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Abstract

This paper contains two parts. In the first part an automatic processing pipeline is pre-

sented that analyses an image sequence and automatically extracts camera motion, calibra-

tion and scene geometry. The system combines state-of-the-art algorithms developed in

computer vision, computer graphics and photogrammetry. The approach consists of two

stages. Salient features are extracted and tracked throughout the sequence to compute the

camera motion and calibration and the 3D structure of the observed features. Then a dense

estimate of the surface geometry of the observed scene is computed using stereo matching.

The second part of the paper discusses how this information can be used for visualization.

Traditionally, a textured 3D model is constructed from the computed information and used

to render new images. Alternatively, it is also possible to avoid the need for an explicit 3D

model and to obtain new views directly by combining the appropriate pixels from recorded

views. It is interesting to note that even when there is an ambiguity on the reconstructed

geometry, correct new images can often still be generated.
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Introduction

Nowadays computer graphics allow to render complex 3D scenes in real-time. Therefore, more

and more demand exists for detailed representations of the 3D world. Producing this content

using interactive 3D modeling packages has become very expensive and time consuming. In ad-

dition, in many cases real world objects or scenes are considered. This has motivated researchers

to develop techniques to capture the 3D visual world directly. One of the most promising ap-

proaches consists of using images for this purpose.

In the field of computer vision, researchers have been working for many years to obtain 3D

representations of scenes from images. Initially this work was targeted towards robotics and

automation, e.g. allowing a robot to navigate through an unknown environment. In recent years

the focus has shifted to visualization and communication, resulting in much more interaction

with the computer graphics community. One of the main focuses has been to provide algorithms

that can automatically extract the necessary information from multiple images. In addition, over

the last ten years important new insights have been gained in the geometry of multiple images,

allowing more flexible approaches to be developed (a good reference for this is the recent book

by Hartley and Zisserman [15]).

The first part of this paper presents an automatic processing pipeline that we have been de-

veloping over the last few years [25, 27, 31, 33]. Starting from an image sequence the system

gradually recovers a detailed 3D reconstruction. Both motion and calibration of the camera are
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retrieved automatically during the processing. To achieve this the system combines state-of-the-

art algorithms developed in computer vision, computer graphics and photogrammetry.

In the second part of this paper we discuss how the computed information can be used for

visualization. A first approach consists of constructing a textured 3D model so that new images

can be generated using the standard computer graphics 3D rendering pipeline. However, since a

few years alternative approaches have been proposed that generate new images by recombining

pixels of recorded images [22, 11]. Therefore, a second approach is presented that allows to

generate new images without the need for an explicit 3D model [19, 20]. This approach renders

new views directly from the recorded images. Although an explicit 3D model is not required, ap-

proximate depth information allows to minimize rendering artefacts. Another interesting aspect

of image-based visualization -especially compared to obtaining measurements from images- is

that in many cases ambiguities on the reconstruction do not show up during visualization. If the

camera motion does not allow self-calibration to yield a unique result (due to the problem of

critical motion sequences [37]) correct images can still be rendered under some conditions [34].

Image to 3D processing pipeline

Our processing pipeline starts from a sequence of images and computes all the necessary infor-

mation to build a 3D model or to perform other types of rendering of the observed scene. The

process gradually retrieves more and more information about the scene and about the camera.

First, the relative motion between consecutive images needs to be recovered. This process

goes hand in hand with finding corresponding image features between these images (i.e. image
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points that originate from the same 3D feature). The next step consists of recovering the motion

and calibration of the camera and the 3D structure of the features. This process is done in

two phases. At first the reconstruction contains a projective skew (i.e. parallel lines are not

parallel, angles are not correct, relative distances are not preserved, etc.). This is due to the

absence of an a priori calibration. Using a self-calibration algorithm [30] this distortion can be

removed, yielding a reconstruction equivalent to the original scene up to a global scale factor.

This uncalibrated approach to 3D reconstruction allows much more flexibility in the acquisition

process since the focal length and other intrinsic camera parameters do not have to be measured

–calibrated– beforehand and are allowed to change during the acquisition.

The reconstruction obtained as described in the previous paragraph only contains a sparse set

of 3D points (only a limited number of features are considered at first). Although interpolation

might be a solution, this typically yields models with poor visual quality. Therefore, the next step

consists in an attempt to match all image pixels of an image with pixels in neighboring images, so

that these points too can be reconstructed. This task is greatly facilitated by the knowledge of all

the camera parameters which we have obtained in the previous stage. Since a pixel in the image

corresponds to a ray in space and the projection of this ray in other images can be predicted

from the recovered pose and calibration, the search of a corresponding pixel in other images

can be restricted to a single line. Additional constraints such as the assumption of a piecewise

continuous 3D surface are also employed to further constrain the search. It is possible to warp

the images so that the search range coincides with the horizontal scanlines. An algorithm that

can achieve this for arbitrary camera motion is described in [28]. This allows to use an efficient

stereo algorithm that computes an optimal match for the whole scanline at once [43]. Thus, we
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can obtain a depth estimate (i.e. the distance from the camera to the object surface) for almost

every pixel of an image. By fusing the results of all the images together a complete dense 3D

surface model is obtained. The images used for the reconstruction can also be used for texture

mapping so that a final photo-realistic result is achieved. The different steps of the process are

illustrated in Figure 1. In the following paragraphs some of the critical steps are described in

some more detail.

Relating images

Starting from a collection of images or a video sequence the first step consists in relating the

different images to each other. This is not an easy problem. A restricted number of corresponding

points is sufficient to determine the geometric relationship or multi-view constraints between

the images. Since not all points are equally suited for matching or tracking (e.g. a pixel in a

homogeneous region), the first step consist of selecting feature points [12, 35]. These are suited

for tracking or matching. Depending on the type of image data (i.e. video or still pictures) the

feature points are tracked or matched and a number of potential correspondences are obtained.

From these the multi-view constraints can be computed. However, since the correspondence

problem is an ill-posed problem, the set of corresponding points can be contaminated with an

important number of wrong matches or outliers. In this case, a traditional least-squares approach

will fail and therefore a robust method is used [40, 10]. Once the multi-view constraints have

been obtained they can be used to guide the search for additional correspondences. These can

then be employed to refine the results for the multi-view constraints further.
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Figure 1: Overview of our 3D recording pipeline.
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Structure and motion recovery

The relation between the views and the correspondences between the features, retrieved as ex-

plained in the previous section, will be used to retrieve the structure of the scene and the motion

of the camera. The approach that is used is related to [1] but is fully projective and therefore

not dependent on the quasi-euclidean initialization. This is achieved by strictly carrying out all

measurements in the images, i.e. using reprojection errors instead of 3D errors.

At first two images are selected and an initial projective reconstruction frame is set-up [8, 13].

Then the pose of the camera for the other views is determined in this frame and for each additional

view the initial reconstruction is refined and extended. In this way the pose estimation of views

that have no common features with the reference views also becomes possible. Once the structure

and motion has been determined for the whole sequence, the results can be refined through a

projective bundle adjustment [42]. Then the ambiguity is restricted to metric (i.e. Euclidean, but

with unknown scale) through self-calibration [9]. Our approach is based on the concept of the

absolute quadric [41, 30]. Finally, a metric bundle adjustment is carried out to obtain an optimal

estimation of the structure and motion.

In some cases it can happen that if the motion is not sufficiently general an ambiguity per-

sists [37]. However, we will see further on that even if this problem occurs it is often still possible

to generate correct new views.
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Dense surface estimation

To obtain a more detailed model of the observed surface dense matching is used. The structure

and motion obtained in the previous steps can be used to constrain the correspondence search.

Since the calibration between successive image pairs was computed, the epipolar constraint that

restricts the correspondence search to a 1-D search range can be exploited. Image pairs are

warped so that epipolar lines coincide with the image scan lines. For this purpose the rectifi-

cation scheme proposed in [28] is used. This approach can deal with arbitrary relative camera

motion while standard homography-based approaches fail when the epipole is contained in the

image. The approach also guarantees minimal image sizes. The correspondence search is then

reduced to a matching of the image points along each image scan-line. This results in a dramatic

increase of the computational efficiency of the algorithms by enabling several optimizations in

the computations. A first example comes from the castle sequence. In Figure 2 an image pair

and the associated rectified image pair are shown.

In addition to the epipolar geometry other constraints like preserving the order of neighboring

pixels and bidirectional uniqueness of the match can be exploited. These constraints are used to

guide the correspondence towards the most probable scan-line match using a dynamic program-

ming scheme [4]. The matcher searches at each pixel in one image for maximum normalized

cross correlation in the other image by shifting a small measurement window along the corre-

sponding scan-line. Matching ambiguities are resolved by exploiting the ordering constraint in

the dynamic programming approach. The algorithm was further adapted to employ a pyramidal

estimation scheme to reliably deal with very large disparity ranges of over 50% of image size [7].
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More details on our stereo algorithm can be found in [43]. The disparity search range is limited

based on the disparities that were observed for the features in the structure and motion recovery.

The pairwise disparity estimation allows to compute image to image correspondences be-

tween adjacent rectified image pairs and independent depth estimates for each camera view-

point. An optimal joint estimate is achieved by fusing all independent estimates into a common

3D model using a Kalman filter. The fusion can be performed in an economical way through

controlled correspondence linking. This approach was discussed more in detail in [18].

This approach combines the advantages of small baseline and wide baseline stereo. It can

provide a very dense depth map by avoiding most occlusions. The depth resolution is increased

through the combination of multiple viewpoints and large global baseline while the matching is

simplified through the small local baselines.

Constructing visual models

The system described in the previous section computes depth maps for every view as well as

the motion and calibration of the camera. This yields all the necessary information to build

photo-realistic visual models.

3D surface reconstruction

The traditional approach consists of approximating the 3D surface by a triangular mesh to re-

duce geometric complexity and to tailor the model to the requirements of computer graphics

visualization systems. A simple approach consists of overlaying a regular 2D triangular mesh
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on top of one of the images and then build a corresponding 3D mesh by placing the vertices of

the triangles in 3D space according to the values found in the corresponding depth map. The

image itself is used as a texture map. If no depth value is available or the confidence is too low

the corresponding triangles are not reconstructed. The same happens when triangles are placed

over discontinuities. This approach works well on dense depth maps obtained from multiple

stereo pairs. To reduce the number of polygons without significantly reducing the quality of the

model a mesh simplification algorithm can be used [36]. The texture itself can also be enhanced

through the multi-view linking scheme [18]. A median or robust mean of the corresponding tex-

ture values can be computed to discard imaging artifacts like sensor noise, specular reflections

and highlights [24].

To reconstruct more complex shapes it is necessary to combine multiple depth maps. Since

all depth-maps can be located in a single metric frame, registration is not an issue. In some

cases it can be sufficient to load the separate models together in the graphics system. In general,

however, better results are obtained by integrating the different meshes into a single mesh. This

can for example be done using the volumetric technique proposed in [5]. Note that in this case

also the texture has to be obtained by combining different images. The approach we use selects

a view for each vertex (based on average normal and visibility) and then generates the texture by

blending between the different views selected for each triangle.

Examples We have recorded a short video sequence from a medusa head decorating an ancient

fountain in Sagalassos (an ancient city in Turkey). The 20 second video sequence was recorded

with a hand-held consumer video camera (Sony TRV-900). Each twentiest frame was used as
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a key-frame by our video to 3D processing pipeline. Three of these frames are seen on the top

part of Figure 3. The compute structure and motion is also seen in this figure (middle-left). The

camera viewpoints are represented by small pyramids. The depth map used to construct the 3D

model is seen on the middle-right of the figure. Finally, the model -with and without texture- is

seen at the bottom of the figure. From the shaded model one can see that most of the geometric

detail is accurately recovered. By using the image itself as texture map a photorealistic model is

obtained. Note from the rightmost view that the 3D model allows to render realistic views that

are very different from the original views.

The second example was also recorded on the archaeological site of Sagalassos. In this case

the remains of a Roman villa were recorded at different stages during the excavations. Here we

consider a specific layer for which 26 pictures were taken with a hand-held photo camera (Nikon

F50) and scanned to PhotoCD. The on site acquisition of the images only takes a few minutes so

it does not slow down the excavation process. Some of the recorded pictures can be seen on the

top part of Figure 4. Note that in this case the geometry of the observed scene is too complex

to be reconstructed from a single depth map. Therefore, in this case the 3D model was obtained

by combining all the depth maps using a volumetric approach. More details on archaeological

applications of our techniques can be found in [26].

Lightfield rendering

For rendering new views two major concepts are known in literature. The first one is the geom-

etry based concept. The scene geometry is reconstructed from a stream of images and a single
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texture is synthesized which is mapped onto this geometry. For this approach, a limited set of

camera views is sufficient, but view-dependent effects such as specularities can not be handled

appropriately. This approach was discussed in the previous section. The second major concept

is lightfield rendering. This approach models the scene as a collection of views all around the

scene without an exact geometrical representation [22]. New (virtual) views are rendered from

the recorded ones by interpolation. Optionally approximate geometrical information can be used

to improve the results [11]. It was shown that this can greatly reduce the required amount of

images [3]. There are also several intermediate representations that combine view-dependent

texture with an explicit 3D surface model, such as view-dependent texture mapping [6] and sur-

face lightfields [44]. The approach presented in this paper allows to render views directly from

the calibrated sequence of recorded images with use of local depth maps. The original images

are directly mapped onto one or more planes viewed by a virtual camera.

To obtain a high-quality image-based scene representation, we need many views from a scene

from many directions. For this, we can record an extended image sequence moving the camera

in a zigzag like manner. To obtain a good quality structure-and-motion estimation from this type

of sequence and reduce error accumulation it can be important to also match close views that are

not predecessors or successors in the image stream [19].

The simplest approach consists of approximating the scene geometry by a single plane. The

mapping from a recorded image to a new view or vice-versa then corresponds to a homography.

To construct a specific view it is best to interpolate between neighboring views. The color value

for a particular pixel can thus best be obtained from those views whose projection center is close

to the viewing ray of this pixel or, equivalently, project closest to the specified pixel. For sim-
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plicity the support is restricted to the nearest three cameras (see Figure 5). All camera centers are

projected into the virtual image and a 2D triangulation is performed. The cameras corresponding

to the corners of a triangle then contribute to all pixels inside the triangle. The color values are

blended using the baricentric coordinates on the triangle as weights. The total image is built up

as a mosaic of these triangles. Although this technique assumes a very sparse approximation of

geometry, the rendering results show only small ghosting artifacts (see experiments).

The results can be further improved. It is possible to use a different approximating plane for

each triangle. This improves the accuracy further as the approximation is not done for the whole

scene but just for that part of the image which is seen through the actual triangle. The 3D position

of the triangle vertices can be obtained by looking up the depth value for the projection of the

virtual viewpoint in the depth map correspondiong to each vertex. These points can be interpreted

as the intersections of the lines connecting the virtual viewpoint and the real viewpoints with the

scene geometry. Knowing the 3D coordinates of triangle corners, we can define a plane through

them and apply the same rendering technique as described above.

Finally, if the triangles exceed a given size, they can be subdivided into four sub-triangles.

For each of these sub-triangles, a separate approximative plane is calculated in the above manner.

Of course, further subdivision can be done in the same way to improve accuracy. Especially, if

just a few triangles contribute to a single virtual view, this subdivision is generally necessary. It

should be done in a resolution according to performance demands and to the complexity of the

geometry. Rendering can be performed in real-time using alpha blending and texture mapping

facilities of todays graphics hardware. More details on this approach can be found in [21, 19, 16].

A similar approach was presented recently [2].
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Example We have tested our approaches with an image sequence of 187 images showing an

office scene. Figure 6 (top-left) shows one particular image. A digital consumer video camera

(Sony TRV-900) was swept freely over a cluttered scene on a desk, covering a viewing surface of

about
�����

. Figure 6 (top-right) shows the calibration result. Result of a rendered view are shown

in the middle of the figure. The image on the left is rendered with a planar approximation while

the image on the right was generated with two levels of subdivision. Note that some ghosting

artefacts are visible for the planar approximation, but not for the more detailed approximation. It

is also interesting to note that most ghosting occures in the vertical direction because the inter-

camera distance is much larger in this direction. In the lower part of Figure 6 a detail of a view is

shown for the different methods. In the case of one global plane (left image), the reconstruction

is sharp where the approximating plane intersects the actual scene geometry. The reconstruction

is blurred where the scene geometry diverges from this plane. In the case of local planes (middle

image), at the corners of the triangles the reconstruction is almost sharp, because there the scene

geometry is considered directly. Within a triangle, ghosting artifacts occur where the scene

geometry diverges from the particular local plane. If these triangles are subdivided (right image)

these artifacts are reduced further.

Rendering ambiguous reconstructions

When totally uncalibrated cameras are used, it is only possible to recover the structure of the

scene up to an arbitrary projective transformation [8, 13]. However, if some constraints on the

intrinsic camera parameters are available it is possible to reduce this ambiguity to metric. This
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is in general done through self-calibration. In recent years many different methods have been

proposed. Some are based on the assumptions that the intrinsics do not change during acquisi-

tion (e.g. [9, 29, 41]). Other methods relax the constraint of constant intrinsics but require the

knowledge of one or more intrinsic parameters (e.g. [30]). It was proven that for sufficiently

general motion the knowledge that pixels are rectangular is sufficient to allow for successful

self-calibration [30].

In practice, however, the motion of the camera is often restricted and there remains an ambi-

guity on the reconstruction. This is known as the problem of critical motion sequences (CMS).

It was first discussed by Sturm [37] and further studied in [17, 23, 38, 32]. Depending on the

constraints available for self-calibration different classes of motions can be identified as critical.

For each of these classes a specific ambiguity remains on the reconstruction. For the constraint

of constant intrinsics camera parameters the most important CMS classes are pure translation,

pure rotation, orbital motion and planar motion [37]. If the constraints are that all intrinsics are

known except for the focal length that can freely vary, the most important cases are forward mo-

tion, pure rotation, translation and rotation about the optical axis and hyperbolic and/or elliptic

motion [38].

It depends on the application whether some ambiguity is acceptable or not. There are two

main classes of applications for 3D reconstructions from images. The first one consists of metrol-

ogy applications and in most cases no ambiguity can be tolerated. The second class of applica-

tions consists of visualization. In this case the goal is to generate novel views based on original

images. Considering this application, the important point is not the correctness of the reconstruc-

tion, but the correctness of the novel views that are generated from it.
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This problem was addressed in [34] and also partially in [23]. Here we will discuss the results

we have obtained in [34]. In that paper we have derived a theorem that allows us to conclude

that it is possible to generate correct new views (i.e. with no observable distortion), even starting

from an ambiguous reconstruction. In this case, we should, however, restrict the motion of the

virtual camera to the type of the CMS recovered in the reconstruction. For example, if a model

was acquired by a camera with constant intrinsic parameters performing a planar motion on the

ground plane and thus rotating around vertical axes, then we should not move the virtual camera

outside this plane nor rotate around non-vertical axes. But, if we restrict our virtual camera

to this critical motion in the virtual world, then all these motions will correspond to Euclidean

motions of the original camera in the real world and no distortion will be present in the images.

Note that the recovered camera parameters should be used (i.e. the ones obtained during the

self-calibration process). This constraint can be relaxed when varying camera parameters are

considered. In fact, this result is related to the more general rule that for the generation of new

views interpolation is more desirable than extrapolation.

In fact, it is also possible to derive a practical approach that can characterize the expected

ambiguity that could be observed in a particular novel view. For this purpose the self-calibration

algorithm has to be run twice, once with the original sequence and once with the original se-

quence extended with the virtual camera. By comparing the uncertainty ellipsoids around the

solution one can obtain an idea of the observable ambiguity. If the fact of adding the virtual cam-

era largely reduces the undertainty ellipsoid, then an important ambiguity will be observable.

If the uncertainty ellipsoid is left unchanged, then the potential ambiguity is unobservable from

that specific viewpoint.
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This approach was used to develop a special viewer that could warn the user if ambiguities

might become apparent. In this case the background color would change from gree/light to

red/dark. Using the self-calibration algorithm described in [29] on the castle sequence, used

in the first part of this paper for illustration, a large uncertainty remained that corresponded to

a scaling along the average optical axis. For purpose of illustration we distorted our model

according to this uncertainty so that we could visually verify the predictions of the viewer. A

few views are shown in Figure 7. It should be clear that even some views very far away from the

originally recorded images can be rendered without risk of ambiguity (green/light views), while

some others that are less far away are showing a lot of ambiguity (red/dark views).

Conclusion

In this paper we have presented an image processing pipeline that takes a video or image se-

quence as input and automatically computes camera motion and calibration, scene structure and

depth maps from it. These results can then be used to generate different types of visual models.

Explicit 3D models as well as lightfield representations can be computed and used for render-

ing. This approach integrates state-of-the-art algorithms in computer vision, computer graphics

and photogrammetry. The approach was illustrated with a number of real examples. Finally,

we discussed the possiblity of rendering novel views in the presence of an ambiguity on the 3D

structure of the model. Our approach could for example be used to automatically optimize a

fly-through in a virtual environment containing 3D models obtained from image sequences.
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Figure 2: Original image pair (left) and rectified image pair (right).
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Figure 3: 3D model of a decorative Medusa head recorded at the ancient site of Sagalassos

in Turkey. Top: 3 views of the original video, middle: reconstruction of 3D feature points

with computed camera motion for the keyframes and one of the computed depth/range images,

bottom: shaded and textured views of the recovered 3D model.
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Figure 4: Integrated 3D representation of the excavations of an ancient roman villa in Sagalassos.

Top: two side-views of the 3D model, bottom: texture and shaded top-view of the 3D model.
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Figure 5: Drawing triangles of neighboring projected camera centers and approximating geom-

etry by one plane for the whole scene, for one camera triple or by several planes for one camera

triple.
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Figure 6: Unstructured lightfield rendering: image from the original sequence (top-left), recov-

ered structure and motion (top-right), novel views generated for planar (middle-left) and view-

dependent (middle-right) geometric approximation, details for different levels of geometric ap-

proximation (bottom).
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Figure 7: Different views of the castle with estimated relative ambiguities of 0.5, 1.5, 3 (top) and

0.1, 1, 8 (bottom).
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