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Abstract. A stereo rig can be calibrated using a calibration grid, but
recent work demonstrated the possibility of auto-calibration. There re-
main two important limitations, however. First, the focal lengths of the
cameras should remain fixed, thereby excluding zooming or focusing. Sec-
ond, the stereo rig must not purely translate, which however is the most
natural type of motion. This also implies that these methods collapse
when the motion comes close to being a translation.

The paper extends the literature to allow changes in focal lengths (these
may be independent for both cameras) and purely translational motions
of the stereo rig. First, the principal points of both cameras are retrieved.
Changes in focal lengths are then dealt with through weak calibration.
Each position of the rig yields a projective reconstruction. The projec-
tive transformation between them allows to first retrieve affine structure
which subsequently is upgraded to metric structure, following the general
outline described in [12].

Rather than posing a problem to the method, rig translation allows fur-
ther simplifications and is advantageous for robustness.

1 Introduction

Recently, methods to obtain the Euclidean calibration of a stereo rig have been
proposed [12, 3]. These methods impose some restrictions. First, all intrinsic
camera parameters are assumed fixed. This implies that e.g. the camera focal
lengths are not allowed to change, and therefore precludes useful adaptations
to the scene such as zooming and focusing. Second, the rig is not allowed to
purely translate. Unfortunately, translation is often preferable (e.g. shortest path
between points). In practice, the methods only work well if the rotational motion
component is sufficiently large. In this paper the existing methods are extended
to cope with changes in focal length. This will also alleviate the need for general
motion (thus allowing the stereo rig to purely translate).

* IWT fellow (Flemish Institute for the Promotion of Scientific-Technological Research
in Industry)

** Postdoctoraal researcher of the Belgian National Fund for Scientific Research
(N.F.W.0))



2 Camera model

The camera model used here is the pinhole model, where the image is formed
under perspective projection on a photo-sensitive plane perpendicular to the
optical axis. Changes in focal length move the projection center along the axis,
leaving the principal point® unchanged. This assumption is fulfilled to a sufficient
degree with the cameras commonly used[7] and especially with those used in the
experiments reported here. The relation between image points and world points
is given by

AijsMijs = Pjs M; (1)

with P, the 3 x 4 camera matrix for the j'* view, s stands for left or right,
m;j, and M; are column vectors containing the homogeneous coordinates of the
image points and world points resp., and \;;s expresses the equivalence up to a
scale factor. If P, represents a Euclidean camera, it can be put in the form [6]

P;, = Kjs [Rj5| - sttjs] (2)

where R, and ¢, represent the Euclidean orientation and position of the camera
with respect to a world frame, and Kj, is the calibration matrix of the jth
camera:
Tos —Tpa €080, f7, Uns
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In this equation r;, and 75 represent the pixel width and height, 8, is the angle
between the image axes, u,s and uy, are the coordinates of the principal point,
and f;s is the focal length. Notice that the calibration matrix is only defined
up to scale. In order to highlight the effect of changing the focal length the

calibration matrix K;s; will be decomposed in two parts:

10 (fls/fjs - l)uws
st =101 (fls/fjs - ]-)Uys K, . (4)
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The second part K is equal to the calibration matrix of the s** camera for
view 1, whereas the first part, which will be called Ky, s in the remainder of
this text, models the effect of changes in focal length. From equation (4) it
follows that once the principal point u, is known, Ky, , is known for any given
value of f;s/fis. Therefore, finding the principal point is the first step of the
reconstruction method. Then, if the change in focal length between two views
can be retrieved, its effect is canceled by multiplying the image coordinates to
the left by K;Jlss

Retrieving the principal points us is relatively easy for cameras equipped
with a zoom. Upon changing the focal length (without moving the camera or

th

3 The principal point is defined as the intersection point of the optical axis and the
image plane.



the scene), each image point will — according to the pinhole model — move on a
line passing through the principal point. By taking two or more images with a
different focal length and by fitting lines through the corresponding points, the
principal point can be retrieved as the common intersection of all these lines.
This is illustrated in Figure 1. In practice the lines will not intersect precisely
and a least squares approximation is used, as in [7].

For the sake of simplicity, we will assume that R;; = I and #;, = 0. This is
not a restriction because the reconstruction is up to a similarity (i.e. Euclidean
+ scaling) anyway. In this way the 6 degrees of freedom of a Euclidean trans-
formation are fixed. Choosing a value for the focal length fis fixes the last free
parameter.

Fig. 1. Illustration of the camera and zoom model. The focal lengths fi1 and fo are
different, the other parameters (rz,ry, Uz, uy,0 ) are identical.

3 Retrieving focal length

As mentioned before, the first step in the calibration process is the recovering of
the changes in the focal length for both cameras. This will be done by looking at
the displacements of the epipoles. The epipoles are two points associated with a
pair of cameras. The epipole in one camera image is the projection of the other
camera’s center. Note that the epipoles of a fixed stereo rig stay put, independent
of the rig’s motion. If the focal lengths of the cameras change, however, then the
epipoles will shift (Fig. 2). These shifts suffice to derive the relative change in
focal length. It follows from the equations for the epipoles

Aej, €js = Ae, (es + (f1s/ fjs — Dus) (5)

that f;s/fis can be recovered in a linear way. In fact, the explicit calculation of
focal lengths themselves is not called for. Indeed, one can transform the images to



CL

elL e2l.

Fig. 2. Illustration of the displacement of the epipole for the left and right camera when
changing the focal length. CL is the center of the left camera, eor and e1r the epipoles
in the left camera for different focal lengths (for and fir) and ur is the principal point.
Similar notations are used for the right camera.

what they would have been like without the change in focal lengths by applying
the transformation KJTJIS to the image (see equation (4)).

4 Affine and Euclidean calibration

When the images are corrected as to undo the changes in focal length, calibration
is obtained by generalizing the elegant method proposed by Zisserman et al
[12]. This method first retrieves the affine calibration based on the eigenvector
structure of the transformation T between the projective reconstructions from
the two positions of the rig. Once the infinite homography is known, one can use
the constraints on the camera calibration matrix described in [6, 8]. In the case of
a translating stereo rig this is not enough, because the problem is ill-conditioned
for any movement close to translation [12]. Hence, one has to strike a balance
between the ease of setting up the system (the less calibration the better) and the
flexibility it has to offer in its use (e.g. being able to perform any kind of motion
and to dynamically zoom and focus). Hence, this paper gives in with respect to
completely calibration-free operation in two respects. First, the principal points
are extracted, which is not too difficult through the very application of changes
in the focal lengths. Second, the camera axes are supposed to be orthogonal.
This assumption hardly poses any restriction with CCD cameras.

4.1 Affine calibration

One view with a stereo rig suffices to get a projective reconstruction [5, 4]. Having
two views yields two reconstructions, M;p; and M;p, say (these are 4-vectors of
homogenous coordinates for the it" scene point). These two reconstructions are
related by a projective transformation T1s:

Xit2M;p1 = T12M;po . (6)



If one uses the same camera matrices for both reconstructions (i.e. Py = [I|0]
and Py = [[eg]«F|eg] with F the fundamental matrix and eg the epipole of the
right camera[11]), T2 can be written as

T2 = TfalETuETPE , (7)

a conjugation of the Euclidean transformation T which models the motion of
the rig between the two views, with the projective transformation T pg between
the reconstructions and the Euclidean world. This observation is key to the
following analysis proposed in [12]. The eigenvectors of T3 are related to these
of Tisp by the same transformation Tpg. Because the eigenvectors of Tiop
are all in the plane at infinity 7, the eigenvectors of Ts indicate the position
of my, in the projective frame. Once 7y, is known it is easy to get the infinity
homography Ho,rg. This homography transforms the projection of the points at
infinity from the left image onto their equivalents in the right image, and hence
can be retrieved from at least 4 point correspondences. In general 3 eigenvectors
of Ti5r are independent and thus —by projection in the images— give rise to
3 correspondences. Adding the correspondence between the epipoles which are
both the projection of all points on the line passing through both camera centers
(including the point at infinity), allows to calculate Hoor,g. To obtain an affine
reconstruction one can then use the following camera matrices|§]

Pra =[110] and Pra = [Hoorrler] - ®

4.2 Affine calibration for translation

If the motion of the stereo rig is restricted to a translation, there is an easier
and more robust method to recover the affine structure of the scene, [9], which
will now be generalized to changing focal lengths.

In case of a camera translation between two views (without changing the
focal length), the epipolar geometry is the same for both images. This means
that the epipolar geometry between two views obtained by the same camera is
completely determined by knowing the position of the unique epipole. Adding
changes in focal length between the images adds one degree of freedom when the
principal point is known.

Given three points in the two views, one knows that a scaling (with respect
to the principal point and equal to the focal length ratio) should bring them
in a position such that the lines through corresponding points intersect in the
epipole. This yields a quadratic equation in the focal length ratio. The epipole
itself follows as the resulting intersection. In practice, the data will be noisy, and
it is better to consider information from more points. The following equation
describes the relation between the image coordinates in both images

/\i2smi23 = /\ils (mils + (fls/st - ]-)us) + )\621S €215 (9)

where m;15, Mi2s, s and ea1, are column vectors of the form [z y 1]T. Equation
(9) gives 3 constraints for every point and was used to form an overdetermined



system, yielding among other things fas/f1s and A;1s. This leads to a system of
nonlinear equations?, which can be solved robustly (see [10] for more details).

At this stage the affine reconstruction is trivial to obtain. From equation (1)
it followse that [)\ﬂsmiTls 1]7 is related to M; by an affine transformation.

In the next section the infinity homographies will be needed. Observe that
for translational motions Heo12r, and Heo12r will be equal to Ky,, 1, and Ky,
respectively. Ho1zr can be extracted as the 3 x 3 upper-left submatrix of the
affine transformation relating the affine reconstructions obtained from the left

and the right camera respectively®.

4.3 Euclidean calibration

To upgrade the reconstruction to Euclidean structure, the camera calibration
matrix Ky, (or K;g) has to be known. This is equivalent to knowing the image
B, of the dual of the absolute conic for the left camera, since By, = K; LKlTL.
The matrices B1z and B1g are constrained in the following way [6, 8, 12]:

k12rB1r = HoororBirHl 1 (10)
and for each camera:

k120Bor = Hoorar BirHL 151 (11)

k128B2r = Hoo12rB1rH L 105 (12)

Egs. (11) and (12) are easier to use because k121, and k12g can be forced to 1 by
taking det Hyo12r, = 1 which gives a set of linear equations. The problem with
pure translation is that eqs. (11) and (12) become trivial.

The knowledge of ur, and ugr and the orthogonality constraint is called to
the rescue. Take a closer look at By, (or Byg for that matter):

2 —2 2
fitToy T UL,  ULoULy  ULs
— 2 —2 2
B = ULgurLy  fipTry + ULy ULy (13)
ULz ULy 1

Combining Egs. (10) and (13) gives 6 linear equations in 5 unknowns:

kLr(fRrRs + uh,) = anrg: + bllrij +c11 (14)
KLRURsURy = Q127> + b127‘£y2 + c12 (15)
RLR(fIZ%rEZ + u%y) = agr;. + b22’l‘£y2 + Coo (16)
KLRURgy = (1137‘,§w2 + b137“£; + a3 (17)

KLRURy = QgsT[, + basTp ) + Cas (18)

KLR = a3sTp, + bssrp, + Css (19)

* Notice that, in contrast to Eq.(5), we can not see A5 and Xi1s(fis/fzs — 1) as
independent unknowns because (fis/f2s — 1) is unique for all points.
® These reconstructions must be built with camera centered reference frames.



where a;;,b;; and ¢;; only depend on Hy gy and uz (which are both known).
These set of equation can be solved linearly by seeing r,{j, r,{;, KLR, KLR( f}%rﬁi +

u%,) and KLg( f}%r}}; + u%,) as the unknowns. Notice that one could just solve
Eqgs.(15), (17), (18) and (19). The Euclidean calibration of the left camera suffices
to obtain a FEuclidean reconstruction. We can upgrade the affine reconstruction
(obtained by the methods described in the previous sections) to Euclidean by
applying the transformation

(20)

Ko
Tap = [ 0 1]

5 Results

The algorithm described in the previous section, was applied to synthetic images
as well as real images. From tests with synthetic data one can conclude that
restricting the motion to translation gives more stable results. For a report on
these results, we refer to [10].

Next, some results obtained from a real scene are presented. The scene con-
sists of a box and a cylindrical object on a textured background. Images were
acquired with a translating stereo rig. They can be seen in Figure 3. Figure 4

Fig. 3. Two pairs of images of a scene taken with a translating stereo rig.

shows the reconstruction results. Notice that angles are well preserved (e.g. the



top and the front view differ by 90°, the box and the floor have right angles
in the reconstruction). The inaccuracies in the reconstruction (like the dent in
the cylindrical object) are mainly due to the rendering process which uses tri-
angulation between matched points and are not related to the accuracy of the
calibration.

Fig. 4. Different views of the 8D reconstruction of the scene. Top left: top view, bottom
left: front view,top and bottom right: general views.

6 Conclusion

The possibility to auto-calibrate a moving stereo rig with variable focal lengths is
demonstrated. Only very mild forms of camera calibration had to be introduced
in return. Moreover, it is shown that the method generalizes to cases of pure
translation. This not only extends the existing methods, but more importantly,
can also be implemented with increased robustness. The method is illustrated
with a real scene. The results are convincing with respect to the Euclidean auto-
calibration aspects.

Further work includes the integration of the methods into an implementation
that detects the degenerated cases (i.e. translation) by itself. Also the application



of

more robust techniques for the recovery of the projective structure is under

investigation. Extension to variations in other parameters than focal length will
be considered too.
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