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Abstract

This paper presents a system for 3D reconstruction of
large-scale outdoor scenes based on monocular motion
stereo. Ours is the first such system to run at interac-
tive frame rates on a mobile device (Google Project Tango
Tablet), thus allowing a user to reconstruct scenes “on the
go” by simply walking around them. We utilize the device’s
GPU to compute depth maps using plane sweep stereo. We
then fuse the depth maps into a global model of the environ-
ment represented as a truncated signed distance function in
a spatially hashed voxel grid. We observe that in contrast to
reconstructing objects in a small volume of interest, or us-
ing the near outlier-free data provided by depth sensors, one
can rely less on free-space measurements for suppressing
outliers in unbounded large-scale scenes. Consequently, we
propose a set of simple filtering operations to remove unre-
liable depth estimates and experimentally demonstrate the
benefit of strongly filtering depth maps. We extensively eval-
uate the system with real as well as synthetic datasets.

1. Introduction
Obtaining accurate, large-scale, and dense 3D recon-

structions of environments in (or close to) real-time is a
core problem in 3D Computer Vision. Recently, multiple
solutions to this problem have been proposed that run inter-
actively and rely on active depth sensors, e.g., Microsoft’s
Kinect or the depth camera integrated in Google’s Project
Tango devices. In such systems the user walks around with
a hand-held device and reconstructs the scene, allowing the
user to directly add data where it is needed. Active sensors
are usually restricted to indoor use because of too strong
background illumination by the sun, and have a limited
depth range. This creates a strong need for passive, image
based solutions to overcome these problems.

In this paper, we present a scalable system for dense 3D
reconstruction of large outdoor scenes based on monocu-
lar motion stereo. Our approach achieves interactive frame
rates on Google’s Project Tango Tablet by utilizing the de-

Figure 1. A model reconstructed by our system running at interac-
tive frame rates on a Google Project Tango Tablet, with the camera
trajectory shown in red. The user walked 373 meters around the
building, which took about 12 minutes. The mesh is generated
using motion stereo on a grayscale fisheye camera.

vice’s GPU; see Fig. 1 for an example of a reconstruction
obtained interactively on a tablet. Thanks to the device’s
fisheye camera a large field-of-view is observed in each im-
age, which significantly simplifies and speeds up the cap-
turing of larger scenes compared to standard lenses. Our
method follows a two-step approach. First, depth maps are
computed from an input video stream via stereo matching
over time. Subsequently, these depth maps are fused glob-
ally using volumetric depth map fusion.

Compared to the output of active sensors, depth maps
computed from images only contain significantly more
noise and outliers. Additionally, due to for example texture-
less areas, depth can in general not be computed for all
areas in an image. Depth measurements not only contain
information about the surface position, but also about the
free-space along the viewing ray. In the fusion step, this
free-space information is used to keep the space in front of
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objects free from unwanted surface patches reconstructed
due to outliers in the input data. While for small-scale or
indoor scenes usually the whole free-space can be observed
through suitable choices of camera positions, this is not fea-
sible for large-scale outdoor scenes. We tackle these prob-
lems by propagating depth data from frame to frame and
identifying reliable measurements, which are fused locally
using a Kalman filter. Outliers are discarded. The remain-
ing depth observations are integrated into the volume.

This paper makes the following contributions. We
present and evaluate a system for large-scale 3D reconstruc-
tion of outdoor scenes that runs at interactive frame rates
on modern mobile devices. Our system uses monochrome
fisheye images and thus does not come with the limitations
of systems using active depth cameras, such as a restricted
depth range and sensitivity to background illumination. We
demonstrate the importance of filtering outliers in the depth
maps and propose multiple filtering steps, which despite
their computational simplicity significantly improve the re-
construction quality without affecting the real-time perfor-
mance. An extensive experimental evaluation on both syn-
thetic and real data shows that our system compares favor-
ably against active sensor based approaches.

2. Related Work
Dense 3D modeling is a very well studied problem in

computer vision. In this section, we discuss the most re-
lated works to ours. Therefore, we focus on efficient large-
scale systems. Most of these systems first acquire depth
maps from individual viewpoints and then fuse the depth
data into one globally consistent 3D model. The systems
largely differ in how the depth data is obtained and fused.

[25] generates 3D mesh models on a city scale out of
street level video sequences in real-time by heavily relying
on GPUs. Depth maps are computed using plane sweeping
stereo [34], utilizing the predominant directions present in
urban scenes [6]. Depth data from adjacent frames is then
locally fused into higher quality depth maps [18].

[19] uses optical flow and regularization to compute
high quality depth maps from video data of a monocu-
lar camera. DTAM [21] simultaneously uses the result-
ing dense reconstruction to robustly track the camera pose.
Both approaches rely on the use of desktop GPUs to achive
real-time performance.

Due to lack of texture it is often impossible to ob-
tain reliable depth estimates for all pixels of a depth map.
While [19, 21] employ regularization to fill in missing re-
gions, [4,24,28,32] filter out unreliable points based on esti-
mates of their uncertainty. [14,31] present a 3D reconstruc-
tion system for mobile phones using monocular video input.
For each keyframe, a depth map is estimated in a multi-
resolution approach to gain speed and robustness. Unlike
our system, their approaches do not achieve real-time per-
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Figure 2. System diagram for the mobile real-time usecase.

formance but require a few seconds for processing.
Volumetric approaches fuse depth data by determining

for each element of the space whether it is inside or outside
of an object. A line of research using depth maps com-
puted from images uses global regularization over the vol-
ume [15, 36] and as such the methods are generally non-
interactive. Moreover, storing the whole space in terms of
regular sized voxels is not feasible for large-scale systems.
Subdividing the space into tetrahedrons based on depth data
leads to an adaptive representation of the space [10] and al-
lows for detailed reconstruction of whole cities or moun-
tains from aerial images. Due to global visibility optimiza-
tion and surface mesh refinement, this approach cannot op-
erate in an incremental fashion, rendering it unsuitable for
interactive 3D reconstruction. Interactive methods are fea-
sible when only using a sparse set of 3D points and carving
tetrahedrons [12, 23, 35].

With the availability of GPUs and structured light sen-
sors, i.e., RGBD (color and depth) data, real-time volumet-
ric reconstruction from depth maps has become feasible and
popular [2, 20, 22, 30, 33]. The data stored in the voxels
is the sum of truncated signed distance functions (TSDF)
to the input measurements [3]. Due to the almost outlier
free nature of the input data no regularization is utilized.
In order to represent large scenes, they are subdivided into
multiple volumes of interest [33], or hierarchical data struc-
tures [2,30] or voxel hashing [22] are utilized. Using stereo
matching to generate depth maps from a monocular camera
on a desktop GPU, [26] reconstructs small scenes interac-
tively with high quality using a TSDF approach.

3. System Overview

On the mobile device, camera poses are computed in
real-time. Our system then generates depth data and fuses it
into a volume (c.f . Fig. 2). The camera poses are computed
by a motion tracking pipeline implemented by the Tango
project: KLT feature tracks [29] in the fisheye images and
inertial measurements are fused in an extended Kalman fil-
ter, similar to [9]. Besides stabilizing camera tracking, IMU
data is used to determine the metric scale of the scene. Our
system then computes depth maps directly on the fisheye
images, utilizing the wide field-of-view. These depth maps



are locally fused and filtered, which avoids integration of
outlier measurements into the volume. This is crucial in
outdoor scenes where often a large part of the free-space
cannot be observed due to the inability to reach the required
view points. Eventually, the filtered depth maps are inte-
grated into a volume storing a TSDF using the voxel hash-
ing [22] based approach [13]. Observations are integrated
by casting rays along pixel observation directions. To ben-
efit from the confident free-space measurements, we inte-
grate the TSDF along each viewing ray from the camera
up to the depth measurements, instead of only considering
a small region around the observed depth. Meshing of the
TSDF volume for display or output is done using Marching
Cubes [16], which is incrementally applied to subvolumes
when they change.

4. Motion Stereo on Mobile Devices

Depth maps generated from stereo matching contain sig-
nificantly more outliers than data from consumer depth
cameras. Integrating those depth maps directly into a vol-
ume will produce wrong geometry. The main objective of
our system is to allow a user to interactively reconstruct
large-scale outdoor scenes on a mobile device. In large
scenes, the free-space measurements required to remove
outliers often cannot be obtained. We therefore propose to
identify reliable depth measurements and only use those for
volumetric fusion. Consequently, we trade-off depth map
completeness for accuracy. Our system displays the current
state of the reconstruction to the user in real-time. Thus, the
user can easily record more data where needed, making this
trade-off feasible.

In order to achieve interactive frame rates, we exploit the
high overlap of subsequent video frames by propagating the
depth map computed from the current frame to the next us-
ing an extended Kalman filter similar to [4]. Additionally,
we utilize a parallel implementation for GPUs, which nowa-
days are built into many mobile devices.

In the following, we describe how depth maps are ob-
tained, propagated and filtered to remove outliers.

4.1. Depth Observation

We use plane sweep stereo [34] directly on fisheye im-
ages [8]. This allows us to make use of the whole field-of-
view of the fisheye camera. We do stereo matching between
the current and one recently recorded frame. This frame is
selected such that it has high overlap with the current one
but still provides a good triangulation angle. We do not al-
ways select the best ranked frame, but randomly select one
of the three best ones to prevent using the same frame over
and over again in case of little camera motion.

Cost aggregation. We use fronto-parallel plane sweeps
with a fixed number of planes in a fixed depth range. The
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Figure 3. Depth and uncertainty extraction from the cost vol-
ume: A parabola (magenta) is fitted to the minimum of the discrete
cost graph (black) for sub-plane depth estimation. The uncertainty
range (blue) is estimated as the width of all minima at a factor
times the minimum cost (orange). If there are multiple similar
minima, the uncertainty range encompasses all of them (right).

planes are sampled equidistantly in inverse depth space in
analogy to disparities. We utilize a zero-mean normalized
cross correlation (ZNCC) matching score in order to be ro-
bust against local and global lighting changes.

We embed the cost aggregation in a multi-resolution
scheme (using 2 levels) and compute the final cost volume
as a weighted average of all cost volumes [37].

Depth extraction. After the cost volume is calculated, we
extract a depth estimate and a measure of its uncertainty
from it for each pixel in the image. For the depth estimate,
we first find the discrete depth sample having the lowest cost
for a given pixel. If the highest ZNCC score is lower than
0.4, we treat the depth observation as invalid. In order to
estimate the cost minimum with sub-pixel accuracy, we use
the standard approach of fitting a parabola to the three cost
samples centered on the minimum (see e.g. [8]) and extract
the depth estimate as the location of the parabola minimum
(c.f . Fig. 3).

Uncertainty estimation. We estimate the uncertainty of
each pixel’s inverse depth. We are using a normal distribu-
tion as this is required to update the Kalman filter that we
utilize for depth propagation. We assume that noise in the
image pixel values and other un-modeled effects result in an
uncertainty on the cost volume minimum. The magnitude
of the noise can be modeled as cu = αcmin for the minimum
cost of a pixel cmin with a fixed factor α. We then find the
minimum and maximum inverse depth at which the constant
function with height cu intersects the (linearly interpolated)
cost curve (c.f . Fig. 3). Finally, the resulting uncertainty
range is mapped to the symmetric uncertainty of a normal
distribution. The standard deviation of this normal distribu-
tion is obtained as

σ = max(µ− umin, umax − µ) .

This uncertainty model takes into account how well-defined
the matching cost minimum in z direction is, which is af-
fected by the geometric configuration of the cameras used
for stereo and the configuration of the planes (c.f . Fig. 4).



Figure 4. Uncertainty visualization for sidewards (top) and for-
ward (bottom) movement. From left to right: camera image, un-
certainty for latest plane sweep (blue: certain, red: uncertain), full
internal depth map (red: close, blue: far), filtered depth map. The
epipole for forward movement and parts of the wall not intersected
by one of the 40 sweep planes used for this figure are uncertain.

4.2. Depth Update and Propagation

Following [4], we use an extended Kalman filter to inte-
grate depth measurements over time and to propagate depth
hypotheses from frame to frame. For each pixel in an im-
age, we store the current state of a depth hypothesis as the
inverse pixel depth µ, and the corresponding standard devi-
ation σ. The depth observations that are obtained as de-
scribed in the previous section directly provide measure-
ments of the inverse depth µo with an associated variance
estimate σ2

o . If no previous estimate for a pixel exists, the
observation is used to initialize the filter. Otherwise, µo and
σ2
o are used to update values µi,p and σi,p predicted from

the previous iteration for iteration i as

µi =
σ2
i,pµo + σ2

oµi,p

σ2
i,p + σ2

o

, σ2
i =

σ2
i,pσ

2
o

σ2
i,p + σ2

o

. (1)

After incorporating new depth observations we run a 3 × 3
median filter on the depth map in order to remove outliers.
We evaluate the effect of this step in Sec. 5.

For correct propagation, one would need to determine
the full 3D uncertainty of each pixel induced by the cam-
era transformation. For simplicity and speed, we assume
for calculation of the propagated variance that the change
in depth in transforming a hypothesis from one frame to
another is mostly caused by a camera translation tz along
the optical axis only, neglecting camera rotation. This as-
sumption is justified by the expectation of relatively slow
movement, in particular slow rotations, for reconstruction
purposes. We map the resulting uncertainty onto the view-
ing ray of the corresponding pixel in the new frame. Instead
of modeling the prediction noise additively on the state as in
a standard extended Kalman filter, as used in [4], we model
it as noise on the camera translation. This resembles the real
source of error and allows to use estimates of the camera
pose uncertainty for more accurate depth uncertainty prop-
agation. Denoting the error on tz as uz , the state transition
function returning the true state given the input becomes:

µi+1,true =
(
µ−1
i − (tz + uz)

)−1
. (2)

Figure 5. Example input images used in our system (left of each
pair) and images after correcting for vignetting (right).

Consequently the propagation equations are, with σ2
tz being

the variance estimate for tz:

µi+1,p =
(
µ−1
i − tz

)−1
,

σ2
i+1,p = Jµiσ

2
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)4

σ2
i + (µi+1,p)

4
σ2
tz . (3)

[4] forward-propagate the depth hypotheses from one
frame to the next, resulting in holes that need to be filled
separately. We convert the depth map in the old frame to
a triangle mesh and render it as a dense surface to obtain
propagated depth and variance values at the centers of the
new frame’s pixels. We impose a maximum inverse depth
difference threshold for creating triangles between neigh-
boring pixels to avoid generating triangles containing out-
liers or bridging depth discontinuities.

Validity counting. Similar to [4], we use a validity counter
for each pixel to detect and remove inconsistent measure-
ments. We determine the consistency of a measurement,
given a prior state p and observed state o, by evaluating:

|µp − µo| < σp + σo . (4)
The validity counter is increased (up to a given maximum
value) if the new measurement is consistent with the prior
state. Inconsistent measurements are not integrated into the
state and decrease the counter. Once the counter reaches
zero, the corresponding measurement is discarded as incon-
sistent. Intuitively, this prevents the system from dropping
a depth estimate immediately if there is a small number of
outlier measurements, and prevents integrating wrong mea-
surements into the state.

4.3. Outlier Filtering

As the volumetric TSDF representation in general is un-
able to handle outliers in the data, except if covered by free-
space measurements, we apply a number of filtering steps to
the depth maps in order to remove erroneous depth values
before they are integrated into the volume.

Consistency over time. Observations which appear only
for a short time are likely to be outliers or not estimated
well. We make use of this for filtering them. We define
a time interval t = 0.25 seconds for checking consistency
and require to observe corresponding pixels at both points
in time. Corresponding pixels are found by rendering an old
depth map that was estimated approximately t seconds ago
into the current view.



Variance thresholding. We use uncertainty propagation to
estimate the depth variance σ2

d from the inverse depth vari-
ance σ2

di
using the inversion Jacobian J = d

dx
1
x at inverse

depth di: σ2
d = Jσ2

diJ
T =

1

di
4σ

2
di . (5)

We then calculate the corresponding variance in the pixel’s
distance (instead of depth) and impose a threshold on it.

Angle thresholding. Common artifacts of stereo methods,
e.g., interpolation between foreground objects and back-
ground objects or complete outliers, produce slanted angles.
Thus we set a threshold on the angle between the observa-
tion direction of each pixel and the surface normal estimated
from the depth map.

Connected component analysis. This step removes re-
maining depth map components which are ill-defined, sim-
ilar to [26]. After the angle filtering step, we transfer the
sparse depth map from the GPU to the CPU and find its
connected components. We remove all components which
include less than 20 pixels.

5. Experimental Evaluation

Hardware and software setup. We have implemented
the proposed motion stereo system both on a standard PC
equipped with a Nvidia GeForce 780 GTX graphics card
and Intel Core i7-4770K processor, and on a Google Project
Tango Tablet Development Kit containing a Nvidia Tegra
K1 (quad core) chipset. The tablet contains a fisheye cam-
era which we use for motion stereo, as its wide field-of-view
(FOV) enables a user to easily reconstruct larger parts of a
scene compared to a camera with a normal FOV. Example
input images from this camera can be seen in Fig. 5 on the
left. In order to get more consistently colored reconstruc-
tions, we approximately correct vignetting in the images
using a pre-calibrated rectification mask. Corrected images
are shown on the right in Fig. 5. We downsample images to
a resolution of 320 × 240 for all experiments. For qualita-
tive experiments on the tablet device we use visual-inertial
odometry as described in Sec. 3. For the remaining experi-
ments we determine poses with bundle adjustment, operat-
ing on FREAK [1] descriptors for DoG [17] keypoints.

Experiments. The main objective of the proposed sys-
tem is to enable an interactive reconstruction of large out-
door scenes on mobile devices. However, obtaining ac-
curate ground truth for those scenes is a very challenging
problem. Thus, we mainly perform a qualitative analy-
sis of our system on multiple large-scale scenes that we
recorded. To quantitatively measure the quality of the re-
constructions obtained with our approach, we compare our
motion stereo system against 3D models generated using
the tablet’s depth sensor on multiple indoor datasets and
outdoor datasets recorded in the evening. We also evaluate
against ground truth on synthetic datasets.

Frames Duration [s] Length [m]

Relief 891 31.7 12.2
Exhibition 7918 299.7 176.6
Underpass 4383 166.5 70.0
Plants 2046 76.3 35.6

Table 1. Details of the datasets recorded for quantitative evaluation
in this paper. Videos are recorded at roughly 27 frames per second.

Offline PC Mobile

Number of sweep planes 270 200 70
Voxel resolution [cm] 2 4 7.5
Depth calculation freq. [Hz] 27 27 12
Depth integration freq. [Hz] 27 27 8

Table 2. Parameters of different configurations used for quantita-
tive evaluation. The PC and mobile settings give approximate val-
ues for real-time use on current hardware, in medium-scale scenes.

PC Tango Tablet

Addition of a reference frame 1.5± 0.2 6.2± 3.3
Vignetting correction 1.0± 0.1 1.2± 0.7
Downsampling, transfer to GPU 0.5± 0.2 4.9± 3.0

Depth estimation 8.1± 0.9 83.0± 7.6
Plane sweep (320× 240) 3.9± 0.6 35.2± 2.1
Plane sweep (160× 120) 1.3± 0.2 13.4± 2.6
Multires. fusion, depth extraction 1.6± 0.4 15.2± 2.6
Depth propagation 1.3± 1.7 10.3± 5.8
Filtering, transfer to CPU 1.3± 0.4 13.5± 5.9

TSDF integration, remeshing (CPU) 30.2± 23.7 122.1± 74.6

Table 3. Timings in milliseconds (mean± standard deviation) for
individual components of our system, averaged over a sequence of
multiple thousand video frames. Visual-inertial odometry, depth
estimation, TSDF integration, and visualization run concurrently.
The time for TSDF integration depends on the size of the scene.

5.1. Quantitative Evaluation

Synthetic datasets. We choose the living room sequences
from the ICL-NUIM datasets [7], as they come with ground
truth model data. The 4 short sequences show a room ob-
served with a different camera trajectory in each sequence.
The camera trajectories are real trajectories estimated by a
visual odometry system. For these sequences we use a re-
construction depth range of 0.3 to 5 meters.

RGBD datasets. We compare the reconstructions obtained
with our approach to 3D models generated with data by the
depth sensor mounted on the Tango tablet. The depth sen-
sor provides depth maps at around 5 Hz, which contain a
very small amount of outliers. Estimating the depth of uni-
formly textured regions is a very challenging task for pas-
sive approaches while being trivial for RGBD sensors. We
thus limit our evaluation to well-textured scenes in order to
enable a fair comparison that is not biased towards the ac-
tive depth sensor. Table 1 provides information about the
datasets used and Figure 6 shows the reference models re-
constructed with depth camera data. For these sequences



Figure 6. Models used for comparison with RGBD data, with camera trajectories in red. The meshes are generated from depth camera data
of a Project Tango Tablet with the method of [13]. Datasets from left to right: Relief, showing a detailed wall structure within a building.
Exhibition, a recording of a large room. Underpass, an urban outdoor sequence recorded in the evening. Plants, a natural outdoor scene
consisting of two bushes.

Figure 7. Example images of reconstructions with different settings. Left: Synthetic Living room 2 dataset. Right: Real-world Underpass
dataset. Within each scene from left to right: Offline, PC realtime, mobile realtime.

Depth map Model
Acc. Comp. Acc. Out. Comp.

Baseline (Mobile realtime)
Living room 0 93.2% 34.9% 89.5% 2.5%
Underpass 89.9% 43.6% 92.9%

No connected component filtering
Living room 0 92.4% 36.1% 86.6% 5.4%
Underpass 89.3% 45.2% 95.5%

No angle filtering
Living room 0 92.5% 37.2% 88.3% 3.7%
Underpass 89.6% 44.1% 93.5%

No variance filtering
Living room 0 93.0% 35.1% 89.2% 2.6%
Underpass 89.8% 43.8% 93.8%

No speed filtering
Living room 0 89.1% 52.8% 77.4% 13.1%
Underpass 86.2% 70.7% 95.4%

No median filtering
Living room 0 92.0% 16.4% 88.8% 1.8%
Underpass 90.4% 27.4% 85.9%

No multiresolution
Living room 0 94.6% 33.0% 90.4% 2.1%
Underpass 92.0% 37.1% 88.0%

Table 4. The impact of different filtering steps on both the depth
maps and resulting models, measured with mobile realtime set-
tings by disabling the corresponding filter individually. Accuracy
and completeness are evaluated at an error threshold of 10cm for
the Underpass dataset with depth camera images, and 7.5cm for
the synthetic Living room 0 dataset from the ICL-NUIM bench-
mark. Outliers are evaluated at a threshold of 15 cm.

(and all qualitative evaluations), we use a reconstruction
depth range of 0.8 to 50 meters.

Results. We evaluate our system with settings suitable for
interactive operation on current mobile devices, on current
desktop PCs, and with settings for high-quality offline re-
construction. Table 2 gives the parameters used for the dif-

ferent configurations. Timings for our algorithm running on
a Project Tango Tablet and on a desktop PC are given in Ta-
ble 3. Components are partially run in parallel and thus do
not sum up to the total frame time.

We evaluate depth map accuracy as the percentage of
valid pixels in estimated depth maps which are within a cer-
tain Euclidean distance from the corresponding pixel in the
ground truth depth map. Analogously, we evaluate depth
map completeness as the percentage of pixels in the ground
truth depth maps for which both a valid corresponding esti-
mate exists, and its distance is within the error bound. For
calculating model accuracy, we sample points on the recon-
structed mesh and for each point find the distance to the
closest point on the ground truth model. The percentage
of points for which this distance is below a threshold is the
model accuracy. We use dense Monte-Carlo subsampling
to avoid introducing a bias. Analogously, for model com-
pleteness we subsample the ground truth model and find the
percentage of points for which the closest point on the re-
construction is not farther away than a threshold.

As the synthetic ground truth model is always at least as
complete as its reconstructions, and the reconstructions of
real datasets may be at least as complete as the models gen-
erated from depth sensor data (due to the larger field of view
of the fisheye camera), we evaluate only accuracy and com-
pleteness for synthetic and real datasets, respectively. For
the other metric it is not clear whether missing values are
due to inaccurate respectively incomplete models, or due to
missing reconstruction or ground truth data. For the syn-
thetic datasets we choose an error threshold of 7.5cm, while
for the real datasets we use a threshold of 10cm to account
for uncertainties in the depth sensor and the trajectory.

We evaluate the benefit of individual components of our
algorithm in Table 4 (more extensive results are given in the
supplementary material). Although the different filtering



Offline Online PC Online mobile
Depth map Model Depth map Model Depth map Model

Acc. Comp. Acc. Comp. Acc. Comp. Acc. Comp. Acc. Comp. Acc. Comp.

Living room 0 96.3% 36.2% 91.3% 96.1% 35.4% 91.1% 93.2% 34.9% 89.5%
Living room 1 90.7% 20.5% 89.5% 90.7% 20.2% 88.3% 87.9% 24.2% 88.2%
Living room 2 94.6% 35.1% 92.8% 94.3% 34.3% 90.8% 84.2% 26.9% 86.8%
Living room 3 96.1% 31.6% 93.6% 95.9% 30.6% 92.1% 91.3% 30.5% 89.8%

Relief 68.8% 32.7% 86.7% 68.7% 32.6% 84.5% 72.0% 42.8% 84.5%
Exhibition 91.7% 45.0% 94.5% 91.6% 45.1% 93.9% 90.8% 49.3% 92.9%
Underpass 90.7% 37.7% 94.3% 90.7% 37.6% 93.7% 89.9% 43.6% 92.9%
Plants 85.2% 34.3% 73.1% 85.1% 34.2% 70.2% 83.5% 37.8% 66.8%

Table 5. Results on synthetic and real sequences with different settings. Accuracy and completeness of the synthetic living room sequences
are evaluated at an error threshold of 7.5cm, for the real sequences a threshold of 10cm is used.

Figure 8. The completeness of the reconstruction using the fish-
eye camera (right) is significantly higher than that from the same
sequence using the depth camera (left) due to the larger FOV and
unbounded reconstruction range. Camera trajectory in red.

steps overall strongly decrease the individual depth maps’
completeness, the resulting models are still very complete
and accurate. Especially, they at the same time contain a
low amount of outliers. For this table we evaluate model
outliers analogously to model accuracy, but giving the per-
centage of points on the reconstruction which are farther
away than 15 cm from the closest ground truth point. We
argue that strong filtering is in most cases preferable to pro-
ducing more complete, but possibly outlier containing mod-
els in an interactive context, as users can easily record more
data if they are not satisfied with a model yet, accumulating
less outliers while doing so.

Table 5 evaluates our approach on the ICL-NUIM and
depth camera datasets, using all filtering steps. Depth maps
in general become more accurate and complete as higher-
quality settings are employed. Model completeness also
rises with more processing power used. Model accuracy
is very susceptible to outliers which (in contrast to static,
actual geometry) accumulate in the model; this puts high-
quality settings which include more frequent TSDF integra-
tion at a disadvantage. However, our offline results are in
the same range as for less frequent integration. Figure 7
enables a qualitative comparison of the resulting models.

5.2. Large-Scale 3D Reconstruction

Finally, we want to demonstrate that large-scale recon-
struction in outdoor environments is feasible at interactive

frame rates on mobile devices. We recorded data for mul-
tiple large-scale scenes, including non-urban environments.
Figure 9 shows qualitative reconstruction results obtained
in real-time on a Google Project Tango tablet. Table 6 pro-
vides details on datasets we processed with offline settings;
Figure 10 shows results for these datasets.

We also demonstrate the advantages of using a passive
fisheye camera for 3D reconstruction. Due to the longer
reconstruction range compared to depth cameras and its
wide field-of-view, complete reconstructions can be created
faster. Figure 8 compares reconstructions created with fish-
eye and depth camera data from the same camera trajectory.

6. Conclusion
We present a scalable interactive 3D reconstruction sys-

tem which enables to quickly build models of indoor as well
as outdoor environments. While free-space measurements
provide a good means of outlier suppression for reconstruc-
tions bounded to small volumes of interest, for unbounded
scenes they are often not sufficient. We therefore run sev-
eral filtering steps, that we thoroughly evaluate, on the depth
maps estimated by our system prior to integrating them into
a global model and show that we obtain superior results.

We implemented our system for Project Tango tablets,
which provides a very good motion tracking pipeline. How-
ever, we believe that the system could in general be ported
to other mobile devices. One limiting factor is the compu-
tational power required by the motion stereo system. As an
alternative to GPUs, FPGAs could be used for stereo com-
putations [11]. All other components can be easily ported
to other devices given proper IMU and camera calibration.
Using a camera with a smaller field-of-view will negatively
impact the accuracy of the tracking, but would not prevent
using our approach. We assume a global shutter camera for
the plane sweep stereo, however at slow movement speeds
the effect of fast rolling shutters is small, and there exist
methods to handle it explicitly [27].

Limitations of our system include the inherent trade-off
between accuracy and completeness, for which we favor



Figure 9. Examples of models generated in real-time on a Project Tango Tablet. The camera trajectories are shown in red.

Figure 10. More demonstrations of large-scale reconstructions, processed with offline settings on bundle-adjusted trajectories; The voxel
resolution was set to 4 cm to keep the mesh sizes manageable. Trajectories are shown in red. Left: Input image examples and orthographic
projection showing the whole reconstruction from the top. Middle and right: Selected close-ups. Scenes, from top to bottom: Aachen
Townhall, UZH Institute, Rocks at Mt. Pilatus. See the supplementary material for more images.

accuracy in an interactive setting where the user is aware
of where more data is needed. Completely untextured sur-
faces will not be reconstructed by the system. In addition,
the system does not contain means to react to on-line loop
closures which change the previous trajectory. Adjusting
dense volumes after loop closure is an open research topic
and possible solutions were only proposed recently, e.g. [5].

The supplementary material to this paper, including a
video, is available on the project website1.

1http://cvg.ethz.ch/research/3d-modeling-on-the-go

Frames Duration Length Bundle Adj. Reconstr.
[m:s] [m] [m:s] [m:s]

Aachen Townhall 6534 3:38 226 4:58 8:06
UZH Institute 11581 7:03 281 7:14 13:29
Rocks at Mt. Pilatus 12736 7:07 236 6:36 8:33

Table 6. Details of the datasets used for Fig. 10 and timings for
bundle adjustment and reconstruction on a standard desktop PC.
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