzr1 + sr2) X 13)(fyr2 X T3)

= —fofyror1 + sfyriry = sf, .

Because f,, # 0 this concludes the proof. O

Equipped with this lemma the following theorem
can be proven.
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Theorem 1. The class of transformations which
preserves the absence of skew is the group of similarity
transformations.

Proof: Itis easy to show that the similarity transfor-
mations preserve the calibration matrix K and hence
also the orthogonality of the image plane:

R' o1t
K[R| — Rt] [ 0 ol

= K[RR/|s~!(Rt' — Rt)] .

Therefore it is now sufficient to prove that the class
of transformations which preserve the condition (hy x
hs)(h2 x h3) = 0 is at most the group of similarity
transformations. To do this a specific set of positions
and orientations of cameras can be chosen, since the
absence of skew is supposed to be preserved for all
possible views. In general P can be transformed as
follows:

A b

P - |

] = [HA +ec'|Hb + ed]

Ift =0 then H = KRA and thus

(b,  b) (b x )
= ((for1 +urs)A x r3A) ((fyr2 + vr3)A x r3A).

Therefore the condition of the lemma is equivalent with
(I‘1A X I‘3A) (I‘QA X I‘3A) =0.

Choosing the rotation matrices R1, Ry and Rj rota-
tions of 90° around the z-, y- and 2z-axis, imposes the
following equations to hold:

(a1 X ag)(ag X 32) = 0,
(a3 X al)(ag X al) = 0, (Al)
(ag X a3)(a1 X 33) =0.

Hence (a; X az), (a1 X a3) and (az X ag) define a set
of 3 mutually orthogonal planes where a;, as and ag
form the intersection and are therefore also orthogonal.

Choosing R4 and R as R; and Ry followed by
a rotation of 45° around the z-axis, the following two
equations can be derived:

((a1 + 33) X 32) ((a1 — a3) X 32) =0

(a3 +a2) x a1) (a5 —az) xa1) =0 . A2

Carrying out some algebraic manipulations and using
a; 1 ag L ag this yields the following result:
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a1 = |as|* = |ag|® .

These results mean that A = ¢R with o ascalarand R
an orthonormal matrix. The available constraints are
not sufficient to impose det R = 1, therefore mirroring
is possible.

Choose R¢ = Ry and t§ = [100], then
((a1 +c') x az) (a3 x ap) = 0 must hold. Us-
ing (Al) and as X a3 o a; this condition is equivalent
with (¢ X ag)a; = 0. Writing ¢ as ¢ia; + cpaz +c3ag
this boils down to ¢3 = 0. Taking R7y = Ra,
t; = [001]7, Rg = Rz and tg = [010]" leads
in a similar way to co = 0 and ¢; = 0 and therefore to
c’ =[000].

. . A b|.
In conclusion the transformation eT g | 1sTe

01
cludes the proof. o

stricted to the following form [ oR t ] which con-

Remark that 8 views were needed in this proof. This
is consistent with the counting argument of the previous
paragraph.
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