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Abstract. In this paper we discuss the problem of recovering the calibration of a
network of pan-tilt-zoom cameras. The intrinsic parameters of each camera over
its full range of zoom settings are estimated through a two step procedure. We
first determine the intrinsic parameters at the camera’s lowest zoom setting very
accurately by capturing an extended panorama. Our model includes two parame-
ters of radial distortion. The camera intrinsics and radial distortion parameters are
then determined at discrete steps in a monotonically increasing zoom sequence
that spans the full zoom range of the cameras. Both steps are fully automatic and
do not assume any knowledge of the scene structure. We validate our approach
by calibrating two different types of pan tilt zoom cameras placed in an outdoor
environment. We also show the high-resolution panoramic mosaics built from the
images captured during this process. We present an approach for accurate compu-
tation of the epipolar geometry based on the full panorama instead of individual
image pairs. Finally, we briefly discuss how this can be used to compute the ex-
trinsics for all the cameras and how our approach can be used in the context of
active camera networks.
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1 Introduction

Active pan-tilt-zoom cameras in wide-area surveillance systems allows one to monitor
a large area using only a few cameras. We refer to an unknown arbitrary configuration
of cameras in such an environment as a camera network. During operation such cam-
eras can act like high-resolution omnidirectional sensors, which can potentially track
activities over a large area and capture high-resolution imagery around the tracked ob-
jects. Active camera networks could also be used for 3D modeling of large scenes and
reconstruction of events and activities within a large area. This paper describes a fully
automatic method for calibrating a network of such pan tilt zoom cameras, that does not
require physical access to the cameras or the space in their field of view. Both intrinsics
and extrinsic parameters are estimated from images captured within the camera’s full
range of pan tilt and zoom configurations. Our method is inherently feature-based, but
does not require a calibration object or specific structures in the scene.

Past work on active camera calibration has mostly been done in a laboratory setup
using calibration targets and LEDs or at least in a controlled environment. Some of these
include active zoom lens calibration by Willson et. al. [9, 7, 10], self-calibration from
purely rotating cameras by deAgapito [2], and more recently pan-tilt camera calibration
by Davis et. al. [4]. Our approach towards zoom calibration is simpler than that of Wil-
son [10] who computed both focal length and radial distortion at many different zoom
settings [10] and is similar to that of Collins et. al. [3], who calibrated a pan-tilt-zoom
active camera system in an outdoor environment. However we extend the lens distortion
model proposed by Collins [3] who assumed constant radial distortion and estimated it
only at a particular zoom level and modelled its variation using a magnification factor.
We actually estimate the radial distortion caused by optical zoom of the camera.

Thus in our method the camera intrinsics are estimated by robustly computing ho-
mographies induced by rotating and zooming the camera. Intrinsic parameters and ra-
dial distortion is first estimated for the lowest zoom setting of the camera by computing
homographies between multiple images acquired by a rotating camera. Using bundle
adjustment [8], the homography model is extended to take radial distortion into ac-
count. This allow us to build a panorama of the complete scene with sub-pixel align-
ment error. We then use an image sequence from the full zoom range of the camera to
estimate the variation of its intrinsics with zoom. The epipolar geometry between two
cameras is then robustly computed from the respective panoramas, as this provides a
good distribution of features over a large field-of-view. A method to recover full metric
calibration of all the cameras in the network from a sufficient number of fundamental
matrices between camera-pairs using only pair-wise matches, is described in [1]. The
paper is organised as follows. Section 2 introduces the camera model while Section 3
explains the calibration procedure. Section 4 addresses the construction of panoramas
while calibration results are presented in Section 5. We conclude with discussions and
scope for future work in Section 6.
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Fig. 1. The cameras we use: (a) Canon VB-C10. (b) Sony SNC-RZ30. (c) Relevant camera spec-
ifications. (d) Our pin-hole camera model. (e) Camera rotation and zoom.

2 Theory and Background

2.1 Camera Model

We chose to use a simple pan-tilt-zoom (PTZ) camera model and make a tradeoff for
simplicity over exactness in our choice, similar to [2, 3]. Our model assumes that the
center of rotation of the camera is fixed and coincides with the camera’s center of pro-
jection during operation. Some inexpensive PTZ cameras may violate such an assump-
tion depending on its pan-tilt mechanism and more general models [4, 9] have been
proposed to deal with them. However when cameras are used outdoors or in large en-
vironments, the deviation of the center is negligible compared to the average distance
of the observed features, which are typically distant. Our experiments with the Canon
VB-C10 and Sony SNC-RZ30 surveillance cameras (see Fig. 1 for relevant specifica-
tions) have shown this model to be reasonably accurate.!#"%$'& (*)+(-, . $/" 0132547698*:<;= 476>:<6= =@? AB

(1)

In the pin-hole camera model (see Fig. 1(d)) for the perspective camera, a point C ,
in DFE projective space G �

projects to a point H , on the IJE projective plane G �
(the

image plane). This can be represented by a mapping
4*K G �ML G �

such that H "%! C ,!
being the DONQP rank-3 camera projection matrix. This matrix
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in pixel in the S directions; (
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) its principal point in the image. Since we model the
camera’s pan and tilt movements by pure rotations about its projection center T , we
choose it as the world origin and set U " =

. Our goal is to estimate the unknown param-
eters of a model for

$�VXW Y�W Z
that provides the intrinsics for any (pan=

:
; tilt= U ; zoom= [ )

configuration within the admissible PTZ ranges. The principal point (
:�;

,
:\6

) and focal
length

4
depend only on the camera’s zoom, and not its state of pan and tilt. Hence the

unknown intrinsics we wish to estimate are of the form in Eq. 2.$']_^F`a" 01b2c4 6 ] [ ` 8 : ; ] [ `= 4 6 ] [ ` : 6 ] [ `= = ? AB
(2)

where
2

and
8
, (we assume

8
=0) are constants for a particular camera and [ is its

zoom level. Most cameras deviate from a real pin-hole model due to effects of radial
distortion which becomes more prominent as the focal length of the camera decreases.
The DdE point C which projects to H "e]
fHhg fi g�j ` under the pin-hole model actually
gets imaged at ( Rlk , Smk ) due to radial distortion as shown in Eq. 3. no "qp nR �>r nS � is
the radial distance of H from the center of distortion ( R�s , SFs ) and t ]_fu ` is a distortion
factor determined by no . The function t ] u ` is represented as t ] u `a" j r�v�w uJx r�v x uzy rv|{ u~} r������

and
] v � g v � g v � g�Rls�g�SFs ` is the parametric model for radial distortion. Since

the effect of radial distortion diminishes with increasing focal length, our model for
radial distortion, � is also a function of zoom.� R kS k�� " t ]_fu ` � nR nS � � "#] v w ]�^m` g v x ]�^F` g v { ]_^F` g
H�� ]�^F` g i � ]�^m`�` (3)

We determine calibration over the full zoom range by estimating
$']�^F`

and � ] [ ` (as
shown in Eqs. 2 and 3) at equal steps of zoom on a logarithmic scale, between [F�����
and [~��� ; , the minimum and maximum optical zoom levels respectively. For the VB-
C10 and the SNC-RZ30, ( [7����� , [~��� ; ) was (0,120) and (0,101) respectively. We linearly
interpolate between these discrete levels to obtain intrinsics at any state of zoom.

2.2 Rotating and Zooming Cameras

Here we consider the case of a rotating and zooming camera. Let R and R�� be the images
of C taken at two different instants by a camera that is either zooming or rotating or
both. These points, R and Rl� are related to � as R "�$

[
(�,

] C and Rl� "�$ � [ ( � , ] C .
Hence, R � "�$ � ( � (�� w $�� w H . In our model, the intrinsics remain the same for pure
rotation at constant zoom, and hence this equation reduces to R�� "9$ � (������$ � w H where(�����a"�( � ( � w

represents the relative camera rotation about its projection center be-
tween the two views and

$
is the camera intrinsic matrix for that particular zoom level.

Similarly for a zooming camera with fixed center of projection, R�� "�$ � $ � w H . These
homographies are represented by � �� Y

and � Z �7�~�
(see Eq. 4).� �� Y "�$ � (�$ � w � Z �7�z��"%$ � $ � w

(4)
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3 Our Calibration Procedure

An overview of the two phase calibration procedure is shown in Fig. 2. The notation
used here is as follows.   � are images acquired by the rotating camera. ¡ � and ¢¤£ rep-
resent the homographies between horizontal and vertical adjacent pairs in the image
grid. ¥�� represents the homographies with respect to a reference image  ~¦ . The optimal
homographies n¥�� , computed through Bundle I, are used to obtain an approximate in-
trinsics § ] [~����� ` at the lowest zoom. n¨ represents camera rotation matrices and

¨ k ] [ `
stands for the radial distortion model parameters at zoom level [ .

Fig. 2. Overview of the intrinsics calibration procedure. (a) The image grid ©�ª captured during ro-
tation at fixed zoom and the mosaic computed with respect to © « . (b) Horizontally and vertically
adjacent images in the grid shown with the corresponding matches. Feature lists built from fea-
tures visible in two or more images are illustrated. (c) Successive images from a zoom sequence
shown with the corresponding matches.
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3.1 Computing Intrinsics at Minimum Zoom

The first step towards computing intrinsics is determining the intrinsics at minimum
zoom. This is done from images captured from a rotating camera by computing homo-
graphies � �� Y

(see Eq. 4) between each of them and a chosen reference image. During
a capture phase, images are acquired in a spherical grid (see Fig. 2(a)) for certain dis-
crete pan and tilt steps. Fig. 5 shows 18 images captured at 6 pan and 3 tilt steps. The
homographies between every adjacent horizontal pair of images, ¡�� and between every
adjacent vertical pair, ¢ £ in the grid are computed as described in [5] (Chap.3, page
108). Fig. 2(b) shows a horizontal image pair and a vertically pair with the respective
matched features. One of the images,   ¦ is chosen as the reference image and homogra-
phies, ¥ � are computed for every image   � , by composing a sequence of transformations,
(
����� ¡ � g�¡O¬ ����� ¢ s g�¢ kF� ) along a connected path between   � to   ¦ in the image grid as

illustrated in Fig. 2(a). An accurate estimate of ¥ � ’s for all the images would allow
multi-image alignment in the image plane of   ¦ . Since residual errors accumulate over
the composed homographies, the final mosaic obtained by aligning all the images, con-
tains significant registration errors.

Global image alignment and sub-pixel registration is achieved through a bundle ad-
justment (we use a sparse implementation to efficiently deal with a large number of
images) that also estimates the radial distortion parameters. The bundle adjustment [8]
is initialized using the set of computed homographies ¥®� and by building a global feature
list (see Fig. 2(b)) from the horizontal and vertical pairwise matches. Bundle Adjust-
ment performs global minimization which produces the maximum likelihood estimation
of the model parameters when the image error is assumed to be zero-mean Gaussian
noise. This is first used to estimate all the homographies ¥ � , the radial distortion pa-
rameters � ] [ ����� ` and the panorama features � £ that minimizes the mean square error
between the observed image features and the reprojected points. (see Eq. 5). We call
this Bundle I in Fig. 2.¯±°³²�´ � W µM¶ � �����7· W ��¸ �¹º » � �¹ � » � E ] R £ � g�� ] ¥ � � £ `
` � (5)

The accurate homographies from this bundle, n¥�� are used to estimate § ] [7����� ` using
the Hartley’s linear algorithm for computing intrinsics for a purely rotating camera [11].
This value of § ] [~����� ` is used to initialize another bundle, Bundle II, which refines the
estimates of § ] [~����� ` , � ] [z����� ` by minimizing the reprojection error given by Eq. 6.¯�°³²�¼ ¶ �����½� · W ¾ � W µM¶ �����½� · W � ¸ �¹º�» � �¹ � » � E ] R £ � g
§ ] � ]�¨ � � £ `
`�` � (6)

Every IdE homogeneous feature point, � £ is projected to a unit cube and parameterized
as ( ¿À� , Á � ) where the third coordinate is set to +/-1 depending on the particular cube face
that � £ projects to.

3.2 Zoom Sequence Calibration

Full range zoom calibration can be achieved by building a mosaic and repeating the
process described in Sec. 3.1 at multiple steps within the camera’s zoom range. How-
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Fig. 3. Minimizing the reprojection error in a Bundle Adjustment. Î\ÏÑÐ¤ÒÔÓ ª�Õ represents the model
parameters. Common parameters are denoted by Ð and view-dependent parameters by Ó . The
values of Ð , Ó in different bundle adjustment phases are shown.

ever Hartley [11], showed that more images are required in the mosaic as the camera
progressively zooms in and its effective field-of-view decreases making the approach
time-consuming. Instead we compute intrinsics over the zoom range using an image
sequence, captured in a fixed direction with the camera progressively zooming in. We
then estimate homographies ¡ ��Ö�Ö � ,(see Eq. 4) between every image pair within this se-
quence. This requires fewer images and is considerably faster. The first phase of zoom
calibration estimates § ] [ � ` and � ] [ � ` , the intrinsics at zoom level, [ � for every step in
the zoom sequence. This is done using a pairwise bundle adjustment that works with
images at zoom steps [ � , [ � � � , using the value of § ] [ � � � ` and � ] [ � � � ` estimated in the
previous iteration to minimize the reprojection error in Eq. 7. A full bundle adjustment
then refines the estimated parameters by minimizing the same reprojection error over
all the images in the sequence. Estimating radial distortion only from a zoom sequence
has inherent ambiguities since a distortion at a particular zoom can be compensated by
a radial function at another zoom. We avoid this ambiguity by keeping the intrinsics
computed at the lowest zoom fixed in the bundle adjustment step. The uncertainties of
the estimated parameters are used to determine the zoom levels at which the effect of
radial distortion, namely coefficients

v � and then
v � , becomes negligible. Wilson [9]

shows that the image center is hard to estimate accurately. We chose to constrain the
principal point to be the same as the center of radial distortion in our zooming camera
model.

¯±°³² ¼ ¶ �
� · W µ+¶ �
� · W � ¸ �¹º�» � �¹ � » � E ] R £ � g�§ ] � ] � £ `
`�` � (7)

3.3 Constructing Panoramas

Sec. 3.1 describes the approach, similar to that of [6] for achieving sub-pixel accuracy in
multi-image alignment and creating mosaics from images acquired by a rotating cam-
era at its lowest value of zoom. We could build mosaics at large focal lengths too (see
Fig. 4). Since the unknown focal length

4
is computed through the same bundle, the

cube-map face is chosen to be of size I 4 N�I 4 , since this preserves the pixel resolution
of the original images. We have rendered panoramas with a single cube-map face at res-
olutions of 6k N 6k pixels, from 119 images (

4
=3120 pixels approx. 5X zoom) in about
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20-25 mins. Panoramas created at different resolutions would allow background image
synthesis for any pan, tilt and zoom at an appropriate resolution and allow background
differencing, change detection and high precision calculation of PTZ settings even if the
camera control is not repeatable. A tile-based representation is adopted for these large
images to allow efficient out-of-core processing. We use a simple blending function,
(radially weighted averages) to blend overlapping pixels in the generated cubemaps.
Better blending functions can remove the artifacts caused by the high dynamic range in
the scene, but these require estimates of the camera’s response function.

Fig. 4. The front face of the computed cube-maps: (a) Radial distortion was ignored in the
camera model (Note that straight lines in the world are not imaged as straight lines). (b) Ac-
curate panorama created after incorporating radial distortion. (c) High-resolution panorama
( ×�ØzØ�Ø�Ù�×�ØzØ�Ø pixels) built from 119 images at 5X zoom. Note the zoomed-in regions of the
panorama, displayed in the original scale.
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3.4 Computing Extrinsics

We propose to estimate the extrinsic parameters for all the cameras in the network by
computing the pairwise epipolar geometry for sufficient camera pairs. The fundamental
matrix for a pair of PTZ cameras can be computed more robustly from the panora-
mas we build. Since the cameras are located in the same environment, the panoramic
images are guaranteed to contain overlapping regions which are visible in both views.
In spite of the presence of moving objects in the scene which gives rise to outliers,
a lot of spatially well distributed static features are guaranteed to exist in most envi-
ronments. This allows the use of completely unsynchronized or asynchronous cameras
which acquire images completely independent of each other. The fundamental matrix
corresponding to a view-pair is computed by the robust RANSAC-based algorithm de-
scribed in [5] (Chap 10. page 275). Although extracted features for each camera are
represented by panorama coordinates, feature correspondences are determined by com-
paring pixels in the original images. Each panorama feature is mapped back into one of
the acquired images and its local neighbourhood in those images are compared using
a normalized cross-correlation measure. A complete metric calibration of all the cam-
eras can be obtained from a sufficient number of fundamental matrices and pairwise
matches using the method described in [1]. This involves computing a projective recon-
struction and upgrading it to a metric reconstruction using self-calibration. However
metric cameras can also be directly obtained from the fundamental matrices via the
essential matrix [5] (Chap 8, page 226), since the corresponding intrinsic parameters
have already been computed. In this paper we compute extrinsics for a short baseline
camera-pair using this simple method. However for larger camera networks, the method
described in [1] is more appropriate.

4 Experimental Results

Here we present results from fully calibrating two Canon VB-C10 and two Sony SNC-
RZ30 pan tilt zoom cameras in an outdoor environment. The cameras are placed near
two adjacent windows about 3-4 meters apart looking out at a construction site roughly?�=d= N ? I = meters in area. This setup reduced each camera’s available field of view for
pan to only

?zÚd= Ö . Hence only the front face of the cubemaps we build are interesting
and hence shown. Fig. 5 shows the images used in calibration and Fig. 4 the resulting
panoramas. The recovered intrinsics for the four cameras as a function of zoom
are shown in Fig.6(a). The principal point was found to move in a straight line for dif-
ference zoom sequences. The motion was most noticeable at high zooms. The VB-C10
had a linear mapping of focal length to zoom whereas the SNC-RZ30’s focal length was
non-linear. The pixel aspect ratio of the VB-C10’s and SNC-RZ30’s were found to be
1.09 and 0.973 respectively while the skew was assumed to be zero. Repeated zoom se-
quence calibration for the same camera from different datasets (Fig. 6(b)&(c)) showed
the focal length estimation to be quite repeatable. The coefficients of radial distortion
in our model,

v � and
v � were estimated along with their respective uncertainties. These

uncertainties were used to clamp
v � and

v � to zero at particular zoom steps during the
pairwise bundle adjustment described in Sec 3.2. The mean reprojection error from the
final zoom sequence bundle for 35-40 images, with roughly 200-300 feature matches
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(b)

Fig. 5. (a) Top 3 rows: 18 images captured at a fixed zoom (z=0), pan and tilt angles are in de-
grees. The bottom row shows 6 frames from a zoom sequence of 36 images for fixed pan &
tilt angles. (b) The front faces of panoramic cubemaps built from each of two cameras placed
on adjoining windows 3-4 meters apart are shown. The corresponding features and a few corre-
sponding epipolar lines are shown. An orthographic top-view of the recovered cameras and some
of the reconstructed feature points are shown upto an ambiguity of scale.



10

(a)

(b)

(c)

Fig. 6. (a) The variation of the principal point and focal length with zoom is shown for each
of the four cameras in our experiments. (b) Calibration results of a Canon VB-C10 from six
different image sequences. (c) Calibration results of a Sony SNC-RZ30 from six different images
sequences.
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(a)

(b)

(c)

Fig. 7. (a) The variation of the radial distortion coefficients, Û\Ü and Û¤Ý , with zoom is shown for
our 4 cameras. The uncertainties associated with Û Ü and Û Ý are shown using error bars. Û Ý has
larger uncertainty compared to Û Ü which is estimated for a longer zoom range. (b) and (c) shows
the variation of Û\Ü and Û¤Ý for repeated calibration of a Canon and Sony camera, each using 6
different image sequences.

for every successive pair was within 0.43 pixels.
For computing extrinsics, at this stage we concentrate on robustly estimating the

fundamental matrix from the cubemap panoramas. Our results for a single camera pair
are shown in Fig. 5. The corresponding epipolar lines and the feature correspondences
extracted by our method are displayed. The metric cameras recovered via the essential
matrix and the reconstructed points are shown on the right.

5 Conclusions

We have presented an automatic method for calibrating a network of active PTZ camera
typically used in surveillance systems. The camera intrinsics are estimated over its full
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range of pan, tilt, zoom by robustly computing homographies between images acquired
by a rotating and zooming camera. Our calibration algorithm also computes accurate
panoramas by building a mosaic from image acquired by the camera rotating at fixed
zoom. The camera extrinsics are then robustly determined by estimating the epipolar
geometry from a pair of panoramas. In future we will work on maintaining calibra-
tion of active cameras in operation and determine the degree of repeatability of their
PTZ mechanisms. A lack of repeatability will be addressed by building an efficient
closed-loop system, that re-estimates the calibration everytime the camera moves, by
registering its images with a pre-computed calibrated panorama of the background. The
pan-tilt-zoom camera described here, can potentially produce extremely detailed omni-
directional images by virtue of their long zoom range. Since stitching the whole mosaic
is expensive at high resolutions, we are currently exploring an efficient multi resolution
framework for rendering very large panoramas using a heirarchy of zooms.
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